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Features of high strain rate deformation of aged alloys
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The sliding of an ensemble of edge dislocations under high strain rate deformation of an aged binary alloy is

theoretically analyzed. An analytical expression of the dependence of the dynamic yield strength on the dislocation

density is obtained. The conditions under which this dependence is nonmonotonic and has a minimum and

maximum are obtained. The minimum occurs during the transition from the dominance of dynamic drag of

dislocations by point defects to the dominance of drag by other dislocations (Taylor hardening). The position of

the maximum corresponds to the value of the dislocation density, at which their contribution to the formation of

the spectral gap becomes dominant.
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1. Introduction

Metal alloys are widely used in various industries,

therefore, the study and improvement of their mechanical

properties is a very important task [1,2]. The density of

dislocations has a significant influence on the formation of

these properties. In the case of quasi-static deformation,

the dependence of the mechanical properties of alloys

on the dislocation density is determined by the Taylor

relation [3]. This relation is quite universal and is confirmed

by numerous experimental studies [4–10]. However, this

dependence is more complex in the case of high strain rate

deformation of aged binary alloys. High strain rate defor-

mation is realized both at the stage of processing alloys and

manufacturing products, and during their operation [11–16].
At the same time, the strain rate can reach 103−109 s−1,

and dislocations move at speeds from tens to hundreds and

even thousands of meters per second.

The theoretical description of the evolution of a dis-

location ensemble in a deformable crystal has been

very successfully implemented in the works of [17–21].
In these works, kinetic equations for dislocation density

are formulated, including the processes of generation of

dislocations from sources, immobilization, reproduction,

annihilation and diffusion of dislocations. This approach

is very versatile and effective and has allowed us to obtain

excellent agreement with numerous experimental data, in

particular, in the field of quasi-static deformation. In

the field of high strain rate deformation, the theory of

dynamic interaction of structural defects (DID) developed

by us can be useful in analyzing a number of important

cases [22–27]. In fact, it is a modified string model of

Granato−Lukke. It is not as universal as the system

of equations [17–21] and does not allow taking into

account all specific aspects of plastic deformation. In

particular, it does not take into account the processes of

annihilation and the origin of dislocations and assumes

that the density of dislocations remains constant. But this

theory correctly describes the mechanism of dissipation

during the supra-barrier movement of dislocations and the

effects of collective interaction of structural defects in the

dynamic domain. This circumstance made it possible to

qualitatively explain a number of experimental dependences,

in particular, the dependence of the dynamic yield strength

of the alloy on the concentration of the second component,

the density of dislocations, and the strain rate. In particular,

the linear [28,29], root [30,29] and N-shaped [31,29,25]
dependence of this limit on the concentration of dopant,

non-monotonic velocity dependence having a maximum

of [32,26], non-monotonic dependence was explained of

the dislocation density, having a maximum of [33,34]
and a minimum of [27,35]. Conditions under which the

dependence of the dynamic yield strength on the dislocation

density can have both a minimum and a maximum are

obtained in this paper.

We will analyze high strain rate deformation of an aged

two-component alloy containing the Guinier−Preston zones.

These zones appear in alloys at the first stage of aging

and play a very important role in the formation of their

mechanical properties [36–39]. Let infinite edge dislocations
under the action of a constant external stress σ0 move in

planes parallel to XOZ with a constant velocity ν in a

crystal containing atoms of the second component and the

Guinier−Preston zone. The dislocation lines are parallel

to the axis OZ. The position of the k-th dislocation is
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determined by the function

Wk(z , t) = νt + wk(z , t). (1)

Here wk(x , t) is a random variable describing transverse

dislocation oscillations that occur when it interacts with

chaotically distributed structural defects. The average value

of this value over the dislocation length and over the chaotic

distribution of defects is zero.

The dislocation slip is described by the following equation

m

{

∂2Wk

∂t2
−c2 ∂

2Wk

∂z 2

}

=b
[

σ0 + σ p
xy + σ dis

xy + σ G
xy

]

−B
∂Wk

∂t
.

(2)
Here m — the mass of the dislocation length unit, B —
the damping constant due to phonon, magnon, electronic or

other dissipation mechanisms characterized by a linear de-

pendence of the dislocation drag force on its sliding speed,

c — the propagation velocity of transverse sound waves in

the crystal, σ
p

xy , σ
dis
xy , σ G

xy — components of the stress tensor

generated on the line k of the dislocation, respectively,

by point defects (atoms of the second component), other
dislocations and Guinier−Preston zones.

Ginier−Preston zone planes are parallel to the dislocation

sliding planes, and their centers are randomly distributed in

the crystal. We assume that all zones have a radius R, the
same thickness equal to the diameter of the atom of the sec-

ond component, the same Burgers vectors b0 = (0,−b0, 0)
that are parallel to axis OY .
Each dislocation of the ensemble is considered as an

elastic string with effective tension and effective mass. These

dislocations perform over-barrier sliding in the elastic field

of structural defects. The main mechanism of dissipation

is the excitation of dislocation vibrations as a result of

the interaction of dislocation with structural defects. The

effectiveness of such a mechanism was confirmed by the

authors of the work [40], who theoretically investigated the

over-barrier movement of the dislocation and proved that

as a result of interaction with point defects, it experiences

strong excitation of its own oscillations. The authors of

this work took into account the random nature of the

transmission of the moving dislocation of the pulse by

individual impurity atoms and calculated the correlation

functionG(τ ) = 〈w(z , t)w(z , t + τ )〉, where the function

w(z , t) describes the displacement of a single disloca-

tion site during its oscillations during sliding along the

crystal. This correlation function is determined experi-

mentally through the correlation function of inelastic light

scattering proportional to it 〈E(t)E(t + τ )〉, which can

be measured using optical displacement spectroscopy [41].
This experimental method makes it possible to measure

field fluctuations through current fluctuations for times less

than the characteristic period of dislocation oscillations.

According to the authors of the work [40], the amplitude of

dislocation oscillations can exceed the amplitude of thermal

oscillations by several orders of magnitude. The excitation

of natural oscillations occurs the more efficiently, the more

point defects distort the crystal, that is, the amplitude of

the oscillations increases with an increase in the mismatch

parameter.

The effectiveness of this dissipation mechanism is influ-

enced by the type of vibrational spectrum of dislocation,

primarily the presence of a gap in it. The presence of a

gap means that the dislocation oscillates in a potential well,

which moves along the crystal along with the dislocation.

Such a pit may arise as a result of the collective interaction

of point defects or other dislocations with a moving

dislocation. In this case, the dislocation oscillation spectrum

containing the gap 1 has the form

ω2(qz ) = c2q2
z + 12. (3)

Let us describe in more detail the collective interaction of

point defects with dislocation. According to DID theory,

dynamic interaction of defects with a dislocation, depending

on the dislocation sliding velocity, can have both a collective

nature and nature of independent collisions [23]. Let us

denote the time of interaction of the dislocation with the

impurity atom as τde f = R/ν , where R — the radius of the

defect, the time of propagation of the disturbance along the

dislocation at a distance of the order of the average distance

between the defects we denote τpr = l/c . In the region

of independent collisions ν > ν0 = R1de f , the inequality

τde f < τpr is fulfilled, i.e. the dislocation element does not

experience the influence of other defects during interaction

with the point defect. In this region, no gap appears in

the spectrum of dislocation oscillations. In the area of

collective interaction (ν < ν0), on the contrary, τde f > τpr ,

i.e. during the time of interaction of a dislocation with a

point defect, this dislocation element manages
”
to feel“ the

influence of other defects that caused a dislocation shape

disturbance. In this region, a gap appears in the dislocation

oscillation spectrum, which is described by the following

expression [29]

1 = 1d =
c
b

(

ndχ
2
)1/4

. (4)

In the case of a high density of dislocations, it is their

collective interaction with each dislocation that makes the

main contribution to the formation of a gap in the spectrum

of this dislocation. This is the case for density values ρ > ρ0,

where

ρ0 =

√

ndχ2

b2
. (5)

Here nd — dimensionless concentration of atoms of the

second component, χ — parameter of their dimensional

discrepancy. The spectral gap is described by the following

expression [24]:

1 = 1dis = b

√

ρM
m

≈ c
√
ρ; M =

µ

2π(1 − γ)
, (6)

where γ — Poisson’s ratio, µ — shift modulus.

The force of dynamic drag of a moving edge dislocation

by point defects, according to the DID, will be calculated
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in the second order of perturbation theory, considering the

transverse oscillations of the dislocation in the sliding plane

to be small, which are described by the function w(z , t):

F = b

〈

∂σxy

∂X
w

〉

= b

〈

∂σxy

∂X
Gσxy

〉

, (7)

where G — Green’s function of the dislocation equation of

motion. Fourier transform of this function looks like

G(ω, q) =
1

ω2 + iβω − c2q2
; β =

B
m
. (8)

According to the DID theory, we can write down an

equation for contribution of various structural defects to the

dynamic yield strength in the following form

τ =
nb

8π2m

∫

d3q|qx | · |σ d
xy (q)|2δ

(

q2
xν

2 − ω2(qz )
)

, (9)

where ω(qz ) — dislocation vibration spectrum, n — vo-

lume concentration of structural defects, σxy (q) — Fourier

image of the corresponding component of the stress tensor

generated by the defect.

The DID theory is in a sense analogous to the theory of

the mean field. Each dislocation slides across the crystal,

oscillating in a potential well that moves with it and is

created by the collective action of other defects — by some

average field.

The dynamic yield strength of a binary alloy is equal to

the sum of the contributions of the Taylor hardening τT , the

contribution of the Guinier zones−Preston τG and the atoms

of the second component τd

τ = τT + τG + τd . (10)

The component τT is proportional to the square root of the

dislocation density

τT = αµb
√
ρ. (11)

where α is a dimensionless coefficient of the order of one.

Next, consider the region of strain rates bounded by the

inequality

ε̇ < ε̇cr = ρb2c
√
ρ + ρ0. (12)

In this area, the dynamic deceleration force of dislocation

by Guinier−Preston zones does not depend on the speed

of dislocation movement. Accordingly, τG does not depend

on the strain rate. Let us make numerical estimations. We

obtain the critical velocity value ε̇cr = 108 s−1 for the values

ρ = 5 · 1015 m−2, b = 4 · 10−10 m, nd = 10−4, χ = 10−1,

c = 3 · 103 m/s.

Taking advantage of the results of the work [22–27],
an expression for the contribution of the Guinier−Preston

zones is obtained in the following form

τG =
D√

ρ + ρ0
; D = µnGbR. (13)

Here nG — volume concentration of Guinier−Preston

zones.
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Dependence of the dynamic yield strength of a binary alloy on the

dislocation density.

The contribution of the atoms of the second component

can be described by the following expression

τd =
K

ρ(ρ + ρ0)
; K =

µndχ
2ε̇

b3c
. (14)

Analysis of the expression (10) shows that the dependence

of the dynamic yield strength is nonmonotonic and has a

minimum and maximum. The graph of this dependence is

shown in the figure.

The maximum of this dependence is observed at density

values of the order ρ0, the position of the minimum is

determined by the expression

ρmin =

(

2ε̇ρ0

αc

)2/3

. (15)

We obtain ρ0 = 1015 m2, ρmin = 1013−1014 m−2 in the stu-

died range of strain rates. The obtained result is consistent

with the conclusion of the DID theory: the minimum yield

strength is observed when the dominant contribution of

defects to the complete inhibition of dislocations is changed,

the maximum occurs when the dominant contribution to the

formation of the spectral gap is changed. In our case, the

minimum occurs during the transition from the dominance

of dynamic inhibition of dislocation by point defects to

the dominance of inhibition by other dislocations (Taylor
hardening). The position of the maximum corresponds

to the dislocation density value, at which the dominant

contribution of point defects to the formation of the gap

is replaced by the dominant contribution of dislocations.

Both extremes can be observed at a high value of

the volume concentration of the Guinier−Preston zones

nG = 1023−1024m−3 and the change in dislocation density

from 1011 m−2 to 1016 m−2. At the same time nd = 10−4,

ε̇ = 107 s−1, ρ0 = 1015 m−2, ρmin = 1013−1014 m−2.

The results obtained can be useful in analyzing the

mechanical properties of aged alloys under conditions of

high-energy external impacts.
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