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Introduction

For a detailed study of cells in modern biology and

medicine, it is necessary to obtain their image with a

nanometer resolution [1]. Optical microscopy operating in

visible light does not allow direct examination of the nanos-

tructure of living cells with details less than 200 nm due

to diffraction blurring [2]. Various methods of increasing

the resolution of optical microscopy, for example, STED

microscopy [3], can significantly exceed the diffraction limit

and achieve a resolution of tens of nanometers. However, as

in the case of classical fluorescence microscopy, the method

allows seeing only tinted organelles in isolation from the

environment, which makes it difficult to understand the

processes taking place in cells.

Electron microscopy has a high spatial resolution, up to

nanometers, [4]. However, the studied samples have to be

frozen and cut into films with a thickness of 100−500 nm

to conduct such studies, i.e. this method is destructive and

cannot be used to study living cells [5]. Atomic force

and scanning tunneling microscopy allow studying only the

surface of the samples.

On the other hand, soft X-ray microscopy (SX mi-

croscopy) has been developing for more than thirty

years in the spectral region
”
of the water transparency

window“, wavelengths 2.3−4.4 nm [6–10], as well as

in the extreme ultraviolet (EUV) region at wavelengths

13.4−13.8 nm [11–15]. The main advantages of this method

in the
”
water window“ are the following:

• a small wavelength in the diffraction limit provides a

nanometer spatial resolution;

• the absorption contrast between carbon-containing

structures and water, which is natural by an order of

magnitude or more, allows samples to be examined without

the use of contrasting and/or fluorescent substances;

• relatively high transmittance and practically no scatter-

ing of radiation makes it possible to study cells and tissue

sections up to 10−15µm thick in their native, potentially —
alive, state;

• sample preparation is significantly simplified compared

to existing nanoscopy methods.

1. SX microscope at wavelength 13.84nm

Figure 1 shows a diagram and a photo of the microscope

developed in IPM RAS [16]. It operates as follows.

The laser-plasma source (LPS) consists of Nd: Ekspla

YAG laser (λ = 1064 nm, Eimpulse = 0.4 J, duration 5 ns,

frequency 10Hz), whose radiation is focused on an argon

gas target 1 in Fig. 1. The pulsed gas target was formed

using an electromagnetic valve described in [17]. The

optimal gas pressure at the valve inlet is — 3 atm. The

bright line of the ArVIII ion is used at the wavelength

λ = 13.84 nm.

An elliptical collector mirror 2 collects the LPS radia-

tion 1 on a sample installed in the subject area of the

lens 3. The collector has the shape of an ellipsoid. After

aspherization and local shape correction, its focus spot from

the point source was measured and had an FWHM size of

less than 30µm [18], which makes it possible to efficiently

collect the source radiation on the sample. The maximum

difference in the intensity of illumination of the sample in

the field of view 290 × 290µm was 10% (maximum in

the center, minimum at the edges). The holder with the

sample is mounted on a piezoceramic slide that provides

axial tomography by moving along the optical axis. The

image of the sample with a magnification of 46 times is

constructed with a two-mirror lens 4 on CMOS back-side

illumination detector 6 with 6.5µm pixel. The aspherical

concave lens mirror provides a large non-aberrant field of
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Figure 1. a — scheme of a mirror EUV microscope: 1 — laser-plasma source based on pulsed gas target and IR laser, 2 — multilayer

elliptical collector mirror, 3 — test sample on 5D-table with the possibility of z -scanning in the vacuum, 4 — a 46-fold dual-mirror lens

with a field of view 300× 300 µm and an aspherical mirror M1, 5 — filters for suppressing long-wave radiation, 6 — CMOS back-side

illumination detector, 7 — optical table, 8 — rack with optics, 9 — springs, 10 — supports with rubber inserts, 11 — rack holders,

12 — bellows to turbomolecular pump, 13 — alignment laser; b — EUV microscope photograph: 1 — IR laser under the mantle,

2 — vacuum chamber with optics, 3 — detector cooling system, 4 — stand with electronic microscope control systems [16].

view with a size of 290× 290µm. A Mo/ZrSi2 5 filter is

installed after the lens to suppress long-wave radiation and

transmit 13.84 nm radiation [19]. A series of images is taken

at different positions of the sample along the optical axis for

subsequent three-dimensional reconstruction of the image.

2. Mathematical model of absorption
image reconstruction

2.1. Derivation of the original integral equation

from the Radon transformation

(direct problem)

The problem of tomography (determining the (3D)
distribution of inhomogeneities of the absorption coefficient

of the objects under study) is considered in this paper in the

approximation of geometric optics, which allows obtaining

the initial equations, which are supposed to be adjusted in

the future taking into account diffraction blurring. Figure 2

shows a simplified diagram of the rays in a microscope for

a model in which a slight change in their angles within the

focus spot inside the cell is neglected.

The signal (intensity) at each point of the measuring

matrix is formed by all rays in the cone that have passed

through the corresponding focus x0, y0, z 0 and exit the

camera at points x1, y1, z 1 = 0 in the measuring chamber

(Fig. 1). At the same time, the mirror lens constructs

an image of a slice of the sample that has fallen into the

focal the plane of the lens (z = z 0). For three-dimensional

reconstruction of the sample image, it is shifted along the

axis z (the optical axis of the lens), and a series of x−y
images of the sample is recorded on the camera, the so-

called z -stack. The dimension of the scanning grid in the z -
plane is determined by the scale of the transverse diffraction
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Figure 2. Diagram of the rays of the X-ray microscope in question

passing through the sample section located in the focal plane of

the lens.

spreading of the radiation in focus. The contribution of each

beam to the intensity is determined by the optical absorption

thickness — integral along the beam path (Radon transfor-

mation) of the absorption coefficient µ(x , y, z ) on a straight

line passing through the points x0, y0, z 0 and x1, y1, z 1 = 0

between the planes z = 0 and z = d :

τ (x1, y1, z 1 = 0, x0, y0, z 0) =

∫

L

µ(x , y, z )dl. (1)

The most well-known methods of medical tomogra-

phy CT (computed tomography) and MRI (magnetic

resonance imaging) also lead to a similar equation. These

methods are based on the theory of Radon transformations,

proposed by him in jcite20, and later developed for

applications in computer X-ray tomography based on the

theory of incorrect inverse problems by A.N. Tikhonov with

his students [21–24]. In particular, the problem of X-ray

tomography in conical beams was considered in [24] in

respect to a layered inhomogeneous medium.

The proposed method of tomography of 3D inhomo-

geneities in this paper is based on solving the inverse

problem for the Radon transformation (1) in the geometry

of measurements under consideration. We will consider

the problem in Cartesian coordinates because unlike CT

and MRI there is no cylindrical symmetry in this geometry.

We use parametric representation

τ (x1, y1, z 1, x0, y0, z 0) =

λ2(x0,y0,z 0)
∫

λ1(x1,y1,z 1)

µ[x(λ), y(λ), z (λ)]

×
√

[dx(λ)/dλ]2 + [dy(λ)/dλ]2[dz (λ)/dλ]2 dλ,

(2)

of the equation (1) to represent it in these coordinates using

the equation for straight lines in 3D:

x(λ) = x1 + (x0 − x1)λ, y(λ) = y1 + (y0 − y1)λ,

z (λ) = z 1 + (z 0 − z 1)λ. (3)

Then we have

τ (x1, y1, z 1, x0, y0, z 0)

=
√

(x0 − x1)2 + (y0 − y1)2 + (z 0 − z 1)2

×
λ2

∫

λ1

µ[x1 + (x0−x1)λ, y1 + (y0−y1)λ, z 1 + (z 0−z 1)λ]dλ

(4)

or with integration limits

τ (x1, y1, z 1, x0, y0, z 0)

=
√

(x0 − x1)2 + (y0 − y1)2 + (z 0 − z 1)2

d/[z 1+(z 0−z 1)]
∫

z 1/[z 1+(z 0−z z )]

× µ[x1 + (x0−x1)λ, y1 + (y0−y1)λ, z 1 + (z 0−z 1)λ]dλ.
(5)

Using the equation of radiation transfer in the absorb-

ing medium, we obtain an expression for the relative

(relative to the medium without absorption) intensity at

the point x1, y1, z 1 for the beam that passed through the

focus x0, y0, z 0:

J0(x1, y1, z 1, x0, y0, z 0)

J(x1, y1, z 1, x0, y0, z 0)[µ = 0]

= exp

(

−
√

(x0 − x1)2 + (y0 − y1)2 + z 2
0

×
d/z 0
∫

0

µ[x1 + (x0 − x1)λ, y1 + (y0 − y1)λ, z 0λ]dλ

)

. (6)

This expression in Cartesian coordinates is obtained by

replacing the variable z 0λ → z :

J(x1, y1, z 1, x0, y0, z 0)/J0(x1, y1, z 1, x0, y0, z 0)[µ = 0]

= exp

(

−
√

(x0 − x1)2 + (y0 − y1)2 + z 2
0

/

z 0

d
∫

0

µ[x1 + (x0 − x1)z/z 0, y1 + (y0 − y1)z/z 0, z ]dz

)

.

(7)

Further, a solution to the direct problem is obtained —
relative intensity at the matrix point corresponding to the

Technical Physics, 2023, Vol. 68, No. 7
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focus position at the point (x0, y0, z 0) by integrating over

all rays in the cone exiting through the plane z = 0:

I(x0, y0, z 0)/I0[µ = 0] =

x0+z 0 tg θ
∫

x0−z 0 tg θ

dx1

√
(z 0 tg θ)2−(x0−x1)2

∫

−

√
(z 0 tg θ)2−(x0−x1)2

× dy1 exp

(

−
√

(x0 − x1)2 + (y0 − y1)2 + z 2
0

/

z 0

×
d

∫

0

µ
[

x1 + (x0 − x1)z/z 0, y1 + (y0 − y1)z/z 0, z
]

dz

)

/

x0+z 0 tg θ
∫

x0−z 0 tg θ

dx12

√

(z 0 tg θ)2 − (x0 − x1)2,

(8)

where in our case it is possible to use

I0 = I(µ = 0) = const.

2.2. Solution of the inverse problem of

microscopic tomography based on the

inverse Radon transformation

An additional condition of smallness of the optical

absorption thickness τ ≪ 1 is used to solve the inverse

tomography problem. Then, the expression

δI(x0, y0, z 0) = [I0 − I]/I0 =
x

dx1dy1

x0+z 0 tg θ
∫

x0−z 0 tg θ

dx1

×

√
(z 0 tg)2−(x0−x1)2

∫

−

√
(z 0 tg θ)2−(x0−x1)2

dy1

√

(x0−x1)2+(y0−y1)2+z 2
0

/

z 0

×
d

∫

0

µ
[

x1 + (x0 − x1)z/z 0, y1 + (y0 − y1)z/z 0, z
]

dz ,

(9)
is obtained for a relative decrease in intensity, where the

integrand in the integral of z is represented as a double

integral of x and y :

δI(x0, y0, z 0) =
x

dx1dy1

d
∫

0

x
dxdy µ(x , y, z )

× F(x0 − x1, y0 − y1, z 0)δ
[

x − x1 − (x0 − x1)z/z 0

]

× δ
[

y − y1 − (y0 − y1)z/z 0

]

dz ,
(10)

and the function

F(x0 − x1, y0 − y1, z 0) =















































=
√

(x0−x1)2+(y0−y1)2+z 2
0

/

(

2z 0

z 0 tg θ
∫

−z 0 tg θ

√

(z 0 tg θ)2−ξ2dξ

)

at |x0−x1|>z 0 tg θ, |y0−y1|>
√

(z 0 tg θ)2−(x0−x1)2;

=0 at|x0−x1|>z 0 tg θ, |y0−y1|>
√

(z 0 tg θ)2−(x0−x1)2,















































(11)

describing all the points inside the double light cone

in Fig. 2 is introduced in (9) instead of the integration limits

and multipliers before the integral of z . The integration

with δ-function is performed by changing the order of

integration and replacing the variables x̃1 = x1(z 0−z )/z 0,

ỹ1 = (z 0−z )/z 0 in (10) by x̃1, ỹ1 and an equation of the

type of two-dimensional convolution by x , y is obtained:

δI(x0, y0, z 0) =

d
∫

0

dz
x

µ(x , y, z )F

[

(x0 − x)
z 0

z 0 − z
,

(y0 − y)
z 0

z 0 − z
, z 0

](

z 0

(z 0 − z )

)2

dxdy,

(12)

which by a two-dimensional Fourier transform over x0

and y0 reduces to a one-dimensional integral equation

in k-space:

δI(kx , ky , z 0) = 4π2

d
∫

0

µ(kx , ky , z )K(kx , ky , z 0, z )dz ,

(13)

which should be solved for each pair of kx , ky components

of the spatial spectrum. Then the inverse Fourier transform

of the obtained solution µ(kx , ky , z ) also gives the solution

µ(x , y, z ) of the posed tomography problem in Cartesian

coordinates:

µ(x , y, z ) =
x

µ(kx , ky , z ) exp(−ikx x − iky y)dkx dky .

(14)

The kernel of equation (13) can be determined from an

experiment with a thin (by z ) test object with a known

transverse k spectrum using the methodology proposed

in [25], for example, a homogeneous parallelepiped with

a known absorption coefficient µ0:

K(kx , ky , z 0, z ) = δI(kx , ky , z 0)/4π
2 µ0(z )1z . (15)

If the integral is taken in the function F in (11), then (12)

is reduced to a convolution type equation in all three

Technical Physics, 2023, Vol. 68, No. 7



XXVII International Symposium
”
Nanophysics & Nanoelectronics“ 809

0

100

200

0

100

200

Z X

K

a

0

10

20

0

40

80

Z
X

K

b

Figure 3. Kernel function (17) of equation (18) K(x, y, z ) in section Y = 0 at θ = 15.65◦ : a — sampling 200× 200× 200 pixels;

b — 20× 20× 80 pixels.

coordinates:

δI(x0, y0, z 0) =

d
∫

0

x
µ(x , y, z )K(x0 − x , y0 − y, z 0 − z )

× dx dy dz ,
(16)

where

K(x0 − x , y0 − y, z 0 − z ) =























































=
2

π(tg θ)2(z 0 − z )2

√

(x0 − x
z 0 − z

)2

+
(y0 − y

z 0 − z

)2

+1,

at

∣

∣

∣

∣

x0−x
z 0−z

∣

∣

∣

∣

< tg θ,

∣

∣

∣

∣

y0−y
z 0−z

∣

∣

∣

∣

<

√

(tg θ)2−
(x0−x

z 0−z

)2

;

=0 at

∣

∣

∣

∣

(x0−x)
z 0−z

∣

∣

∣

∣

> tg θ,

∣

∣

∣

∣

y0 − y
z 0 − z

∣

∣

∣

∣

>

√

(tg θ)2−
(x0−x

z 0−z

)2

.























































(17)

The three-dimensional Fourier transform leads (18) to a

simple equation for spectra in k-space

δI(kx , ky , kz ) = 8π3 µ(kx , ky , kz )K(kx , ky , kz ), (18)

and the formula for the desired inverse Radon transform for

this tomography method:

µ(x , y, z ) =
1

8π3

y
δI(kx , ky , kz )/K(kx , ky , kz )

× eikx x+iky y+ikz dkxdkydkz . (19)

It is known that this solution of inverse convolution

type problems for input data with an error is an incorrect

problem [21]. Random errors can have a wider spatial spec-

trum than the kernel spectrum, which leads to unlimited

amplification of small-scale components in the solution; in

addition, the kernel spectrum can have zeros. Therefore,

it is necessary to apply appropriate regularization methods

to solve this problem. According to the theory of A.N.

Tikhonov [21], the following algorithm can be used to

regularize the solution of convolution-type equations:

µ(x , y, z )=
1

8π3

y δI(−kx ,−ky ,−kz )K(kx , ky , kz )

|K(kx , ky , kz )|2+α[1+(k2
x+k2

y+k2
z )

2]

× eikx x+iky y+ikz dkxdky dkz .

(20)
The regularization parameter α determines the degree

of smoothness of the approximate solution. At large

values, the high-frequency (small-scale) components in the

reconstructed distribution are suppressed, and small details

are smoothed out, with a decrease of α the solution

approaches the exact one, but high-frequency data errors

increase and details (artifacts) that do not exist in reality

appear, starting from a certain level. Such variation by the

regularization parameter is somewhat similar to focusing an

image with a lens.

Mathematically consistent Tikhonov generalized residual

method [21] automatically determines the regularization

parameter α from the condition that the residual is equal

to the parameter of the total error of the data and the kernel

of the equation in the corresponding metrics (Tikhonov
generalized residual method), which makes it universally

applicable. With this choice, the convergence of the solution

to the exact one is proved when the error parameter tends

to zero. In reality, the error of the data and the kernel of

the equation (due to discretization) cannot be directed to

zero, but experience shows that the use of this method

with a finite error is the optimal compromise between

smoothing the solution and the possibility of artifacts [26].
In contrast to the problems in the correct formulation, the

Technical Physics, 2023, Vol. 68, No. 7
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Figure 4. a — the initial distribution of the continuous inhomogeneity of the absorption coefficient µ(x, y, z ) in the horizontal section

z = 0 (in the vertical section, the object is also a square); b — distribution
”
of the measured signal“ δI(x0, y0, z 0) with added error with

standard deviation σ = 5% in vertical section y0 = 0; with — restored absorption coefficient distribution µ(x, y, z ) in horizontal section

z = 0; d — reconstructed distribution of the absorption coefficient in the vertical section y = 0; e — restored with a reduced value of the

regularization parameter α absorption coefficient distribution µ(x, y, z ) in horizontal section z = 0; f — restored with a reduced value α

absorption coefficient distribution mu(x, y, z ) in vertical section y = 0.
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error of the solution is not proportional to the accuracy

of the data, and the convergence to the exact solution

is significantly slower — moreover, the accuracy of the

solution significantly depends on the complexity of the

reconstructed distribution.

An alternative may be to choose α in (20) based on

numerical experiment. There is an opportunity to choose

a strategy in this case: it is possible to try to avoid

artifacts by choosing a sufficiently large value of α, and

it is possible to reduce this value by achieving greater

contrast and sharpness of the boundaries of the objects

being restored (analogies in radar applications — false alarm

errors and missing targets, respectively). The method of

selecting the value α above the level of appearance of

artifacts was used in presented in numerical modeling, due

to the relatively large resource intensity of the generalized

discrepancy method.

In practical application of the method to the developed

measuring system, tomography errors will also include

errors related to diffraction divergence and aberrations due

to the residual error in the shape of the lens mirrors [16]. In
this case, the diffraction divergence leads to a violation of

the difference form of the kernel at the coordinate z . This
effect may be insignificant if the divergence is insignificant

in the interval of z , in which the inhomogeneity under study

is located. In any case, the form of the function K will need

to be clarified from (15) in an experiment with a test sample

of a known shape. It is necessary to apply a tomography

algorithm based on solving equation (12) with the kernel

obtained from the experiment if it turns out that errors due

to diffraction divergence are significant.

2.3. Numerical simulation

A computer program implementing the algorithm of

microscopic tomography (20) was developed and numerical

modeling was performed. The simulation scheme included:

Technical Physics, 2023, Vol. 68, No. 7
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a) the distribution of the received signal was calculated

depending on the position of the focus in the sensing

area for test objects with a given geometric structure

(homogeneous in absorption coefficient of parallelepipeds

and inhomogeneous, modeled by Gaussian distributions)
from (16), (17);

b)
”
measurement data“ were generated:

”
measurement

error“ with zero mean value and a given level of standard

deviation σ I was added to the calculated values of the

received signal using a random number sensor;

c) the inverse problem for equation (16) was solved using

the regularizing algorithm (20), and the resulting solution

was compared with the given model distribution;

d) the algorithm parameters were optimized based on

modeling: discretization, spatial spectrum of analysis,

parameters of the regularization algorithm.

It was possible to use dimensionless coordinates, signal

parameters and the absorption coefficient of the probed

objects (model distributions with a maximum value of

µ = 1 were used) in the simulation, which ensures the

universal applicability of the results obtained. It was

assumed that the linear pixel size during the sampling

of calculations corresponds to the transverse size of the

diffraction spreading of the probing radiation in focus.

Since the geometric optics approximation does not de-

scribe the intensity distribution on this scale (it increases

indefinitely), it was assumed in numerical modeling that

the radiation intensity in the focus, which in reality is

smoothed out on the scale of the corresponding pixel,

does not change between the pixels closest to the fo-

cus. It should be noted the value of K in (17) is

zero that at the angle θ < 45◦ under the conditions

of constraints at the focus point. The applicability

of this approximation is planned to be investigated ex-

perimentally, using the possibility of determining the

kernel of the equation to be solved from (15) based

on the results of the above measurements with test

objects.
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Figure 7. a — original distribution µ(x, y, z ) (23) in horizontal section z = 0; b — signal distribution δI(x0, y0, z 0) in vertical section

y0 = 0; c — restored distribution µ(x, y, z ) in horizontal section z = 0; d — restored distribution µ(x, y, z ) in vertical section y = 0.

Numerical analysis assumed calculation and analysis of

the kernel integral equation (16). Fig. 3, a shows the distri-

bution of this kernel function in the difference coordinates

X = x0−x , Y = y0−y , Z = z 0−z at an angle θ = 15.65◦

degrees in section Y = const for 200-pixel sampling by

coordinates corresponding to the sampling of data in the

developed measuring system, and Fig. 3, b shows the dis-

tribution K in a narrower area with sampling 20× 20 × 80

pixels, which was selected in the numerical simulation of

small objects to determine the resolution of the computer

implementation of the algorithm (22).

The simulation showed that for small objects (inside
the 20-pixel volume of the camera), an 80-pixel scan

at height z is quite enough. Both solid objects and

distributed inhomogeneities of the absorption coefficient

were studied. The bandwidth of the analysis by coordinates

in k-space was 1 jx ,y,z = 1.35π.

Figure 4 shows the results of modeling a continuous

inhomogeneity in the form of a cube with dimensions

8× 8× 8. It was found in numerical modeling that

random errors, even with the value of the standard deviation

σ = 10% of the calculated signal distribution, do not lead

to significant distortions in the reconstructed distributions.

The addition of an error with σ = 5% was further used in

the considered case. The observed distortions in the form

of smoothing the edges of the object are mainly due to the

discretization of the problem and the manifestation of its

incorrectness. At the same time, the spread of the restored

distribution in the vertical plane in Fig. 4, d is significantly

larger than in the vertical plane in Fig. 4, c, which is

attributable to the observed in Fig. 4, b by the asymmetry

of the kernel function of the equation (Fig. 3). Fig. 4, c

shows a clearly defined area of focus passing through the

object, which is close in shape to the observed object.
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Figure 8. a — initial distribution µ(x, y, z ) (23) of the reduced variance in horizontal section z = 0; b — signal distribution δI(x0, y0, z 0)
in vertical section y0 = 0; with — restored distribution µ(x, y, z ) in horizontal section z = 0; d — restored distribution µ(x, y, z ) in vertical

section y = 0.

As a consequence, the transverse distribution of the signal

in this region practically coincides with the reconstructed

distribution of the absorption coefficient shown in Fig. 4, c,

and therefore is not given hereafter.

The errors in restoring the values of the absorption

coefficient in the central part of the restored distributions

do not exceed 2−3%. Fig. 4, e, f shows the recovery results

with a reduced value of the regularization parameter α. It

can be seen that other features of the incorrectness of the

problem manifest themselves with a decrease in the role of

regularization: despite a slight decrease in the blurring of the

edges of the object, artifacts — extra details appear, which

at the edges manifest themselves as the well-known Gibbs

effect.

Figure 5 shows the simulation results for a solid ob-

ject in the form of a cube with half the linear dimen-

sions 4× 4× 4.

It turned out that in this case, too, the shape and magni-

tude of the simulated inhomogeneity are reproduced almost

with the same accuracy as in the case shown in Fig. 4,

however, the blurring relative to the linear dimensions of the

object increases, and with further reduction of the object it

is already reproduced as a blurred spot.

The modeling of such a complex object as a cube with

dimensions 8× 8× 8 with a cubic cavity with dimensions

4× 4× 4 in the center with faces parallel to the corre-

sponding faces of the outer cube was performed since the

quality of the solution significantly depends on the degree

of complexity of the heterogeneity structure in incorrect

problems. Fig. 6 shows the simulation results.

Fig. 6, c shows that the object retains a general geometric

structure in the central cross-section but with a non-zero

absorption coefficient in the cavity. It follows from con-

sideration of the transverse structure of the restored object
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Figure 9. a — original distribution µ(x, y, z ) (24) in horizontal section z = 0; b — signal distribution δI(x0, y0, z 0) in vertical section

y0 = 0; c — restored distribution µ(x, y, z ) in horizontal section z = 0; d — restored distribution µ(x, y, z ) in vertical section y = 0.

in Fig. 6, d that this structure blurs as the distance from the

center increases, and beyond the actual size of the object

merges and gradually disappears with a characteristic scale

of three to four pixels.

Tomography modeling of distributed inhomogeneities

based on 3D Gaussian distributions of the absorption

coefficient was also performed. Figure 7 shows the results

for the structure described by the formula

µ(x , y, z ) = exp

[

− (x − x c)
2

σ 2
x

− (y − y c)
2

σ 2
y

− (z − z c)
2

σ 2
z

]

,

(21)
where x c = 10, y c = 10, z c = 40, σx = σy = σz = 4.

The comparison of Fig. 7, a and b shows that the

distribution of the refractive index is restored almost exactly

in the central section, but as shown on Fig. 7, d, it spreads

out significantly in the vertical direction.

Figure 8 shows the simulation results for a narrower

Gaussian inhomogeneity (21) at σx = σy = σz = 2.

The quality of the reconstruction of a narrower Gaussian

inhomogeneity turned out to be no worse than that shown

in Fig. 7, however, data sampling turns out to be insufficient

for a satisfactory solution of the problem with a further

decrease in the variance.

A modeling was performed for more complex, non-

simply connected inhomogeneities like in case of contin-

uous inhomogeneities, based on combinations of two 3D

Gaussian distributions:

µ(x , y, z )=a1 exp

[

− (x−x c1)
2

σ 2
x1

− (y−y c1)
2

σ 2
y1

− (z−z c1)
2

σ 2
z1

]

+ a2 exp

[

− (x − x c2)
2

σ 2
x2

− (y − y c2)
2

σ 2
y2

− (z − z c2)
2

σ 2
z2

]

.

(22)

Figure 9 shows simulations for Gaussian inho-

mogeneity (22) with parameters a1 = 1 a1 = −1,

σx1 = σy1 = σz1 = 4, σx2 = σy2 = σz2 = 2, x c1 = x c2 = 10,
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y c1 = y c2 = 10, z c1 = z c2 = 40. This distribution forms a

structure with a cavity filling from the center to the edges.

Fig. 9, c, d shows that the reconstructed distributions

also reproduce the cavity and the original inhomogeneities

in Fig. 9, a, but near the center it blurs and does not reach

values close to zero.

The minimum distance at which it is possible to re-

construct narrow Gaussian inhomogeneities spaced along

the vertical coordinate, shown in Fig. 10. It turned out

that this distance is 6 pixels between their centers. The

corresponding total distribution of the absorption coefficient

is described by the formula (22) with the parameters

a1 = 1 a2 = 1, σx1 = σy1 = σz1 = σx2 = σy2 = σz2 = 2,

x c1 = x c2 = 10, y c1 = y c2 = 10, z c1 = 37, z c2 = 43.

Fig. 10, c shows that the blurring of the restored inhomo-

geneities leads to their overlap. The inhomogeneities merge

and become indistinguishable with a smaller separation

along the vertical coordinate.

Conclusion

The above simulation results of direct and reconstructed

three-dimensional images confirm the operability and suf-

ficient effectiveness of the developed algorithm of axial

X-ray tomography in high-aperture soft X-ray microscopy.

The algorithm can be refined to practical application on

the basis of experimental refinement of the kernel function

of equation (16) or modification based on the use of

equation (12) in case diffraction blurring disturbs the

difference form of the equation along the vertical coordinate.
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