03,08

Примесные уровни электронов в 2D-структурах, сформированные магнитными краевыми состояниями

© М.М. Махмудиан^{1,2}, А.В. Чаплик^{1,2}

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия ² Новосибирский государственный университет, Новосибирск, Россия E-mail: mahmood@isp.nsc.ru

Поступила в Редакцию 26 сентября 2023 г. В окончательной редакции 26 сентября 2023 г. Принята к публикации 1 ноября 2023 г.

Теоретически исследованы связанные состояния на примесном центре, возникающие в двумерном электронном газе в сильном поперечном магнитном поле с учетом влияния границ образца. В краевых состояниях сохраняется одна компонента импульса электрона, т.е. движение становится эффективно одномерным. На примере полосы конечной ширины получено уравнение, которое определяет энергию примесного состояния и является обобщением известного результата для мелкой потенциальной ямы в одномерной системе на случай произвольного закона дисперсии. Численно найдены энергии примесных уровней, относящихся к нулевой магнитной подзоне.

Ключевые слова: двумерный электронный газ, квантующее магнитное поле, краевые состояния, примесные уровни.

DOI: 10.61011/FTT.2023.12.56768.213

1. Введение

В объемном образце сильное магнитное поле эффективно "одномеризует" движение частицы вдоль направления поля. Поскольку в одномерном случае любая симметричная потенциальная яма имеет хотя бы один связанный уровень, магнитное поле создает связанное состояние даже в мелком и узком притягивающем потенциале (Бычков, 1960, ст. [1]).

В безграничной двумерной системе, помещенной в нормальное к ней магнитное поле, спектр электронов дискретный с кратностью вырождения пропорциональной площади системы, а волновые функции в зависимости от выбора калибровки вектор-потенциала могут описывать либо локализованное в плоскости состояние с сохраняющейся проекцией момента на нормаль к плоскости, либо (калибровка Ландау) состояния, делокализованные вдоль одной оси (плоская волна с импульсом p) и локализованные в перпендикулярном направлении. Точка локализации X (точка подвески осциллятора) определяется величиной $p: X = pl^2$, где l — магнитная длина.

Наличие края (границы) образца нарушает сохранение момента, возникают "скачущие орбиты" (skipping orbits), и остается лишь один тип состояний, описываемый в калибровке Ландау — магнитные краевые состояния (МКС). Вырождение уровней Ландау снимается, они превращаются в подзоны $E_n(p)$ (или $E_n(X)$, n = 0, 1, 2...), т.е. спектр становится похожим на спектр квантовой ямы, только свободное движение имеется лишь вдоль одной оси — вдоль края образца. Таким образом, в сильном магнитном поле, когда переходы с изменением *n* подавлены, задача о спектре примесного центра становится аналогичной таковой в одномерной системе. Подчеркнем, что в отличие от случая Бычкова здесь инфинитное движение осуществляется поперек магнитного поля и от импульса этого движения зависит точка локализации волновой функции поперечного к краю движения. Поэтому энергия связанного состояния на примеси существенно зависит от расстояния примесного центра до границы образца. Настоящая работа посвящена нахождению энергии примесного состояния в 2D-системе с учетом существования MKC.

2. Метод эквивалентного гамильтониана

Мы применим подход аналогичный методу Ванье в теории примесных состояний 3D-полупроводников. Рассмотрим полосу 2D-электронного газа шириной L ($-L/2 \le x \le L/2$), края которой задают направление Oy. Граничные условия соответствуют непроницаемым "стенкам" т.е. волновая функция $\Psi(x, y)$ обращается в нуль при $x = \pm L/2$. В калибровке Ландау Ψ имеет вид

$$\Psi_{np} = \frac{e^{ipy}}{\sqrt{2\pi}} \phi_n(x - pl^2),$$

где $n = 0, 1, 2 \dots, -\infty нормирована на$ единицу в интервале <math>[-L/2, L/2], а ϕ — на δ -функцию импульса p вдоль оси y (здесь и далее $\hbar = 1$). Функция поперечного движения ϕ_n выражается через вырожденные гипергеометрические функции *F*:

$$\begin{split} \phi_n &= AD_q \left(\frac{x - X}{l/\sqrt{2}} \right) + BD_q \left(-\frac{x - X}{l/\sqrt{2}} \right), \quad (1) \\ D_q(Z) &= \frac{2^{q/2} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1 - q}{2}\right)} e^{-z^2/4} F\left(-\frac{q}{2}, \frac{1}{2}, \frac{z^2}{2} \right) \\ &\quad - \frac{2^{q/2} \sqrt{2\pi}}{\Gamma\left(-\frac{q}{2}\right)} z e^{-z^2/4} F\left(\frac{1 - q}{2}, \frac{3}{2}, \frac{z^2}{2} \right), \\ &\quad q = \frac{E}{\omega} - \frac{1}{2}. \end{split}$$

Индекс *n* возникает при решении уравнения на собственные значения энергии $E_n(p)$, получающегося из граничных условий

$$\frac{D_q\left(\frac{L/2-X}{l/\sqrt{2}}\right)}{D_q\left(-\frac{L/2+X}{l/\sqrt{2}}\right)} - \frac{D_q\left(\frac{L/2-X}{l/\sqrt{2}}\right)}{D_q\left(\frac{L/2+X}{l/\sqrt{2}}\right)} = 0.$$
 (2)

Введем Фурье-образ Ψ_{np} относительно переменной p:

$$\Psi_{np} = \frac{1}{\sqrt{2\pi}} \int e^{ipu} \varphi_n(u) du.$$
 (3)

Соответственно имеем

$$\varphi_n(u; x, y) = \frac{1}{2\pi} \int e^{-ipu} \Psi_{np}(x, y) dp.$$

Тогда функции ϕ нормированы условием

$$\langle \varphi_m^*(\nu)\varphi_n^*(u)\rangle = \delta_{nm}\delta(u-\nu).$$

Действие невозмущенного, т.е. без примеси, гамильтониана \hat{H}_0 на функцию $\varphi_n(u)$ приводит к результату

$$\hat{H}_0 \varphi_n(u) = \int E_n(u-v)\varphi_n(v)dv, \qquad (4)$$

где $E_n(w)$ есть Фурье образ энергии $E_n(p)$:

$$E_n(w) = \frac{1}{2\pi} \int e^{-ipw} E_n(p) dp.$$
 (5)

При наличии примесного центра решение ищется в виде ряда по *n* и интеграла по *u* от функций $\varphi_n(u)$ с коэффициентами $f_n(u)$:

$$\Phi(x, y) = \sum \int f_n(u)\varphi_n(u; x, y)du, \qquad (6)$$

и задача сводится к получению и решению уравнения на огибающую $f_n(u)$. Искомая собственная функция полного гамильтониана $\hat{H}_0 + U(x, y)$, где U — потенциал примесного центра, удовлетворяет уравнению

$$(\hat{H}_0 + U)\Phi_n = \varepsilon_n \Phi_n,\tag{7}$$

где ε_n — энергия локализованного на примеси состояния.

После подстановки разложения (6) в уравнение (7), умножения обеих частей на $\varphi_m^*(w)$ и интегрирования по dxdy получим

$$\langle \varphi_m^*(w)\hat{H}_0\Phi\rangle = \int f_m(u)E_m(u-w)du,$$

что после введения оператора сдвига на u' в виде $\exp(u'\partial/\partial w)$ дает

$$\langle \varphi_m^*(w) \hat{H}_0 \Phi \rangle = E_m(-i\partial/\partial w) f_m(w)$$
 (8)

Таким образом, для огибающей $f_m(w)$ получается уравнение

$$E_m(-i\partial/\partial w)f_m(w)$$

+ $\sum_n \int \varphi_m^*(w)f_n(u)\varphi_n(u)U(x, y)dxdy = \varepsilon f_m(w).$

3. Примесные состояния

Далее введем обычные в технике Ванье предположения относительно характера примесного потенциала. Функцию U(x, y) будем считать плавной, а магнитное поле достаточно сильным, так что характерный размер потенциала a (в случае кулоновского центра эффективный боровский радиус a_B^*) много больше магнитной длины: $a \ll l$. Сильное поле означает также, что амплитуда потенциала U_0 (энергия Ридберга в кулоновском случае) много меньше кванта Ландау: $U_0 = \omega_c$. Напомним, что характерный размер $\Psi_{np}(x)$ по x, а также размер $\varphi_n(u)$ по u порядка l, т.е. функции стоящие под интегралом во втором члене в (9) имеют узкие по сравнению с размером U(x, y) максимумы. Например, для безграничной плоскости на нулевом уровне Ландау имеем

$$\Psi_{0p}: \exp[ipy - (x - X)^2/2l^2],$$

$$\varphi_0(u): \exp[(y - u)^2/2l^2 + ix(y - u)/l^2].$$

Поэтому максимальный вклад от матричного элемента U_{mn} возникает при n = m, $y \approx u \approx w$, $x \approx 0$ (точнее речь идет об областях |y - w| : l, $|x(y - w)| : l^2$; вне этих областей экспоненты быстро затухают или быстро осциллируют).

Отсюда следует, что в (9) надо подставить U(x = 0, y = w) и вынести эту величину из-под интеграла. Точка x = 0 определяется записью волновой функции в задаче без примеси. Для полосы с одинаковыми (нулевыми) граничными условиями на краях эта точка есть середина полосы. Если максимум (минимум) примесного потенциала расположен при x = s, y = 0(у всегда можно отсчитывать от примеси), то вынесенная из-под интеграла величина есть U(x = s, y = w). Таким образом, задача свелась к одномерной, но с произвольным законом дисперсии электрона

$$E_n(-i\partial/\partial w)f_n(w) + U(s,w)f_n(w) = \varepsilon_n f_n(w).$$
(9)

Локализованные (убывающие при $w \to \pm \infty$) решения уравнения (9) определяют значения энергии примесного состояния ε_n , связанного с *n*-й подзоной Ландау. Если примесный потенциал аксиально симметричен, т.е. $U = U(\rho), \rho^2 = x^2 + y^2$, то в (9):

$$U(s, w) = U(\sqrt{s^2 + w^2}).$$

Далее проводим те же вычисления, что в [1], §45. Внутри потенциальной ямы $U(\rho)$ пренебрегаем ε , считая уровень ε мелким по сравнению с глубиной ямы $(\varepsilon = |U|)$ и полагаем $f_n = 1$, а вне радиуса потенциала, когда $|w| \ll a$, решение ищем в виде $f_n(w)$: $e^{-\gamma_n |w|}$. Внутри ямы интегрируем по w:

$$\int \hat{E}_n(-i\partial/\partial w)f_n(w)dw = -\int_{-\infty}^{\infty} U(w)dw \equiv -\lambda \quad (10)$$

Оператор $\hat{E}_n(-i\partial/\partial w)$, действуя на $e^{-\gamma_n w}$ дает $E_n(i\gamma)$. Разлагая $\hat{E}_n(-i\partial/\partial w)$ в ряд по степеням $(-i\partial/\partial w)$, видим, что интегрирование по w понижает степень каждого члена ряда на единицу. Снова сворачивая после этого ряд, получим

$$\int \hat{E}_n(-i\partial/\partial w)e^{-\gamma w}dw = -E(i\gamma)/\gamma.$$

Из-за четности $e^{-\gamma_n|w|}$ уравнение для ε_n приобретает вид $\varepsilon = E(i\gamma_n)$, где γ_n — корень уравнения

$$\frac{2E_n(i\gamma_n)}{\gamma_n} = \int_{-\infty}^{\infty} U(w)dw,$$
(11)

T.e. $\varepsilon_n = \lambda \gamma_n/2$.

Уравнение (11) вместе с определением $\varepsilon_n = E(i\gamma_n)$ обобщает известную формулу для для мелкого уровня в одномерной потенциальной яме ([1], §45) на случай произвольного закона дисперсии электрона.

Для стандартного закона дисперсии $E = p^2/2m$ из (11) получается известный результат [1]: $\varepsilon_n = -m\lambda^2/2$, т.е. энергия связи частицы на примеси квадратично мала по сравнению с глубиной потенциальной ямы.

Численное моделирование случая магнитной подзоны

Закон дисперсии подзон Ландау $E_n(p)$ не может быть выражен в элементарных или известных специальных функциях. Он задается в виде неявной функции параметра X/l = pl, которая есть индекс q в уравнении (2). Графики $E_n(p)$ для двух нижних подзон приведены на рис. 1, a. Их вид вполне понятен и неоднократно приводился в литературе (напр. [2,3,4]). Весьма неожиданным оказался вид этих функций при чисто мнимом аргументе, фигурирующих в уравнении (11) для энергии примесного состояния — см. рис. 1, b. Видно, что при γl

Рис. 1. *а*) Два нижних уровня Ландау (сплошная линия для n = 0, точки для n = 1) в полосе ширины L = 4l. Отсчет энергии от $E_0(X = 0)$. *b*) Те же функции при мнимом аргументе.

больше некоторой пороговой величины вещественных корней дисперсионного уравнения (2) не существует. Мы проверили, что левая часть ур. (2) как функция q многократно пересекает ось абсцисс. Минимум, лежащий между соседними точками пересечения, с ростом параметра γl поднимается, две точки пересечения сливаются в одну точку касания, что соответствует слиянию сплошной и точечной кривой на рис. 1, *b*. При дальнейшем увеличении γl минимум становится положительной величиной, и эта пара вещественных корей ур. (2) исчезает. Следующие корни лежат при существенно бо́льших значениях q и соответствуют более высоким подзонам.

Рис. 2. Сплошными линиями показаны энергии связи двух локализованных состояний. Пунктирная линия соответствует квадратичному закону дисперсии: $\varepsilon = -m\lambda^2/2$.

Минимум при положительном гамма на сплошной кривой рис. 1, *b* означает, что ур. (11) имеет два корня. Результаты их численного расчета приведены на рис. 2. При некотором значении безразмерного параметра $ml\lambda$ корни сливаются в соответствии со сказанным выше о поведении законов дисперсии подзон при мнимом аргументе. Следовательно, существуют два локализованных состояния на короткодействующей примеси, связанных с нулевой подзоной.

В случае кулоновского центра в точке x = s, y = 0 потенциал U равен $-e^2/\sqrt{s^2 + w^2}$. Интеграл в (10) расходится и "обрезается" наверху при $w : a_B$, а внизу при w порядка большей из величин s и l. Тогда с логарифмической точностью

$$\lambda = 2\ln\left[\frac{a_B + \sqrt{a_B^2 + s^2}}{\max(s, l)}\right]$$

и при $s = l\lambda$ зависит от магнитного поля.

Итак, в работе показано, что энергия примесных уровней, связанных с магнитными краевыми состояниями в 2D-электронном газе определяется поведением закона дисперсии магнитных подзон при мнимых значениях импульса. Численно найдены энергии примесных состояний, относящихся к нулевой подзоне.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Ю.А. Бычков. ЖЭТФ **39**, 689 (1960).
- [2] B.I. Halperin. Phys. Rev. B 25, 2185 (1982).
- [3] A.H. Macdonald, P. Středa. Phys. Rev. B 29, 1616 (1984).
- [4] D.A. Abanin, P.A. Lee, L.S. Levitov. Phys. Rev. Lett. 96, 176803 (2006).

Редактор Т.Н. Василевская