Синтез и идентификация аддуктов фуллеренола-24 с переходными металлами и лантаноидами

© В.В. Кузнецов³, Н.А. Куленова¹, Б.К. Шаймарданова¹, М.А. Саденова¹, Л.В. Шушкевич¹, А.А. Блохин^{1,2}, Н.А. Чарыков^{1,2,3}, А.А. Гурьева², В.П. Герман², В.А. Кескинов^{1,2}

¹ Центр "Veritas", Восточно-Казахстанский государственный технический университет им. Д. Серикбаева, Усть-Каменногорск, Казахстан

² Санкт-Петербургский государственный технологический институт (технический университет),

Санкт-Петербург, Россия, ³ Санкт-Петербургский гос Санкт-Петербург, Россия

³ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ",

E-mail: vv kuznetsov@inbox.ru

Поступила в Редакцию 28 апреля 2023 г. В окончательной редакции 5 сентября 2023 г. Принята к публикации 30 октября 2023 г.

> Описан синтез аддуктов фуллеренола-24 ($C_{60}(OH)_{24}$) с некоторыми переходными металлами и лантаноидами — $C_{60}(ONa)_x(O_2M)_{(24-x)/2}$, $C_{60}(ONa)_x(O_3M)_{(24-x)/3}$, M = Co, Cu, Mn, Zn, Gd, Tb. Идентификация аддуктов проведена методами элементного анализа, инфракрасной и электронной спектроскопии, комплексного термического анализа, высокоэффективной жидкостной хроматографии и динамического светорассеяния. Изучена растворимость аддуктов в водных растворах в природном интервале температур. Применение указанных аддуктов в качестве микроудобрений ярового ячменя в Республике Казахстан приводило к общему увеличению как его урожайности, так и устойчивости к воздействию патогенных микроорганизмов.

> Ключевые слова: аддукт, фуллеренол-24, переходные металлы, лантаноиды, синтез, идентификация, агротехническое применение, яровой ячмень.

DOI: 10.61011/FTT.2023.12.56722.4932k

1. Введение

Для синтеза аддуктов фуллеренола-24 с переходными металлами и лантаноидами использовали фуллеренол-24 C₆₀(OH)₂₄ [1–9], который интересен своим агротехническим применением [10,11].

Синтез аддуктов $C_{60}(ONa)_x(O_2M)_{(24-x)/2}$, $C_{60}(ONa)_x(O_3M)_{(24-x)/3}$, M = Co, Cu, Mn, Zn, Gd, Tb проводили в два этапа. На первом этапе происходил синтез натриевых производных фуллеренола, а на втором — синтез аддуктов:

$$C_{60}(OH)_{24} + 24NaOH = C_{60}(ONa)_{24} + 24H_2O,$$
 (1)

$$C_{60}(\text{ONa})_{24} + [(24 - x)/2]M\text{Cl}_2$$

= $C_{60}(\text{ONa})_x(\text{O}_2M)_{(24-x)/2} + (24 - x)\text{NaCl},$ (2)
 $C_{60}(\text{ONa})_{24} + [(24 - x)/3]M\text{Cl}_2$

$$= C_{60}(ONa)_x (O_3M)_{(24-x)/3} + (24-x)NaCl.$$
(3)

Уравнение (2) соответствует синтезу аддуктов с переходными металлами, а уравнение (3) — с 4f-металлами (лантаноидами).

При этом использовалась следующая методика.

1. Растворение 2.9 g $C_{60}(OH)_{24}$ в 30 сm³ раствора NaOH (концентрация раствора 0.1 mol/l), в результате растворения образуется коричневый водный раствор $C_{60}(OHA)_{24}$. Доведение pH раствора до значений 7.5–8.5 отн. ед. при добавлении нескольких капель раствора HCl с концентрацией 1 mol/l. 2. Приготовление 100 ml раствора MCl_x (M = Co, Cu, Mn, Zn, Gd, Tb) с концентрацией от 55 g/dm³ (CoCl₂) до 93 g/dm³ (TbCl₃) при pH раствора 3.5–4.0 отн. ед. во избежание гидролиза MCl_x (при добавлении нескольких капель раствора HCl с концентрацией 1 mol/l).

3. Добавление водного раствора MCl_x по каплям к водному раствору $C_{60}(OHA)_{24}$. Образуется рыхлый аморфный окрашенный осадок. Отстаивание полученного раствора с образованным осадком в течение 24 h. Фильтрация полученной гетерогенной смеси (раствор-твердая фаза) через бумажный фильтр ("красная лента").

4. Трехкратная промывка осадка метанолом CH₃OH, (при каждой промывке использовалось $\sim 50\,cm^3$ растворителя). Окончательная сушка аддуктов в вакуумном сушильном шкафу (остаточное давление не превышало 0.1 mm Hg) при температуре $\sim 50^\circ C$ в течение 90 min.

В результате получены граммовые количества окрашенных кристаллогидратов аддуктов: $C_{60}(ONa)_{12}(O_2Co)_6 \cdot 24H_2O, C_{60}(ONa)_4(O_2Cu)_{10} \cdot 18H_2O, C_{60}(ONa)_4(O_2Mn)_{10} \cdot 18H_2O, C_{60}(ONa)_8(O_2Zn)_8 \cdot 20H_2O, C_{60}(ONa)_6(O_3Gd)_6 \cdot 22H_2O, C_{60}(ONa)_6(O_3Tb)_6 \cdot 20H_2O$ массой от 3.8 g. (для $C_{60}(ONa)_{12}(O_2Co)_6 \cdot 24H_2O)$ до 4.1 g (для $C_{60}(ONa)_6(O_3Gd)_6 \cdot 22H_2O$), что соответствует практическому выходу $\eta \approx 65-72\%$ от теоретически возможного. Типичные фотографии синтезированных аддуктов, представленные на рис. 1, выполнены на электронном микроскопе VEGA3 TESCAN при увеличении × 500-5000.

Рис. 1. Электронные фотографии кристаллогидратов аддуктов фуллеренола-24 с переходными металлами и лантаноидами: $a - C_{60}(ONa)_4(O_2Mn)_{10} \cdot 18H_2O$ (увеличение ×500), $b - C_{60}(ONa)_6(O_3Gd)_6 \cdot 22H_2O$ (увеличение ×500).

N₂	<i>М</i> в аддукте	Содержание элемента на 1 молекулу фуллеренового кора С ₆₀ (60 атомов С)					Формула мета проадлукта
		С	0	Н	Na	Me	металлоаддукта
1	Na	60	44 ± 2	40 ± 2	24 ± 1	0	$C_{60}(OHA)_{24} \cdot 20H_2O$
2	Со	60	48 ± 6	48 ± 5	12 ± 3	6 ± 2	$C_{60}(ONa)_{12}(O_2Co)_6 \cdot 24H_2O$
3	Cu	60	42 ± 8	36 ± 5	4 ± 2	10 ± 4	$C_{60}(ONa)_4(O_2Cu)_{10} \cdot 18H_2O$
4	Mn	60	42 ± 9	36 ± 4	4 ± 2	10 ± 5	$C_{60}(ONa)_4(O_2Mn)_{10} \cdot 18H_2O$
5	Zn	60	44 ± 7	40 ± 5	8 ± 3	8 ± 3	$C_{60}(ONa)_8(O_2Zn)_8 \cdot 20H_2O$
6	Gd	60	46 ± 8	44 ± 6	6 ± 3	6 ± 3	$C_{60}(ONa)_6(O_3Gd)_6 \cdot 22H_2O$
7	Tb	60	44 ± 8	40 ± 7	6 ± 3	6 ± 3	$C_{60}(ONa)_6(O_2Tb)_6\cdot 20H_2O$

Таблица 1. Элементный состав металлоаддуктов $C_{60}(ONa)_x(O_2M)_{(24-x)/2}$, $C_{60}(ONa)_x(O_3M)_{(24-x)/3}$

Образование аддуктов типа $C_{60}(ONa)_x(O_2M)_{(24-x)/2}$, $C_{60}(ONa)_x(O_3M)_{(24-x)/3}$ в кислых растворах не наблюдали в принципе, что однозначно доказывается при анализе диаграмм растворимости в тройных системах с фуллеренолом и солью металла (фуллеренол-соль металла–вода) [1,2,12].

Идентификацию аддуктов $C_{60}(ONa)_x(O_2M)_{(24-x)/2}$, $C_{60}(ONa)_x(O_3M)_{(24-x)/3}$, M = Co, Cu, Mn, Zn, Gd, Tbосуществляли следующими методами. ИК-спектры аддуктов в таблетках KBr получали на спектрометре Shimadzu FTIR-8400S в диапазоне волновых чисел $\bar{\nu} = 400 - 4000 \, \mathrm{cm}^{-1}$. Электронные спектры поглощения получали на спектрофотометре SPECORD M32 (Германия) в диапазоне длин волн $\lambda = 200 - 1000 \, \text{nm}$ (pacтвор сравнения — дистиллированная вода). Термогравиметрический анализ аддуктов проводили на анализаторе NETZSCH TG 209 F1 Libra в диапазоне температур 30-100°С в атмосфере воздуха со скоростью нагрева 5 K · min⁻¹. Для высокоэффективной жидкостной хроматографии использовали Shimadzu LC-20 Prominence спектрофотометрическим детектированием при co $\lambda = 300$ nm, оснащённый колонкой "Phenomenex® NH2" (колонка с размерами $150 \times 2.0 \text{ mm}$, $5 \mu \text{m}$ и током 100 A), объём ввода 2 10⁻⁸ m³, скорость ввода 0.2 ml · min⁻¹, элюент — ацетонитрил/водный раствор уксусной кислоты с концентрацией кислоты 0.1% (в объемном соотношении проба/растворитель 5/95). Анализ элементного состава проводили методом рентгено-флюоресцентного анализа на сканирующем электронном микроскопе VEGA3 TESCAN с программным обеспечением Essence. Дополнительно элементный анализ на содержание легких атомов проводили с помощью прибора PerkinElmer PE 2400 CHN. Динамическое светорассеяние в водных растворах аддуктов проводили с помощью прибора Zetasizer Nano ZS. Растворимость аддуктов в водных растворах изучали с помощью стандартного шейкер-термостата с дополнительной стабилизацией температуры ($\Delta T = 0.05$ K, время насыщения — 8 h, частота встряхивания v = 2 Hz, концентрации растворов определяли спектрофотометрическим методом на длине волны $\lambda = 270$ nm).

Состав прекурсора $C_{60}(OHA)_{24} \cdot 20H_2O$ устанавливается довольно точно (±1 атом H, Na, O на 1 фуллереновый кор — 60 атомов C, см. табл. 1). Некоторый разброс в содержании O и H связан с наличием во всех аддуктах большого количества слабосвязанной кристаллизационной воды, при этом на поверхности кристаллогидратов (при исследовании в атмосфере) может происходить частичное обезвоживание равновесных кристаллогидратов. Для металлоаддуктов с переходны-

Рис. 2. Электронные спектры металлоаддуктов фуллеренола-24 $C_{60}(ONa)_x(O_2M)_{(24-x)/2}$ И $C_{60}(ONa)_x(O_3M)_{(24-x)/3}$ относительно дистиллированной воды; М: Со (черный), Си (красный), Мп (голубой), Zn (синий), Gd (зеленый), Тb (фиолетовый); ширина кюветы l = 10 ст; концентрации растворов в g/dm³: Co — 0.040, Cu -0.043, Mn — 0.040, Zn — 0.043, Gd — 0.037, Tb — 0.040.

ми металлами и лантаноидами М устойчивость состава существенно снижается, прежде всего, это относится к содержанию M в аддуктах (±2-5 атомов M на 60 атомов С, табл. 1). Все аддукты можно считать смесями форм с несколько различающимся составом (родственных соединений) и их изомеров. Первичные прекурсоры, используемые для приготовления аддуктов, а именно C₆₀(OH)₂₄, C₆₀Br₂₄ [3,4], представляют собой смесь изомеров, не всегда строго стехиометрического состава. Атом галогена может прививаться к пентагон-гексагональному атому С или к гексагонгексагональному атому С (потом структура будет унаследована фуллеренолом, его натриевыми формами и металлоаддуктами). Далее группы замещения могут альтернативно располагаться равномерно распределенными по поверхности кора С₆₀, преимущественно по экватору кора, циркумпулярно, спотами и т.д. Уже при образовании металлоаддуктов с двух и трехзарядными катионами связывание возможно с группами одного фуллеренового кора С₆₀, двух и даже трех различных коров. Среднее расстояние между соседними группами замещения (C-O-Na) в аддукте C₆₀(OHA)₂₄ может быть рассчитано в простейшем приближении равномерного распределения групп по поверхности кора C₆₀: $r = (\pi d^2/N)^{1/2}$, где $d \sim 0.73 \,\mathrm{nm}$ — "диаметр фуллеренового кора", N = 24. При расчете получается значение $r \sim 0.26$ nm. Приблизительная длина связи $r_{\rm C-O-Na} \approx 0.3 - 0.4$ nm. С учетом ионных радиусов M^{z+} (от $r_{M^{z+}} \approx 0.073$ для Си до $r_{M^{z+}} \approx 0.092$ для Tb), геометрически связывание одного многозарядного иона может происходить как с одним, так и с несколькими фуллереновыми корами.

Из рис. 2 видно, что электронные спектры растворов всех металлоаддуктов изоморфны: имеется

Физика твердого тела, 2023, том 65, вып. 12

Таблица 2. Коэффициенты экстинкции ε_{270} и коэффициенты расчета концентрации \varkappa_{270} для растворов металлоаддуктов при $\lambda = 270$ nm

<i>М</i>	Коэффициент	Коэффициент расчета
в металло-	экстинкции	концентрации
аддукте	ε ₂₇₀ , 10 ³ cm ² /g	<i>ж</i> 270, g/dm ³
Co	0.915	1.093
Cu	0.572	1.748
Mn	0.850	1.176
Zn	0.391	2.557
Gd	0.568	1.760
Tb	0.733	1.364

два широких пика поглощения при $\lambda_1 \sim 340-360$ nm, $\lambda_2 \sim 265-275$ nm. По второму пику мы в дальнейшем определяли объемные концентрации аддуктов. Коэффициенты экстинкции ε_{270} для растворов металлоаддуктов при $\lambda = 270$ nm представлены в табл. 2.

Концентрация металлоаддуктов C связана с оптической плотностью D_{270} при $\lambda = 270$ nm (согласно закону Бугера–Ламберта–Бера) соотношением

$$D_{270} = \varepsilon_{270} C(g/dm^3) l(cm),$$

$$C(g/dm^3) = D_{270}/\varepsilon_{270} l(cm) = \varkappa_{270} D_{270}/l, \qquad (4)$$

где \varkappa_{270} — коэффициент расчета концентрации при $\lambda = 270$ nm согласно закону Бугера–Ламберта–Бера.

Различие в коэффициентах экстинкции в электронных спектрах водных растворов металло-аддуктов в 2–3 раза связано, на взгляд авторов, с фиксацией для удобства длины волны спектрофотометрического определения объемных концентраций металлоаддуктов — $\lambda = 270$ nm, при этом максимумы поглощения могут смещаться на несколько nm или на несколько десятков nm.

Абсорбционные ИК-спектры всех металлоаддуктов также оказались изоморфными. Во всех представлены: колебания фуллеренового кора C₆₀ при значениях волнового числа $\bar{\nu}$ в интервалах 528–532, 570–577, 1170–1183, 1423–1429 сm⁻¹; колебания кристаллогидратных молекул H₂O в интервалах значений волновых чисел 3595–3620, 3448–3454, 1640–1651 сm⁻¹; относительно слабые колебания остаточных и гидролизованных O–H групп в интервале значений $\bar{\nu} = 3417-3421$ сm⁻¹; колебания С–O групп в интервале значений $\bar{\nu} = 540-565$ сm⁻¹; система пиков, отвечающих колебания М–O, O–M–O, в интервале значений $\bar{\nu}$ от 424 сm⁻¹ (Zn) до 600 сm⁻¹ (Tb).

Комплексный термический анализ кристаллогидратов был проведен для кристаллогидратов металлоаддуктов $C_{60}(ONa)_x(O_2M)_{(24-x)/2} \cdot NH_2O$, $C_{60}(ONa)_x(O_3M')_{(24-x)/3} \cdot N'H_2O$, (M = Co, Cu, Mn,Zn, M' = Gd, Tb). Обозначим $T^{(start)}$, $T^{(ext)}$, $T^{(fin)}$ температуры начала, экстремума и конца эффекта. Введем обозначения следующих процессов: MED — многостадийная дегидратация кристаллогидратов, T-RE-OMD — разложение с выделением оксида *M*, SOD — разложение с выделением оксида Na₂O, FCO — дополнительное окисление фуллеренового кора.

Во всех случаях на термограммах последовательно наблюдали соответствующие эффекты. В процессе MED $T^{(\text{start})}$ лежит в диапазоне от 70 K (для Cu) до 95 K (для Zn); $T^{(\text{ext})}$ — от 285 K (для Cu) до 325 K (для Tb); $T^{(\text{fin})}$ — от 330 K (для Cu) до 370 K (для Tb). В процессе T-RE-OMD $T^{(\text{start})}$ находится в диапазоне от 330 K (для Cu) до 385 K (для Gd); $T^{(\text{ext})}$ — от 390 K (для Cu) до 540 K (для Tb). В процессе SOD $T^{(\text{start})}$ изменяется в диапазоне от 490 K (для Cu) до 545 K (для Tb); $T^{(\text{fin})}$ — от 565 K (для Cu) до 615 K (для Tb); $T^{(\text{fin})}$ — от 640 K (для Cu) до 685 K (для Tb). В случае FCO для всех металлоаддуктов $T^{(\text{start})} = 680$ K, $T^{(\text{ext})} = 1000$ K, $T^{(\text{fin})}$ определить невозможно, процесс растянут на неопределенный температурный интервал.

Идентификацию металлоаддуктов проводили также с использованием метода высокоэффективной жидкостной хроматографии (ВЭЖХ). Условия хроматографического анализа были следующими: колонка "Phenomenex® NH2" (параметры колонны $150 \times 2 \,\text{mm}$, 5 μ m, 100 A), элюент — ацетонитрил/водный раствор трифторуксусной кислоты с концентрацией 0.1% (в объемном соотношении 5:95), скорость элюирования v = 0.2 ml/min, объем дозируемой пробы — 20 µl, для детектирования использовалась диодная матрица. Полученные результаты, например, по металлоаддукту C₆₀(ONa)₈(O₂Zn)₈ показали, что при выходе аддукта из колонны наблюдается достаточно узкий пик выхода (с шириной на полувысоте $\delta_{1/2} < 20$ s, что косвенно доказывает получение достаточно чистого аддукта с чистотой 96-97 rel. wt.%). Аналогичные данные были получены и для других металлоаддуктов.

Растворимость системах $C_{60}(ONa)_x(O_2M)_{(24-x)/2}-H_2O, C_{60}(ONa)_x(O_3M)_{(24-x)/3}-H_2O$ представлена на рис. 3. Из рис. 3 видно, что (без смены растворимость всех металлоаддуктов типа кристаллогидрата) возрастает при уменьшении температуры, что весьма ценно в агротехническом отношении, поскольку максимальное снабжение растений микроэлементами будет наблюдаться именно при температурах около 0°C (при таянии или выпадении первого снега в весенне-осенний период), когда эти элементы максимально востребованы для развития зерновых. Любопытно отметить, что растворимость кристаллосольвата прекурсора C₆₀· 2Ar (Ar — бензол, толуол, о-ксилол, о-дихлобензол...) возрастает с ростом температуры, а растворимость несольватированнного C_{60} , напротив, с ростом температуры монотонно убывает.

Все растворы металлоаддуктов в воде оказались сложным образом иерархически ассоциированы (табл. 3, 4). В них наблюдали последовательное образование ассоциатов I порядка (с типичными линейными размерами δ_{I}

Рис. 3. Растворимость металлоаддуктов в воде в природном интервале температур: Со (черный), Си (красный), Мп (голубой), Zn (синий), Gd (зеленый), Tb (фиолетовый).

порядка десятков nm), II порядка ($\delta_{\rm II}$ порядка сотен nm), III порядка ($\delta_{\rm III}$ порядка ($\delta_{\rm III}$ порядка нескольких микрон), причем образование последних отвечает микрогетерогенному раствору. Неассоциированные металлоаддукты ($\delta_0 \sim 2$ nm) нами не наблюдались. Данные по распределению металлоаддуктов по размерам, электрокинетическим потенциалам и подвижности ассоциатов аддуктов в растворах представлены в табл. 3, 4.

Элементарный расчет числа мономерных молекул в ассоциате i-го порядка N_{i-0}

$$N_{i-0} = (\delta_i / \delta_0)^3 \cdot (K_{\text{pack}})^i, \ K_{\text{pack}} = \pi/6$$
(5)

позволяет оценить искомые количества: $N_{I-0} \approx 2 \cdot 10^4$, $N_{II-0} \approx (3-4) \cdot 10^4$, $N_{III-0} \approx (2-4) \cdot 10^9$ (K_{pack} — упаковочный коэффициент "малых сфер в большую сферу"). Последние ассоциаты несомненно отвечают микрогетерогенному коллоидному состоянию системы.

Отрицательный потенциал всех ассоциатов, с одной стороны, обусловливает седиментационную устойчивость растворов, а с другой стороны, препятствует дальнейшему укрупнению ассоциатов III порядка.

Для определения биологической урожайности зерновых культур применяли нанопрепараты, приготовленные на основе самого фуллеренола-24 и *M*-аддуктов с переходными металлами (Co, Cu, Zn, Mn). Наиболее ярко эффект их воздействия проявился на богарных участках с корневой обработкой растворами водорастворимых фуллеренов — аддуктами фуллеренола с медью, марганцем, кобальтом и цинком, где урожайность ярового ячменя повысилась на 54–80%. На других полигонах урожайность увеличилась на 25–50%. Это подтверждает результаты ранее проведенных нами исследований [11].

По сравнению с другими соединениями переходных и редкоземельных металлов, указанные соединения:

малорастворимы, т.е. будут удерживаться в почве достаточно долго;

Металлоаддукт	Концентрация C, g/dm ³	δ_0 , nm	$\delta_{\rm I}$, nm	δ_{II} , nm	$\delta_{ m III}$, nm
$C_{60}(ONa)_{12}(O_2Co)_6$	0.34	_	65	105	7
$C_{60}(ONa)_4(O_2Cu)_{10}$	0.55	_	_	105	5
$C_{60}(ONa)_4(O_2Mn)_{10}$	0.49	_	_	108	5
$C_{60}(ONa)_8(O_2Zn)_8$	0.88	_	_	120	5
$C_{60}(ONa)_6(O_3Gd)_6$	0.72	_	_	120	6
$C_{60}(ONa)_6(O_2Tb)_6$	0.50	_	65	103	7

Таблица 3. Распределение по размерам δ_i ассоциатов аддуктов в растворах при 25°C

Таблица 4. Электрокинетические потенциалы ξ_i и подвижности U_i ассоциатов аддуктов в растворах при 25°С

Металлоаддукт	$\xi_{\rm I},{\rm mV}$	$\xi_{\rm II},{\rm mV}$	$\xi_{\rm III},{\rm mV}$	$U_{\rm I}$, μ m · cm/V · s	$U_{\rm II},\mu{\rm m\cdot cm/V\cdot s}$	$U_{\rm III},\mu{\rm m}\cdot{\rm cm/V}\cdot{\rm s}$
$C_{60}(ONa)_{12}(O_2Co)_6$	-20	-35	-60	-1.4	-2.6	-3.5
$C_{60}(ONa)_4(O_2Cu)_{10}$		-35	-50	—	-2.6	-3.7
$C_{60}(ONa)_4(O_2Mn)_{10}$		-35	-50	—	-2.5	-3.7
$C_{60}(ONa)_8(O_2Zn)_8$		-40	-50	—	-2.3	-3.7
$C_{60}(ONa)_6(O_3Gd)_6$		-40	-55	—	-2.4	-3.6
$C_{60}(ONa)_6(O_2Tb)_6$	-20	-30	-60	-1.5	-2.8	-3.5

 увеличивают растворимость при понижении температуры, т.е. в особо важный для растений весеннеосенний период (яровые-озимые);

– существуют в растворах в формах ассоциатов различных типов — мономеров и ассоциатов I, II, III порядков, каждый из которых может усваиваться различными клетками растений по различному механизму и с различными диффузионными ограничениями;

– атомы металлов, связанные с фуллереновым кором, обладают, по мнению авторов, определенным синергетическим эффектом воздействия на клетки растений, поскольку фуллеренолы, сами по себе (без металлов в структуре), например, обладают, выраженным антиоксидантным, влагосохраняющим, антисрессовым, бактерицидным и т. п. воздействием на клетки растений.

Финансирование работы

Исследования были поддержаны грантом Российского научного фонда № 23-23-00064, https://rscf.ru/project/23-23-00064/.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- К.Н. Семенов, Н.А. Чарыков, В.Н. Постнов, В.В. Шаройко, И.В. Мурин. Успехи химии 85, 1, 38 (2016). DOI: https://doi.org/10.1070/RCR4489
- [2] N.A. Charykov, V.A. Keskinov, K.A. Tsvetkov, A. Kanbar, K.N. Semenov, L.V. Gerasimova, Zh.K. Shaimardanov, B.K. Shaimardanova, N.A. Kulenova. Processes 9, 2, 349 (2021). https://doi.org/10.3390/pr9020349

- [3] M. Silion, A. Dascalu, M. Pinteala, B.C. Simionescu, C. Ungurenasu. Beilstein J. Org. Chem. 9, 1285 (2013). https://doi.org/10.3762/bjoc.9.145
- J. Li, A. Takeuchi, M. Ozawa, X. Li, K. Saigo, K. Kitazawa.
 J. Chem. Soc. Chem. Commun. 23, 1784 (1993).
 DOI: 10.1039/C39930001784
- [5] S.M. Mirkov, A.N. Djordjevic, N.L. Andric, S.A. Andric, T.S. Kostic, G.M. Bogdanovic, M.B. Vojinovic-Miloradov, R.Z. Kovacevic. Nitric Oxide 11, 2, 201 (2004). DOI: 10.1016/j.niox.2004.08.003.
- [6] A. Arrais, E. Diana. Fuller. Nanotub. Carbon Nanostructures 11, 35 (2003). DOI: 10.1081/FST-120018667
- [7] M.S. Meier, J. Kiegiel. Org. Lett. **3**, *11*, 1717 (2001). http://dx.doi.org/10.1021/ol0159120
- [8] K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, T. Oshima. ACS Nano 2, 2, 327 (2008).
 DOI: 10.1021/nn700151z.
- [9] L.Y. Chiang, L-Y. Wang, J.W. Swirczewski, S. Soled, S. Cameron. J. Org. Chem. 59, 14, 3960 (1994).
 DOI: 10.1021/jo00093a030
- [10] Г.Г. Панова, Е.В. Канаш, К.Н. Семенов Н.А. Чарыков, Ю.В. Хомяков, Л.М. Аникина, А.М. Артемьева, Д.Л. Корнюхин, В.Е. Вертебный, Н.Г. Синявина, О.Р. Удалова, Н.А. Куленова, С.Ю. Блохина. Сельскохоз. биология 53, *1*, 38 (2018). DOI: 10.15389/agrobiology.2018.1.38rus
- [11] G.G. Panova, I.N. Ktitorova, O.V. Skobeleva, N.G. Sinjavina, N.A. Charykov, K.N. Semenov. Plant Growth Regul. 79, 3, 309 (2016). DOI: 10.1007/s10725-015-0135-x
- [12] К.Н. Семенов, И.Г. Кантерман, Н.А. Чарыков, В.А. Кескинов, Н.А. Куленова. Радиохимия 56, 5, 421 (2014). DOI: 10.1134/S106636221405007

Редактор Е.Ю. Флегонтова