Магнитные и магнитооптические свойства тонких пленок гексаферрита BaM, выращенных на подложках Al₂O₃(0001) методом лазерной молекулярно-лучевой эпитаксии

© Б.Б. Кричевцов¹, А.М. Коровин¹, А.А. Левин¹, А.Г. Бадалян¹, Н.С. Соколов¹, А.В. Телегин², И.Д. Лобов²

¹ Физико-технический институт им. Иоффе РАН, Санкт-Петербург, Россия ² Институт физики металлов им. М.Н. Михеева, Екатеринбург, Россия E-mail: boris@mail.ioffe.ru

Поступила в Редакцию 11 мая 2023 г. В окончательной редакции 22 августа 2023 г. Принята к публикации 30 октября 2023 г.

Приводятся результаты исследования структурных, магнитных и магнитооптических свойств тонких (толщиной h = 50-500 nm) пленок гексаферрита BaM (BaFe₁₂O₁₉), выращенных на подложках сапфира α -Al₂O₃ (0001) методом лазерной молекулярно-лучевой эпитаксии. Кристаллическая структура выращенных слоев изучалась рентгенодифракционными методами, а статические магнитные свойства с помощью вибрационного магнитометра. Получены спектральные зависимости полярного магнитооптического эффекта Керра (PMOKE), поперечного эффекта Керра (TKE) и магниторефрактивного эффекта (MRE^S).

Ключевые слова: гексаферриты, тонкие пленки, процессы намагничивания, лазерная молекулярно-лучевая эпитаксия.

DOI: 10.61011/FTT.2023.12.56731.4992k

Гексаферриты образуют большой класс ферримагнитных материалов, обладающих разнообразными, часто уникальными, магнитными свойствами, благодаря которым они нашли широкое применение для создания различных устройств передачи и обработки информации с помощью магнитостатических волн, создания постоянных магнитов, датчиков магнитного поля и т.п. [1]. Наличие в кристаллической структуре оси симметрии 6го порядка обуславливает появление, в зависимости от химического состава и типа кристаллической структуры, магнитной анизотропии типа "легкая ось" (ось легкого намагничивания), либо "легкая плоскость" (плоскость легкого намагничивания). Гексаферрит BaM (BaFe_{12}O_{19}) обладает высокими значениями намагниченности насыщения $(4\pi M_s \approx 4.7 \,\mathrm{kG})$ и поля одноосной анизотропии $(H_a \approx 17 \,\mathrm{kOe})$, стремящейся ориентировать намагниченность вдоль оси шестого порядка. Это делает его перспективным материалом для создания тонкопленочных структур, в которых намагниченность может ориентироваться нормально плоскости без приложения магнитного поля. Частота ферромагнитного резонанса (FMR, ferromagnetic resonance) тонкопленочных структур на основе гексаферрита $F \sim 50 \,\text{GHz}$ [2].

Пленки гексаферрита выращивались методом лазерной молекулярно-лучевой эпитаксии на подложках $Al_2O_3(0001)$. Как показали наши исследования с помощью методов дифракции быстрых электронов (RHEED, reflection high-energy electron diffraction) и полярного магнитооптического эффекта Керра (PMOKE, polar magneto-optical effect), кристаллическая структура гексаферрита и ферромагнитные свойства таких пленок проявляются после их отжига на воздухе при температуре 1000°С. Для получения информации о влиянии отжига на кристаллическую структуру пленок и их магнитные характеристики в данной работе были проведены исследования пленок BaM с помощью рентгенодифракционных (XRD, X-ray diffraction), магнитометрических и магнитооптических методов.

ХRD-измерения проводились на порошковом рентгеновском дифрактометре D2 Phaser (Bruker AXS, Карлсруэ, Германия), в вертикальной $\theta-\theta$ геометрии Брэгга–Брентано, снабженном линейным полупроводниковым позиционно-чувствительным детектором LYNXEYE (Bruker AXS). Использовалось Си- K_{α} -излучение (длина волны $\lambda = 1.5418$ Å) рентгеновской трубки с медным анодом, отфильтрованное фильтром из никелевой фольги.

XRD-исследования проводились также с использованием картографирования обратного пространства. Для этого использовался дифрактометр Super Nova (Agilent Technologies, Inc., Санта-Клара, США) с двумерным (2D) детектором (CCD Atlas S2) и рентгеновским излучателем с медным анодом ($\lambda = 1.5418$ Å). Картографирование заключалось в измерении серии рентгенограмм в зависимости от угла поворота вокруг нормали к образцу.

Кривые намагничивания измерялись с помощью вибрационного магнитометра (VSM, vibrating-sample magnetometer) (Lake Shore Cryotronics, Вестервилль, США) при ориентации магнитного поля как по нормали ("out-of-plane"), так и в плоскости структуры ("inplane"). Магнитное поле Н менялось в пределах от +20 до -20 kOe.

Рис. 1. (*a*) XRD θ -2 θ -сканы от подложки α -Al₂O₃(0001) и образца #8948 до (#8948A) и после (#8948D) отжига при 1000°C в течение 10 min. Указаны индексы Миллера–Бравэ *hkil* наблюдаемых рефлексов BaM и подложки α -Al₂O₃ и индексы Миллера *hkl* наблюдаемых рефлексов BaM и подложки α -Al₂O₃ и индексы Миллера *hkl* наблюдаемых рефлексов модификаций BaFe₂O₄. (*b*) Карты обратного пространства отожженного образца толщиной 300 nm в различных плоскостях. Синие, красные и фиолетовые кружки соответствуют Al₂O₃, доминантной фазе BaM и текстурированной фазе BaM соответственно.

Спектральные и полевые зависимости РМОКЕ измерялись в диапазоне энергий фотонов 1.5-4 eV при комнатной температуре в магнитных полях до H = 15 kOe. При измерениях магнитное поле было направлено перпендикулярно поверхности образца. Линейно поляризованный свет, падающий из монохроматора, был S-поляризованным. Спектральные зависимости поперечного эффекта Керра (TKE, transversal Kerr effect) измерялись в "in-plane" магнитном поле H, ориентированным перпендикулярно плоскости падения света. Величина ТКЕ $= \Delta I/I_0$, где $\Delta I = I(+H) - I(-H)$ и I_0 интенсивность отраженного света в размагниченном состоянии. Магниторефрактивный эффект (MRE^S, magnetorefractive effect) измерялся в геометрии ТКЕ для S-поляризации падающего света. Величина $MRE^{S}(H) = \Delta I_{MRE}/I_{0}$, где $\Delta I_{\rm MRE} = I(0) - I(H).$

На рис. 1, *а* приведены XRD $\theta - 2\theta$ сканы от подложки Al₂O₃(0001), исходной ("as-grown") структуры #8948 после приготовления, и этой же структуры после отжига на воздухе при температуре $T_{ann} = 1000^{\circ}$ С. На рентгенограмме "as-grown" пленки присутствуют только два отражения, которые идентифицируются, как отражения разного порядка от однотипных параллельных атомных плоскостей двух возможных ромбических модификаций ВаFe₂O₄ (пространственные группы (пр. гр.) *Bb*2₁*m* (36) и Ртсп (62)). Отражений от набора плоскостей другого типа не наблюдается, что свидетельствует о сильной преимущественной ориентации "as-grown" пленки. Судя по индексам Миллера рефлексов, для двух возможных модификаций BaFe₂O₄ имеет место преимущественная ориентация вдоль направлений [100] и [314] соответственно. Отжиг приводит к кристаллизации гексафер-

4 Физика твердого тела, 2023, том 65, вып. 12

рита $BaFe_{12}O_{19}$ (пр. гр. $P6_3/mmc$ (194)) с преимущественной ориентацией вдоль направления [hkil] = [0001] (рис. 1, *a*).

Результаты XRD-исследований методом картографирования обратного пространства для отожженного образца толщиной 300 nm (рис. 1, b) показывают хорошее соответствие между модельной обратной решеткой ВаМ и наблюдаемыми рефлексами отражения. Можно сделать вывод, что доминантная решетка пленки ВаМ повернута на 30° относительно решетки сапфира в плоскости образца. Однако видно, что в разрезе, построенном в плоскости образца (рис. 1, b), помимо доминантной решетки ВаМ (красные кружки) присутствует слегка текстурированные домены с той же кристаллической решеткой, что и доминантная, но без поворота на 30 градусов.

Исследования кривых намагничивания с помощью VSM показали (рис. 2), что в отожженных пленках толщиной $h = 50 \,\mathrm{nm}$ при ориентации магнитного поля *Н* перпендикулярно плоскости структуры ("out-ofplane") наблюдаются практически прямоугольные петли гистерезиса. В отожженных пленках толщиной $h = 350 - 500 \,\mathrm{nm}$ петли гистерезиса значительно шире и их форма далека от прямоугольной. Существенное различие кривых намагничивания тонких и толстых пленок наблюдается при направлении магнитного поля в плоскости пленки ("in-plane") (рис. 2, b). Структурно совершенные пленки гексаферрита ВаМ на подложках Al₂O₃(0001) должны иметь одноосную анизотропию с осью легкого намагничивания, нормальной к поверхности, поэтому переключение намагниченности в "inplane" геометрии должно происходить обратимым обра-

Рис. 2. Кривые намагничивания, измеренные с помощью VSM, в отожженных структурах толщиной h = 50 nm (красные точки) и h = 500 nm (синие точки) в (a) "out-of-plane" и (b) "in-plane" геометрии.

Рис. 3. (*a*) Спектральные зависимости полярного (РМОКЕ) и поперечного (ТКЕ) магнитооптического эффекта Керра и (*b*) спектр магниторефрактивного эффекта (MRES) в отожженной структуре #8948С (1 h, 1000°С). Левая нижняя вставка в (*a*) показывает зависимость РМОКЕ от магнитного поля *H*. На правой верхней вставке в (*a*) показана зависимость ТКЕ от *H*, измеренная при $\lambda = 390$ nm. Штриховая линия соответствует линейной по H подгонке экспериментальных точек. Вставка на (*b*) показывает зависимость MRE^S от *H* при $\lambda = 708.5$ nm. Штриховая линия соответствует квадратичной по *H* подгонке экспериментальных точек.

зом за счет вращения намагниченности. Ярко выраженная петля гистерезиса в структуре толщиной h = 500 nm (рис. 2, b) свидетельствует о значительном разбросе ориентации оси легкого намагничивания. Присутствие значительно более слабой петли в тонкой пленке #8948С в этой геометрии (рис. 2, b) говорит о том, что разброс ориентации оси легкого намагничивания в ней значительно меньше, т.е. структура этой пленки существенно ближе к идеальной. На рис. 3, а показаны спектральные зависимости полярного (РМОКЕ) и экваториального (ТКЕ) эффектов Керра в структуре #8948С. Спектр МRE^S приведен на рис. 3, b. Характерной особенностью спектра РМОКЕ в ВаМ гексаферрите является появление сильных полос разного знака в области $E_{ph} \sim 3.18 \text{ eV}$ (РМОКЕ $\approx -0.15^{\circ}$) и $E_{ph} \sim 4.6 \text{ eV}$ (РМОКЕ $\approx 0.28^{\circ}$) [3]. Эти полосы наблюдались также в пленках ВаМ, выращенных методом металлоорганиче-

ского разложения [4] (при $E_{\rm ph} \sim 3.15$ и 4.25 eV), а также в PbFe₁₂O₁₉ и SrFe₁₂O₁₉, приготовленных методом распыления [5]. Природа этих полос связана с оптическими переходами с переносом заряда (от иона Fe³⁺ на O²⁻) для ионов Fe³⁺ в октаэдрических и тетраэдрических позициях [3]. На рис. 3, *а* отчетливо видно проявление полосы PMOKE при $E_{\rm ph} \sim 3.2$ eV, изменение знака PMOKE при $E_{\rm ph} \sim 3.6$ eV и увеличение положительных значений PMOKE выше $E_{\rm ph} \sim 3.6$ eV. Также полоса при $E_{\rm ph} \sim 3.2$ eV проявляется в спектре TKE (рис. 3, *a*) и MRE^S (рис. 3, *b*).

Полоса FMR отожженной структуры #8948С на частоте F = 50 GHz состоит из набора узких линий с резонансными полями в диапазоне $H_{\text{res}} = 5.6-5.8 \text{ kOe}$. Резонансное поле и ширина основной линии FMR составляют $H_{\text{res}} = 5.76 \text{ kOe}$, $\Delta H_{\text{res}} = 20 \text{ Oe}$. Присутствие линий при меньших полях, по-видимому, связано с магнитной неоднородностью слоя из-за разброса поля анизотропии, направления оси легкого намагничивания и т.п. Используя значения резонансного поля для основной линии $H_{\text{res}} = 5.76 \text{ kOe}$, намагниченности насыщения $4\pi M_{\text{s}} = 4.3 \text{ kG}$, полученное с помощью VSM, частоту измерения F = 50 GHz, мы получили оценку поля анизотропии $H_{\text{a}} \cong 16.4 \text{ kOe}$, что близко к значения $H_{\text{a}} = 17.0 \text{ kOe}$ в структуре BaFe_{10.5}Mn_{1.5}O₁₉/Al₂O₃(0001) [6].

Таким образом, проведенное исследование показало, что в неотожженных образцах существует ромбическая фаза BaFe₂O₄ в одной из двух возможных модификаций. После отжига фаза BaFe₂O₄ исчезает и появляется гексагональная фаза BaFe₁₂O₁₉. Только отожженные структуры демонстрируют магнитные свойства. В них наблюдаются петли с большой остаточной намагниченностью, что необходимо для СВЧ-приборов на основе прямых объемных спиновых волн. Наиболее узкие и прямоугольные петли появляются в структурах с тонкими (h = 50 nm) слоями гексаферрита. В них наблюдаются узкие линии FMR с полушириной $\Delta H_{\rm res} = 20$ Oe. В структурах с толщиной слоя h = 350-500 nm прямоугольность петли уменьшается с увеличением h. Магнитооптические спектры отожженных пленок показывают присутствие полос, связанных с электронными переходами с переносом заряда в гексаферрите ВаМ.

Благодарности

Авторы выражают благодарность А. Урбановичу, И. Прибытковой и проф. Р. Бурковскому за рентгенографические измерения на дифрактометре Super Nova (Agilent).

Финансирование работы

Работа выполнена при поддержке гранта РНФ № 22-22-00768, https://rscf.ru/project/22-22-00768/

Рентгенофазовые исследования порошков выполнены на оборудовании Объединенного исследовательского

центра "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] R.C. Pullar. Prog. Mater. Sci. 57, 7, 1191 (2012).
- [2] V.G. Harris. IEEE Trans. Magn. 48, 3, 1075 (2012).
- [3] A. Lisfi, J.C. Lodder, P. de Haan, M.A.M. Haast, F.J.G. Roesthuis. J. Magn. Soc. Jpn. 22, 159 (1998).
- [4] L.E. Jakubisová, Š. Višňovský, P. Široký, D. Hrabovský, J. Pištora, I. Vávra, E. Dobročka, P. Krišťan, H. Štěpánková, I. Harward, Z. Celinski. Opt. Mater. Express 5, 6, 1323 (2015).
- [5] Š. Višňovský, P. Široký, R. Krishnan. Czech. J. Phys. B 36, 1434 (1986).
- [6] A.L. Geiler, A. Yang, X. Zuo, S.D. Yoon, Y. Chen, V.G. Harris. IEEE Trans. Magn. 44, 11, 2966 (2008).

Редактор К.В. Емцев