Фазовый переход окислов ряда Магнели: VO, V_2O_3 , VO₂, V_2O_5

© А.В. Ильинский, Е.Б. Шадрин[¶]

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия [¶] E-mail: shadr.solid@mail.ioffe.ru

Поступила в Редакцию 29 апреля 2023 г. В окончательной редакции 21 июня 2023 г. Принята к публикации 30 октября 2023 г.

Показано, что кристаллы оксидов ванадия наследуют корреляционные свойства окисляемого химического элемента — ванадия, а именно: энергетическое положение электронных зон кристаллов существенным образом зависит от степени заполнения этих зон электронами. Описан комплексный мотт-пайерлсовский характер фазовых переходов во всех перечисленных сильно коррелированных соединениях. По мере увеличения показателя x в соединениях VO_x (роста показателя x от 1 до 2.5) происходит ослабление металлических свойств оксидов, сопровождаемое ростом температуры $\Phi\Pi$ полупроводник—металл и увеличением ширины запрещенной зоны.

Ключевые слова: оксиды ванадия, ряд Магнели, переход Мотта-Пайерлса.

DOI: 10.61011/FTT.2023.12.56724.4937k

1. Введение

Среди оксидов металлов оксиды ванадия, образуя ряд VO_x (0.2 < x < 2.5), занимают особое место, так как в этом ряду ванадий демонстрирует своё обладание переменной валентностью [1]. В настоящей статье мы обсуждаем физические свойства четырех оксидов ванадия ряда Магнели: VO, V₂O₃ VO₂ и V₂O₅.

Необычные свойства оксидов ряда Магнели обусловлены особенностями заполнения электронами уровней атома V [2]. Так, у калия (К, 19, 3d⁰4s¹) вместо "ожидаемого" заполнения уровня 3d заполняется вышележащий уровень 4s. После заполнения двумя электронами 4sуровня кальция (Ca, 20, 3d⁰4s²) одним электроном заполняется 3d-уровень скандия (Sc, 21, 3d¹4s²), двумя электронами — титана (Ti, 22, 3d²4s²) и тремя электронами ванадия (V, 23, 3d³4s²). Однако для хрома (Cr 24, $3d^54s^1$) на 3d-уровне вместо "ожидаемых" четырех электронов оказывается пять за счет перехода одного электрона с уровня 4s на уровень 3d ввиду сильной зависимости энергии уровней от степени их заполнения электронами. Поэтому при описании электронных спектров данных элементов следует вводить поправку, называемую корреляционной энергией [3]. Способность понижать энергию атомных уровней при их заселении электронами передается соединениям сильно коррелированного элемента V — оксидам ванадия [4]. Это определяет комплексный мотт-пайерлсовский характер фазовых переходов (ФП) полупроводник-металл в перечисленных оксидах ванадия. В настоящей статье обсуждаются механизмы ФП и причины ослабления металлических свойств VO_x при росте степени окисления атома V (x = 1, 1.5, 2, 2.5), сопровождаемого ростом температуры ФП.

2. Увеличение температуры ФП и ширины запрещенной зоны оксидов ванадия VO_x при увеличении *x*

Сравнительный анализ свойств оксидов ванадия основан на их последовательном расположении в ряд по мере увеличения числа ионов кислорода, приходящихся на один ион ванадия. Наблюдаются следующие закономерности: критические температуры $\Phi\Pi$, а также величины ширин запрещенных зон, монотонно увеличиваются с ростом *х* — рисунок.

Так, монооксид ванадия VO при комнатной температуре обладает металлической проводимостью, переходя в полупроводниковую фазу при понижении температуры ниже $T_c = 126 \,\mathrm{K}$ — рисунок, *a*. В полуторном оксиде ванадия V2O3 ФП полупроводник-металл происходит также при сравнительно низкой температуре $T_c = 140 \,\mathrm{K}$, но более высокой, чем у VO. В VO₂ $\Phi \Pi$ полупроводник-металл совершается при гораздо более высокой температуре T_c = 340 К. Пентаоксид ванадия V₂O₅ остается полупроводником при всех высоких температурах, для которых сохраняется целостность кристаллического каркаса. Структурный фазовый переход в пентаоксиде ванадия представляет собой, в отличие от протяженного по температуре перехода Мотта, плавление кристалла V2O5 с ромбоэдрической симметрией решетки (D_{2h}) в жидкую фазу симметрии D_{∞} $(T_{\rm melt} = 680^{\circ}{\rm C}).$

Ширины запрещенной зоны E_g имеют следующие значения (рисунок, b): VO — $E_g = 0.1 \text{ eV}$, V₂O₃ — $E_g = 0.2 \text{ eV}$, VO₂ — Eg = 0.7 eV, V₂O₅ — $E_g = 2.4 \text{ eV}$.

Температуры $\Phi\Pi$ полупроводник-металл (*a*) и ширины запрещенной зоны E_g (*b*) для оксидов ванадия VO_x (x = 1, 1.5, 2, 2.5).

Анализ структурного и электронного ФП и связанного с ними ослабления металлических свойств VO_x по мере роста показателя x (x = 1; 1.5; 2; 2.5)

Возможность образования в полупроводниковой фазе V-V — димеров при синтезе кристаллов окислов ванадия является предпосылкой совершения структурного ФП в них. Кроме структурного ФП в оксидах ванадия возможен электронный безгистерезисный ФП, предшествующий структурному.

3.1. Область низких температур ФП: x = 1, x = 1.5

В монооксиде ванадия (VO_x, x = 1) в его металлической фазе все ионы V расположены в центрах оснований октаэдров кислородного каркаса, а все ионы O расположены в центрах оснований октаэдров ванадиевого каркаса. VO имеет кубическую гранецентрированную кристаллическую решетку. VO в описанной конфигурации имеет при комнатной температуре металлическую проводимость, что установлено экспериментально.

При понижении температуры до $T_c = 126 \text{ K VO}$ совершает ФП металл-полупроводник [5-7], и при этом формируются V–V- π -димеры. Температура $T_c = 126 \, \mathrm{K}$ самая низкая температура термического ФП из переходов во всех 4 рассматриваемых в данной статье оксидов ванадия. Проводимость при ФП уменьшается скачком на 7 порядков, что существенно выше аналогичных скачков провдимости при ФП в других оксидах ванадия, совершающихся при более высоких температурах. Для совершения обратного термического ФП в металлическую фазу в VO энергии $kT_c = 10 \text{ meV}$ фононов при T = 126 К недостаточно для преодоления зазора $E_g = 0.1$ eV. Тем не менее, переход совершается, причем преодоление трудности объяснения этого лежит на пути использования идеи Мотта [8], согласно которой учет кулоновского (корреляционного) взаимодействия между свободными электронами диктует необходимость

замены распределения Ферми распределением Мигдала, обеспечивающим термическое преодоление E_g [3].

Таким образом, в монооксиде ванадия с ростом T последовательно совершаются два $\Phi\Pi$, причем протяженный электронный переход (второго рода) инициирует скачкообразный структурный переход (первого рода).

Для полутораоксида ванадия (VO_x, x = 1.5) в его металлической фазе ионы V также находятся в центрах кислородных октаэдров. Однако в решетке V₂O₃ на каждые два октаэдра, содержащие ионы V в основании, приходится один октаэдр, не содержащий V. Решетка V₂O₃ при температуре $T > T_c$ имеет ромбоэдрическую симметрию [9], а при понижении температуры после ФП симметрия понижается до моноклинной.

 V_2O_3 , являясь металлом при комнатной температуре, совершает ФП в полупроводниковую (П/П) фазу при $T_c = 140$ К. При $T < T_c$ возникают V–V- π -димеры. π -связи металлической фазы образуют вдоль кристаллической оси CR зигзагообразную цепочку, вдоль которой формируется одномерная металлическая проводимость ромбоэдрической фазы. Период цепочки в металлической фазе равен d, а в полупроводниковой становит-ся равным 2d за счет попарного сближения V–V- π -димеров при понижении температуры, и совершается ФП в п/п фазу. Однако ширина запрещенной зоны п/п фазы равна $E_g = 0.2 \text{ eV}$ в отличие от $E_g = 0.1 \text{ eV}$ для VO. Здесь также, как и в VO, переход Мотта оказывается возможным, и инициирует совершение структурного ФП.

3.2. Область средних температур ФП: x = 2

В диоксиде ванадия (VO_x, x = 2) все ионы V расположены в центрах оснований кислородных октаэдров. Решетка имеет при высокой температуре $T > T_c$ тетрагональную симметрию [10], при низкой — моноклинную.

Ширина электрической запрещенной зоны VO₂ равна $E_g = 0.7 \,\text{eV}$. Металлическая проводимость возникает при температурах $T \ge 340 \,\text{K}$ (67°C). При $T < T_c$ образуются V–V-димеры в результате формирования σ -связей между $d_{x^2-y^2}$ -орбиталями ионов ванадия соседних

октаэдров. Здесь, как и в случаях с VO₂ и V₂O₃, энергии фононов при $T_c = 340$ К недостаточно для разрушения димеров и для преодоления зазора $E_g = 0.7$ eV. Поэтому и здесь электронный ФП инициирует структурный ФП.

3.3. Область высоких температур ФП: x = 2.5

У пентаоксида ванадия (VO_x, x = 2.5) структура кристаллической решетки наиболее сложна: для нее характерны 2 типа электронной конфигурации ионов ванадия и 3 типа конфигурации ионов кислорода. В решетке V₂O₅ шести-координированный ион V⁵⁺ связан с четырех-координированным ионом O²⁻, который в свою очередь образует связи с тремя пятикоординированными ионами V⁵⁺. Ион V⁵⁺ окружен также тремя ионами O²⁻, образующими три σ -связи с ионами V⁵⁺. В то же время шести-координированный ион V⁵⁺ окружен двумя ионами O²⁻ Структурный ФП для этого оксида экспериментально не обнаружен.

 V_2O_5 является полупроводником с "оптической" шириной запрещенной зоны $E_g = 2.4 \text{ eV}$. Тем не менее, эксперимент свидетельствует о наличии высокой концентрации электронов в зоне проводимости при температурах 300-450 K. Это связано с распределением Мигдала взамен распределения Ферми так же, как это имеет место в трех описанных выше оксидах. Другими словами, в V_2O_5 с ростом температуры совершается протяженный по T чисто электронный ФП Мотта, то есть пентаоксид ванадия представляет собой классический "изолятор Мотта".

4. Заключение

По мере увеличения показателя x $(1 \rightarrow x \rightarrow 2.5$ в VO_x) уменьшается проводимость металлической фазы описанных оксидов, что сопровождается подъемом T_c ФП полупроводник-металл и увеличением E_g ввиду роста доли связываемой ионами O²⁻ электронной плотности ионов V⁴⁺, обеспечивающих металлическую проводимость кристалла. Так, при $T > T_c$ для VO электропроводность возможна по всем направлениям, для V₂O₃ — вдоль зигзагообразной цепочки, для VO₂ лишь вдоль линейной цепочки, для V₂O₅ она невозможна вообще.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] А.В. Ильинский, Е.Б. Шадрин. ФТТ 62, 8, 1284 (2020).
- [2] H. Kohn, J. Walter. Phys. Rev. 140, A1133 (1965).
- [3] M. Gatti, F. Bruneval, V. Olevano, L. Reining. Phys.Rev. Lett. 99, 266402 (2007).
- [4] А. Боум. Квантовая механика: основы и приложения. Мир, М. (1990). 720 с.

- [5] I.C. Austin. Phil. Mag. 7, 961 (1962).
- [6] W.W. Warren, G.A. Miranda, W.G. Clark. Bull. Am. Phys. Soc. 12, 1117 (1967).
- [7] А.В. Ильинский, О.Е. Квашенкина, Е.Б. Шадрин. ФТП 46, 4, 439 (2012).
- [8] А.Б. Мигдал. УФН 147, 10, 210 (1985).
- [9] W. Bruckner, H. Opperman, W. Reichelt, E.I. Terukov, F.A. Tschudnovskii. Vanadiumdioxide. Akademie-Verlag, Berlin (1983). 252 p.
- [10] А.В. Ильинский, Е.Б. Шадрин. ФТТ 64, 6, 702 (2022).
- Редактор Ю.Э. Китаев