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Application of machine learning for the diagnosis of some socially

significant diseases from an exhaled human air by the infrared laser

spectroscopy
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The infrared spectra of the air exhaled by several groups of volunteers were studied: those suffering from type

1 diabetes, bronchial asthma, and pneumonia. To record infrared spectra, a tunable quantum-cascade laser (QCL)
was used. QCL emits in the wavelength range from 5.3 to 12.8 µm in a pulsed mode with a pulse width of 50 ns,

a power of up to 150mW, and a tuning step of 1 cm−1 . The laser is optically coupled to an astigmatic Herriot gas

cell with an optical path length of 76m. A difference was found in the intensity of selective lines of biomarker

molecules in the spectra of exhaled air of healthy volunteers compared to similar indicators of volunteers suffering

from a certain disease. For an example of methods such as the support vector machine (SVM), the k-nearest
neighbors (k-NN) and the random forest algorithm (Random Forest), the possibility of classifying volunteers by the

infrared spectra of their exhaled air is shown. In terms of the accuracy metric, the accuracy of disease classification

improved to 98% by the use of dimensionality reduction techniques (PCA and t-SNE).
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1. Introduction

Socially significant diseases [1–3], such as diabetes melli-

tus, bronchial asthma, pneumonia require early diagnosis,

which is especially important for timely therapy. Non-

invasive examination methods are preferred due to the

low impact on the patient’s organism, which is especially

important in cases where diagnostic tests need to be done

throughout the entire patient’s life. Modern methods of

exhaled breath diagnosis allows detecting a wide range

volatile organic compounds (VOC) emitted by the human

body [4]. Changes in their concentrations are often

associated with certain diseases [5] or metabolic disorders

in general. It is promising to define VOCs as markers

with prognostic significance for detecting the development

of metabolic disorders, among which a specific place is held

by the diabetes mellitus. The use of such predictors in the

screening of large population groups and the formation of

preventive measures on this basis is an important social and

biomedical problem, especially when it comes to children’s

health. One of the promising volatile compounds associated

with the peculiarities of metabolism is acetone. Variations in

its content in exhaled breath or urine quite accurately reflect

changes in lipid metabolism, in particular beta oxidation of

lipids.

However, there is a need to identify more clearly the

relevant gas-metabolic profiles in patients with diabetes

mellitus, reflecting systemic changes in metabolism under

normal and pathological conditions, because light hydro-

carbons are intermediate products or by-products of many

metabolic cycles [6]. Thus, for example, the formation of

acetone is due to the involvement of fatty acids in energy

metabolism [7] in the case of diabetes mellitus [8]. Also,

the formation of acetone in the exhaled breath is possible

during starvation [9], prolonged intense physical work [10],
changes in the state of the enteric environment [11].

In recent years, allergic diseases of the respiratory tract

have become of greater significance due to the high increase

in their prevalence among the population, especially in

the child population [12]. According to a report by the

Global Asthma Network (GAN), about 339.4 million people

suffer from this disease and approximately 14% of them are

children. The Centers for Disease Control and Prevention

(CDC) reports that in 2015 there were 24.6 million (7.8%)
people in the USA diagnosed with asthma. 6.2 million

(8.4%) of them were children: 4.7% diagnosed cases were

in patients under the age of 4 years, 9.8% were in patients

aged from 5 to 14 years, 9.8% were in patients aged

from 15 to 17 years. It is known that more than half

of the cases of bronchial asthma onset occur in early

and preschool age, however, it is in these patients that
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diagnosis is particularly difficult [13]. The modern strategy

for the treatment of bronchial asthma is aimed at preventing

the development of pathology and stopping exacerbations.

The development of new methods of early diagnosis and

the study of development mechanisms of the disease will

improve the quality of life of children and their parents.

There are known methods for early diagnosis of bronchial

asthma in infants by determining carbon monoxide (CO) in
the exhaled breath. In infants with asthma, the threshold

level of CO is more than 2 ppm, in healthy children the

CO level is not more than 1 ppm. This method can be

used as an additional non-invasive method for monitoring

asthma and diagnosing asthma in infants [14]. Dynamic

monitoring of FeNO is an effective indicator of inflammation

of the respiratory tract and, therefore, is an important

clinical tool for assessing the course of asthma [15], which

concentration decreases in response to glucocorticosteroid

therapy [16]. The statistical significance of the difference

in the concentration of hydrogen peroxide in the exhaled

breath condensate between patients with asthma and healthy

patients (480 and 780 nmol, respectively) has been shown

in [17].
About 150 million cases of pneumonia in preschool

children are registered annually in the world. Severe

pneumonia occurs in 7−13% of cases and accounts for

up to 11−20 million hospitalizations annually. It has

been shown in [18] that the main substances found in the

exhaled breath of patients with pneumonia were pentane

and isoprene. Isoprene is the main hydrocarbon present in

alveolar gas and is formed from isopentenyl pyrophosphate

and dimethylallyl pyrophosphate, which are products of the

conversion of mevalonate to cholesterol. The production of

mevalonate is a step in the biosynthesis of tissue cholesterol.

Isoprene is a by-product of sterol synthesis, and any change

in the rate of cholesterol synthesis will cause comparable

changes in the amount of isoprene in the exhaled breath.

Thus, from the point of view of physiology, it is possible

to determine some relationships between the breathing

profile and the state of human health. However, it is often

impossible to isolate one specific chemical compound and

determine reference values, which necessitates the analysis

of composition of the exhaled breath as a whole. Infrared

spectroscopy in the mid-infrared range (the
”
fingerprint“

range) makes it possible to simultaneously record the char-

acteristic spectral lines of a number of chemical compounds,

which allows developing a method for diagnosing a number

of diseases by analyzing the exhaled breath. For example,

in [19] the possibilities of using a quantum-cascade laser

tunable in the range of 1150−1250 cm−1 for the analysis

of acetone in the exhaled air have been shown. In [20],
the possibility has been shown to detect about 60 ppt NO

at a wavelength of 5.6µm using a tunable infrared laser.

However, the significant overlap of a number of selective

lines for the components of exhaled breath makes it very

difficult to solve the inverse problem of spectroscopy.

Machine learning methods have been widely used in

various fields of science and technology, as well as in
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Figure 1. Schematic diagram of the experimental setup.

healthcare [21], which allows solving diagnostic problems

in various fields, such as medical data imaging, cancer

diagnosis, on-chip systems, etc. [22]. Machine learning

is used to study important clinical parameters such as

extracting medical information, predicting diseases and

developmental stages. Thus, it helps in planning and

maintaining the status of the patient. In addition, it provides

effective health monitoring that helps to analyze data and

send timely alerts [23]. For a machine learning system

to be useful in solving medical diagnostic problems, the

following characteristics are required: high execution speed,

the ability to properly handle missing data and noisy data,

the transparency of diagnostic knowledge, the ability to

explain solutions, and the ability of the algorithm to reduce

the number of tests needed to obtain a reliable diagnosis.

Machine learning algorithms are actively used in automated

diagnostic applications. Such algorithms help medical staff

in predicting diseases, as well as improve the accuracy of

disease diagnosing [24, 25].

In [26], a method is proposed for diagnosing acute

myocardial infarction by the exhaled breath using machine

learning methods. The reference group included 30 people

and the healthy group included 42 people. Data clustering

was performed by the PCA method based on six biomarkers

of acute myocardial infarction (C5H12, N2O, NO2, C2H4,

CO, CO2) with further classification by support vector

machine. The achieved sensitivity and specificity were 0.82

and 0.93. In [27], the possibility has been studied to use

artificial intelligence and machine learning methods in the

diagnosis of respiratory diseases, such as asthma and chronic

obstructive pulmonary disease. In [28], the use of these

methods has been shown for the analysis of the condition of

patients suffering from lung cancer and chronic obstructive

pulmonary disease on the basis of infrared photoacoustic

spectroscopy data. In [29, 30], machine learning methods

have been used to analyze multicomponent gas mixtures.

In [31, 32], the possibilities have been shown to use machine

learning and deep learning to analyze the human exhaled

breath.
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Table 1. Gender-age distribution (people) of healthy volunteers and volunteers with an established disease

Female, Female, Male, Male, Sum

under 14 years over 14 years under 14 years over 14 years

Type 1 diabetes 10 12 18 20 60

Bronchial 6 2 13 11 32

asthma

Community-acquired 4 0 1 0 5

pneumonia

Healthy volunteers 14 9 15 22 60

Experimental setup

Fig. 1 shows schematic diagram of the laboratory setup

used in this study.

The setup consists of a quantum-cascade laser (1)
emitting in the wavelength range of 5.8−12.3µm in a

pulsed mode with a pulse length of 50 ns and a power

of up to 150mW. The laser is built in accordance with

the Littrow configuration: (2) — diffraction grating, (3) —
aspherical lenses. The infrared radiation passes through the

system of mirrors (5) and enters the beam splitter (4) and

part of the beam enters the reference photodetector (6 )
through the matching optics (12) . Then, the radiation is

directed to the lens (10) with a focal length of f ∼ 350mm

located so as to focus the beam inside the volume of

the gas cell at a distance of 1/3−1/2 of its length. The

Herriott-type gas cell (13) makes it possible to obtain 238

laser beam reflections and an optical path of 76m. The

outgoing beam is focused by the matching optics (11) on

the signal photodetector (7). Photodetectors (6) and (7)
were implemented as cadmium−mercury−tellurium pho-

todetectors cooled by a cascade of Peltier cells with

a detectivity D∗ equal to ∼ (6−8) · 109 cm
√
Hz/W. The

signal from both photodetectors is read by the 18-bit

analog-to-digital converter (8), after which the reference

spectrum and the signal spectrum are transferred to the

computer (9). The analyzed sample (14) through the

dryer (15) enters the multipass cell (13). The concen-

tration of water vapor after drying is about 1 g/m3. The

vacuum pump (16) is installed at the cell outlet, which

maintains the pre-defined pressure and pumps out the

sample (17).
Fig. 2 below shows the characteristic spectra of the

exhaled breath of a healthy volunteer, a patient with an

established diagnosis of type 1 diabetes, and a patient with

a diagnosis of bronchial asthma, as well as the spectra of

acetone and nitrogen monoxide as characteristic biomarkers

of diabetes and asthma, respectively.

In Fig. 2, the regions of the spectrum are highlighted

with the most explicit differences corresponding to the

absorption of biomarker molecules. However, it should be

noted that the exhaled breath spectrum contains several

hundred components, some of which have their spectra

significantly overlapped, so it is impossible to assert that

only one substance affects the characteristic absorption line.

Thus, a sufficiently wide region of the infrared spectrum is

used for the analysis.

Groups under the Study

Four groups of people were selected for clinical trials,

which is a total of 157 people. The first group included 60

healthy volunteers (Table 1). The second group included

patients suffering from community-acquired pneumonia (5
people). The third group was formed of patients with a

confirmed diagnosis of type 1 diabetes (60 people) and

the fourth group were patients with bronchial asthma (32
people).
The study was conducted according to the guidelines of

the Declaration of Helsinki, and approved by the Ethics

Committee of the Morozov Children.s Clinical Hospital

State Budgetary Healthcare Institution of Moscow Health-

care Department (Moscow, Russia). Protocol code 174 on

18 January 2022. All participants were informed about

details of the research and signed
”
Informed agreement“

for the actions carried out.

Results and discussions

The main challenge in this study was to classify vol-

unteers by infrared spectra of their exhaled breath into

4 groups: volunteers without diagnosed abnormalities

(healthy), patients with type 1 diabetes, patients with

diagnosed asthma, and patients with community-acquired

pneumonia. During the experiment, 100 spectra were ob-

tained from each patient, which were subsequently averaged.

The classification was preceded by data preprocessing. For

the obtained transmission spectra, the baseline correction

was carried out followed by spectra normalization so that

each spectrum had a mean value equal to 0 and a standard

deviation equal to 1, which allows bringing the data to a

single scale.

During the studies, 204 spectra were recorded (for
some patients, the samples were repeated), of which

71 were taken from healthy volunteers, 77 were taken

Optics and Spectroscopy, 2023, Vol. 131, No. 6
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Figure 2. (a) Spectrum of acetone [33] (1), spectra of exhaled breath of a patient with type 1 diabetes (2) and a healthy volunteer (3);
(b) spectrum of NO [33] (1), spectra of exhaled breath of a patient suffering from bronchial asthma (2) and a healthy volunteer (3).
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Figure 3. Data classification imaging using (a) PCA and (b) t-SNE methods.

from patients with type 1 diabetes, 32 were taken from

patients with bronchial asthma, 24 were taken from patients

with community-acquired pneumonia. The test sample

was 20% of the presented dataset. Validation was carried

out on the basis of the accuracy metric. For data

imaging, the principal component analysis (PCA) and

the t-distributed stochastic neighbor embedding (t-SNE)
methods were used, the results of which are shown in

Fig. 3.

Based on the data presented in Fig. 3, the principal

possibility of classifying experimental data is shown. Fig. 3

for the PCA method shows 2 dimensions (for clarity),
however, the explained variance is 0.45, although visually it

can be seen that the groups can be separable. Data with ten

features covers 90% of the explained variance [34], which

is sufficient for reliable classification.

The transmission spectra were classified using three

machine learning methods: the support vector machine

(SVM), the k-nearest neighbors (k-NN), the Random Forest.

Table 2 shows the results of classification of full dimension

data (without dimension reduction). The Precision, Recall

and F1 are used as metrics, which can be described by the

following formulae:

Precision =
T P

TP + FP
,

Recall =
T P

TP + FN
,

Optics and Spectroscopy, 2023, Vol. 131, No. 6
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Table 2. Classification efficiency evaluation for full dimension

data

Method Groups Precision Recall F1

SVM Healthy 0.87 0.93 0.90

Diabetes 0.93 0.88 0.90

Asthma 1.00 1.00 1.00

Pneumonia 1.00 1.00 1.00

k-NN Healthy 0.72 0.93 0.81

Diabetes 0.88 0.88 0.88

Asthma 1.00 1.00 1.00

Pneumonia 1.00 0.20 0.33

Random Forest Healthy 0.77 0.91 0.83

Diabetes 0.94 0.94 0.94

Asthma 1.00 0.88 0.93

Pneumonia 1.00 0.50 0.67

Table 3. Classification results for reduced dimension data

Method Groups Precision Recall F1

SVM Healthy 0.93 1.00 0.97

Diabetes 1.00 0.94 0.97

of type 1

Asthma 1.00 1.00 1.00

Pneumonia 1.00 1.00 1.00

k-NN Healthy 0.93 0.93 0.93

Diabetes 0.94 0.94 0.94

of type 1

Asthma 0.86 1.00 0.92

Pneumonia 1.00 0.80 0.89

Random Forest Healthy 0.92 0.86 0.89

Diabetes 0.88 0.94 0.91

of type 1

Asthma 1.00 1.00 1.00

Pneumonia 1.00 1.00 1.00

F1 = 2
Precision× Recall

Precision + Recall
,

where T P is true-positive, FP is false-positive result, T N is

true-negative result, FN is false-negative result.

Table 4. Accuracy calculation results for the obtained classifiers

Data SVM k-NN Random Forest

Full dimension 0.93 0.83 0.93

data

Reduced dimension 0.98 0.93 0.93

data

Table 3 shows the results of classification of the exper-

imental sample based on reduced-dimension data (10 fea-

tures).
To determine the optimal method for classification, the

algorithms were evaluated on a test sample on the basis of

the accuracy metric. The result is shown in Table 4.

The obtained results show that the machine learning

models for a given sample of volunteers and the spectrum

registration technique allow classifying groups of people

according to their infrared breathing spectra with Precision

and Recall metrics of at least 0.8. The support vector

machine showed the best result for classifying the diseases

described in the study by infrared spectra of the human

exhaled breath. Dimension reduction increases the accuracy

of classification by highlighting the most significant features,

and also allows a considerable increase in the speed of

calculations. The number of significant features was chosen

on the basis of the condition of achieving 90% of the

explained variance.

Conclusions

The infrared spectra of exhaled breath were analyzed for

four groups of volunteers: healthy people, patients suffering

from type 1 diabetes, bronchial asthma and pneumonia.

Infrared spectra were recorded using a tunable quantum-

cascade laser emitting in the wavelength range from 5.3

to 12.8µm. The laser was operated in a pulsed mode

emission, with a pulse width of 50 ns and a power of

up to 150mW, with a tuning step of 1 cm−1. The laser

was optically coupled to an astigmatic gas cell of the

Herriott type with an optical path length of 76m. For

healthy volunteers and volunteers suffering from diabetes

or asthma, a difference was found in the intensity of

the transmission spectra at wavelengths corresponding

to biomarker substances (acetone and nitrogen monox-

ide).
To diagnose the disease by infrared spectrum, the

following classification methods were used: SVM, k-NN
and Random Forest. With the help of PCA and t-
SNE methods, it is shown that the reduction of the

dimension to the 10 most significant features covers 90%

of the explained variance. Reducing the dimension of

infrared spectra allows improvement of the classification

accuracy. The method of support vector machine made

it possible to obtain the accuracy value of at least 98%

Optics and Spectroscopy, 2023, Vol. 131, No. 6
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when classifying the described sample of volunteers into

4 health classes, taking into account the reduction in the

dimension of the experimental spectra of exhaled breath

to 10 features. The method described in this study for

analyzing the infrared spectra of exhaled breath makes

it possible to develop devices for express diagnostics of

the state of human health for further use in medical

diagnostics.
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