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1. Introduction

Phase transformations (PT) in solids (polymorphic,

martensitic transformations, crystallization of the amorphous

phase, decomposition of a solid solution, etc.) are

widespread in nature and play a key role in changing the

microstructure and properties of various materials. For this

reason, they have important fundamental and applied value

in physics, materials science and other sciences. It is not

surprising that much attention has been paid and is being

paid to the study of phase transformations in solids [1–20].
It was found that the phase transition of the first kind is a

complex multistage process determined and accompanied

by various nonlinear phenomena. The first fastest stage

is the stage of a formation of a new phase nucleus, the

size of which exceeds the critical value. The equation

describing the kinetics of the origin of a new phase was

first obtained by Zeldovich [13]. The kinetics of nucleation

is determined by the rate of transition of atoms from the

metastable phase to the nucleus, and the rate itself depends

on the mechanisms of growth of the nucleus. There were

no restrictions of the mechanisms of nucleus growth in

Zeldovich’s theory. The probability of realization of one or

another mechanism in the system depends on the conditions

under which the phase transition occurs, and is ultimately

determined by the dynamics of atoms. And there are two

possible cases here.

In the first case, when the phase transformation

takes place under conditions close to equilibrium (low
heating/cooling rates, absence of external forces), the solid

is considered as an isolated system. The Born−Openheimer

adiabatic approximation is applicable for such systems [14]

(electrons instantly adjust to the slow movement of nuclei).
The dynamics of atoms is determined by vibrational degrees

of freedom, the displacements of atoms are completely

determined by the gradients of a single potential energy

surface (PES) E(R). Here R = {R1, . . . , RN} — the

coordinates of the nuclei in 3N-dimensional space, N —
the number of atoms. PSE represents a hypersurface

in 3N-dimensional space with its minima and potential

barriers separating them. One of these minima corresponds

to the potential energy of the metastable phase, and the

other — to the metastable phase with the nucleus. Accord-

ing to [9], the probability of formation of a nucleus

w(a) ∝ exp

(

−
Rmin

kBT

)

,

where a — nucleus size, kB —Boltzmann constant, T —
temperature, Rmin — the minimum work that must be

expended to form a nucleus of a given size. When a critical

nucleus is formed, the trajectories of the shifting atoms

(in phase space) should be near the top of the potential

barrier separating the metastable phase without a nucleus

and with an nucleus. The atoms are displaced due to

thermal fluctuations. The value of w for the considered

mechanism of nucleation may be small at a high height of

the potential barrier. Taking into consideration the mecha-

nisms of transition through potential barriers of intermediate

states increases the probability of nucleation [12]. Defects

of various types present in the metastable phase can lower

the height of the potential barrier, increasing the probability

of formation of an nucleus.

Nuclear displacements with Landau−Zener (LZ) non-

adiabatic transitions [15–20] with PES E j(R) to PES
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E j′
(

R(t)
)

are possible in an open system (finite hea-

ting/cooling rates, the amplitude of external forces depends

on time, etc.). Here j, j ′ — sets of quantum numbers

characterizing the state of electrons at fixed values of

nuclei R, t — time. There are no such transitions in the

adiabatic approximation. For this reason, the dynamics of

atoms in open systems is called non-adiabatic (see, for

example, [21–23]). In solids, the electronic energy levels

form a quasi-continuous spectrum, adjacent PES are located

close to each other. For example, E j(R) and E j′
(

R(t)
)

shift

relative to each other and intersect when PES R change.

Under these conditions, in the area of intersection with the

dimension N−2, the trajectories of atoms located initially

on the PES E j(R), with a probability P > 0 may appear

on the surface of the PES E j′(R) with other coordinates of

the nuclei [21], which may coincide with the coordinates

of the atoms in the nucleus of the new phase. The

probability of P displacements of atoms does not depend

on temperature and increases with an increase in the rate

of displacement of energy levels. Therefore, the nucleation

is possible at any temperature and the potential energy of

the system always decreases in this case. Thus, the origin

of a new phase in an open system is determined not only

by thermal fluctuations during atomic vibrations, but also

by displacements of atoms during non-adiabatic transitions.

The latter type of displacement can manifest itself in

the deviation of the characteristics of the phase transition

occurring in equilibrium and nonequilibrium conditions.

There are experimental data that, apparently, can confirm

what has been said. Here are some of them [24–29] as the
most indicative.

A phase transition of the first kind occurs at a temper-

ature of Tc0 = 28−30K in a proustite crystal (Ag3AsS3)
under equilibrium conditions [24]. The temperature of the

nonequilibrium phase transformation Tc decreases in case

of heating at a constant rate. The temperature difference

1T = Tc−Tc0 depends on the heating rate Ṫ . There is a

minimum at Ṫ ≈ (8−10)K/min on the dependence curve

1T = 1T (Ṫ ). At the minimum point 1T ≈ 3K. If we

consider the mechanisms of nucleation determined only

by thermal fluctuations, then the temperature of the phase

transition (28−30K), on the contrary, should increase. It

was found that the nonequilibrium phase transformation

is preceded by the excitation of a metastable short-range

order, whose lifetime at a constant temperature is estimated

at ∼ 16min. That is, the nucleus of a new phase against

the background of this short-range order are formed in

less time. In fact, the metastable short range order acts

as an intermediate state, increasing the probability of the

nucleation [12]. The origin of this short-range order is still

unclear. The structural relaxation of an amorphous alloy

Ti40.7Hf9.5Ni44.8Cu5 was studied in papers [25–27] under

the action of cyclic stretching with different amplitudes A
and frequency f . Only the topological short-range order

changes in this alloy. The structural relaxation is not

observed in the sample at a temperature of 25◦C and f = 0.

Non-spherical clusters with a size of 3−5 nm are formed at

A = 4µm, f = 20Hz after 10min, the short-range order

in which is characteristic of the crystal. The deformation

of the sample does not exceed 10−4 at A = 4µm. If we

assume that all the work of the external force is performed

for heating the sample, then with an elastic modulus of

the order of 1 eV/atom, work of the order of 10−8 eV/atom

is performed in one deformation cycle, and for 10min —
of the order of 10−4 eV/atom. The temperature change

in this case will not exceed 10K. When an amorphous

metastable phase turns into a crystalline one, a mode

is possible in which the system does not have time to

remove the released heat from the nucleus, which leads to a

sharp increase of temperature in the area of the interphase

boundary
”
nucleus−amorphous phase“ and to

”
explosive

crystallization“ [30.31]. But it is difficult to talk about a

local temperature increase during deformations of the order

of 10−4 in solids due to the ambiguity of the mechanism

of heat localization on the scales of several nanometers.

In liquids, such a mechanism exists, and it is associated

with the formation of cavitation bubbles [31]. It should be

noted that nanoclusters in the amorphous phase are also

observed with a cyclic temperature change from cryogenic

to room [28,29].

Thus, the question of the mechanisms of the nucleation

of a new phase in nonequilibrium conditions remains

debatable. It is no coincidence that the identification of

the laws of the formation of nanoclusters in nonequilibrium

systems is among the priorities of the
”
physical minimum“

XXI century [33]. The aim of this work is to solve the

problem of the origin of a new phase taking into account

the displacements of atoms determined by both thermal

fluctuations and non-adiabatic transitions of Landau−Zener

atoms.

2. A model of the new phase nucleation

A homogeneous isotropic solid in which only the topolog-

ical short-range order changes at PT is considered. A solid

can be either single-component or multicomponent, both

crystalline and amorphous. Heating/cooling rate Ṫ = dT/dt
(here T — temperature). The free energies of the two

phases are equal at T = T0. In the future, bearing in mind

both heating and cooling, the phase in which the nucleus is

formed will be called the parent. Then, the parent phase will

be stable at T > T0 in case of cooling, and at T < T0 in case

of heating. Let us introduce a dimensionless temperature

θ =
T − T0

T0

(

θ =
T0 − T

T0

)

and its rate of change θ̇ = Ṫ/T0 when heating (cooling)
the system. Introduction θ allows considering both heating

and cooling. Let us denote the volume of the parent phase

via V0. The equation of state V0 = V0(θ) is assumed to be

known. The parent phase is in a stable state at θ < 0 with its

characteristic short-range order in the distribution of atoms.
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2.1. Equations of nonadiabatic molecular
dynamics

It is necessary to recall the equations of non-adiabatic

molecular dynamics for clarity of further presentation. The

wave function of nuclei and electrons is written in form

in representation [34]:

9(R, r, t) =

∞
∑

i

�i(R, t)8i (r;R), (1)

where r — the set of electron coordinates, �i(R, t) —
the wave function of the nuclei, {8(r;R)} — the com-

plete system of orthonormal wave functions of elec-

trons (〈8i |8 j〉 = δi j), which are solutions the stationary

Schrodinger equation

Hel(r;R)8i(r;R) = Ei(R)8i(r;R). (2)

Here Hel — electron Hamiltonian, the notation
”
;R“

means that R is included in the Hamiltonian and the wave

function as a parameter. After substituting (1) into the

nonstationary Schrodinger equation

(

H9(R, r, t) = i~
∂9(R, r, t)

∂t

)

,

multiplication on the left by 8∗

j and integration by the

coordinates of the electrons, there is an equation describing

the motion of the nuclei:

i~
∂� j(R, t)

∂t
=

[

−
∑

γ

~
2

2Mγ

∇2
γ + E j(R)

]

� j(R, t)

+

∞
∑

i

Fji(R)�i (R, t). (3)

Here Mγ — the mass of the nucleus with the number γ

(γ = 1, . . . , N), E j(R) is determined by the equation (2),
matrix elements

Fji(R) =

∫

dr8∗

j (r;R)

[

−
∑

γ

~
2

2Mγ

∇2
γ

]

8i(r;R)

+
∑

γ

1

Mγ

{
∫

dr8∗

j (r;R) −
[

i~∇γ

]

8i(r;R)
[

i~∇γ

]

}

.

(4)

In the adiabatic approximation (Fji = 0), the dynamics

of the nuclei is completely determined by the vibrational

degrees of freedom. The various electronic states turn out to

be connected if the coordinates of the nuclei depend on time

(t = θ/θ̇), and the non-diagonal elements Fji are not zero.

The last term in the right part (3) at Fji 6= 0 determines

the contribution of electronic degrees of freedom to the

dynamics of nuclei. They lead to non-adiabatic transitions

of LZ atoms.

2.2. Dynamic displacements of atoms and order
parameters

System of nonlinear equations (2), (3) describes the

dynamics of nuclei taking into account vibrational and

electronic degrees of freedom. The value θ is a control

parameter. The square of the wave function � j(R, t)
determines the distribution function of the nuclei

ρ j(r, t) = |� j(R, t)|2 =
∑

i

δ[r − Ri(t)]

in the j-m electronic state. The equilibrium positions of

the nuclei in this state are equal to R j . Let us denote the

nuclei distribution function with coordinates R0(t) in the

parent phase via ρ0(r, t) when there are no non-adiabatic

transitions (Fji = 0, P = 0) or they are not taken into

account. If we neglect the probability of the new phase

nucleation due to thermal fluctuations, then the parent

phase at θ > 0 will be stable up to a certain value θin,

above which the parent phase becomes unstable relative to

small perturbations during thermal fluctuations. If P > 0

(at θ > 0), then n = P(N−2) atoms are shifted by the

amount of ud = {ud1, . . . , udn}. The distribution function

ρn(r, t) determines the coordinates of the nuclei

Rn(t) = R0(t) + ud(t) + uel(t), (5)

where uel — elastic displacements of atoms caused by

dynamic displacements ud . A short-range order is formed,

uncharacteristic of the parent phase. Following [35], this

type of short-range order will be called dynamic short-

range order (DSRO), and the displacement ud — dynamic

displacements (DD). The formation of DSRO in the parent

phase is accompanied by a decrease in the potential energy

of the system. It should be noted that in the classical

approach, the displacements ud are given by
”
hands“,

and the displacements uel are calculated based on the

elasticity theory. A cluster(s) of dynamically displaced

atoms represent(s) the germ of a new phase.

Due to the nonlinearity of the equations and the proba-

bilistic nature of the DD, finding the distribution function

ρn(r, t) by solving the equations (2), (3) on large spatial

and temporal scales is hardly possible. Nevertheless, the

qualitative features of the distribution of atomic displace-

ments at different values θ can be defined using the methods

developed in the theory of nonlinear systems [36]. Next, the
one-dimensional case is considered.

We denote a homogeneous stationary solution of a system

of equations (2), (3) at θ > 0 through ρ̄n(θ), and the

DD distribution — through ūd . The task is to study the

stability of this solution with respect to small perturbations

∝ exp[i(kx−iωt)]. Here the frequency is ω = ωre + iωim,

ωre, ωim — real and imaginary parts, respectively, k — wave

vector. Linear stability analysis is a standard procedure and

is described in detail in [36]. The homogeneous solution

is stable at θ < θ1, ωre < 0 with all k . The homogeneous

solution is unstable at θ > θ1−ωre > 0. There is an unstable
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displacement mode with ωre = 0 at the stability threshold

(θ = θ1). The threshold value θ = θ1(k) is found from

the condition ωre(k, θ) = 0, and the wave vector k1 and

the frequency ω1 = ωim(k1, θ1) of the unstable mode are

found from the minimum condition θ1(k). The classification
of spatio-temporal instabilities is based on the values of

ω1, k1. The transition from one stationary state to another

takes place if ω1 = 0, k1 = 0. This situation occurs

with homogeneous displacements of atoms in the parent

phase with a change of θ. A stationary inhomogeneous

displacement distribution is formed at ω1 = 0, k1 > 0. Near

the dimensionless stability threshold

a1 =
θ − θ1

θ1
≪ 1

solution of the equations (2), (3) is searched for

as a superposition of plane waves with wave vectors

k = k1 ± 1k
(

1k
k1

≪ 1
)

. The spatial distribution of displace-

ments ud can be written as [36]:

ud(x , t) − ūd = u0
d [ϕ(x , t) exp(ik1x) + CC], (6)

where ϕ(x , t) — the complex amplitude of an unstable

mode with a wave vector k1, u0
d — a parameter defined

by the properties of the medium, CC means complex

conjugation. The amplitude of the unstable mode ϕ(x , t)
characterizes the displacements ud on spatial scales

l1 ∝
1

k1

> l0,

where l0 — interatomic distance. The frequency of

the unstable mode ω determines the characteristic time

t1 ∝ 1/ω. In stable parent phase ϕ = 0. Localized

displacement distributions with an amplitude of ϕ > 0

and a spatial period of l1 represent the nuclei of a new

phase. Their formation is accompanied by a decrease in

the potential energy of the system Ud(ϕ). The relative

volume change at PT, as a rule, does not exceed ten percent.

Therefore, the amplitude ϕ < 1, i.e. ϕ is a small parameter.

Note that in addition to the distribution of DD (6), other
distributions are possible. But frequency ω is the highest of

all possible. Therefore, the time of distribution formation (6)
is the smallest of all possible. And in the experiment, the

fastest processes manifest themselves.

The atoms in the matrix are displaced from the equilib-

rium positions by uel due to the difference in the volumes

of the nuclei and the matrix. If the elastic deformation

energy is 1Uel > 1U(ϕ), then such a state is energetically

unprofitable, the nucleus must disappear. If 1Uel < 1U(ϕ),
then the nucleus will grow. The problem is again reduced to

analyzing the stability of a system with excited DD relative

to small perturbations of the volume of the medium during

the propagation of a longitudinal displacement wave. The

wave vector and the frequency of the unstable mode at

the stability threshold θ2 > θ1 of the parent phase with DD

will be denoted through k2 and ω2. The development

of instability at θ > θ2 leads to a change in volume by

1Vn = Vn−V0 6= 0. The nuclei grow at θ > θ2, while the

potential energy decreases. Near the dimensionless stability

threshold

a2 =
θ(ϕ) − θ2

θ2
≪ 1,

the value 1Vn can be written as

1Vn(x , t) = V 0
n [η(x , t) exp(ik2x) + CC]. (7)

Here η(x , t) — the complex amplitude of an unstable

longitudinal mode with a wave vector k2, V 0
n — a parameter

determined by the properties of the medium. It is assumed

that the dependence 1Vn(t) is known from the experiment.

The values

l2 ∝
1

k2

, t2 ∝
1

ω2

determine the spatial period and time of change η. The

case of real values η is considered below. In physics, the

amplitudes of unstable modes characterizing changes in the

structure, following Landau, are commonly called order

parameters (OP). This name for the variables ϕ, η will be

retained further.

3. Dynamics of nucleus formation

Considering that ϕ is a small parameter, the dimension-

less stability threshold a2 in a linear approximation can be

written as

a2 = −1 + pϕ, p =
1

θ2

dθ
dϕ

. (8)

The equation for OP η represents the real

Ginzburg−Landau equation [36]

t2∂tη = (−1 + pϕ)η − bη3 + l22∂
2
x η. (9)

Here b > 0. Equation (9) with p = 0 has a unique stable

solution η0 = η = 0. There is a solution η > 0 for p > 1/ϕ,

which corresponds to a lower value of potential energy

(∝ −
∫

∂tηdη).
A metastable phase with nuclei is bistable, with the same

value θ, the regions with ϕ = 0 and with ϕ > 0 can be

in equilibrium state. The simplest equation for a bistable

medium has the following form

t1∂tϕ = [α − gη]ϕ + q2ϕ
2 − q3ϕ

3 + l21∂
2
x2ϕ. (10)

Here q2(θ) > 0, q3(θ) > 0, g(θ) > 0 are coefficients.

The parameter α(θ) can have different signs. The param-

eters α, g , q2 and q3 are determined by the properties

of the solid. The characteristic time t1 is determined by

the time of LZ non-adiabatic transitions. It is easy to see

that at α > 0, the potential energy of ϕdϕ (∝ −
∫

∂tϕdϕ)
decreases. The sign

”
−“ before the coefficient g on the

right side of equation (10) shows that the excitation of

the dynamic short-range order is accompanied by elastic

displacements of atoms. This leads to an increase of the

potential energy of the system.
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In dimensionless variables

t̃ = t/t2, x̃ = x/l2, η̃ = ηb1/2, ϕ̃ = ϕq1/2
3 (11)

equations (9) and (10) become (the sign
”
∼“ is omitted

in further):

∂tη = (−1 + dϕ)η − η3 + ∂2x2η, (12)

τ ∂tϕ = (α − cη)ϕ + βϕ2 − ϕ3 + l2∂2x2ϕ. (13)

Here

τ =
t1
t2
, l =

l1
l2
, β = q2q−1/2

3 , d = pq−1/2
3 , c = gb−1/2.

(14)

Equation (13) for η = 0 has three homogeneous statio-

nary solutions:

1) ϕ0 = 0,

2) ϕh =
β

2
+

(

β2

4
+ α

)1/2

,

3) ϕin =
β

2
−

(

β2

4
+ α

)1/2

.

The solution ϕin is always unstable. The solution ϕ0 is

unique with α < −β2/4, which is the case for the stable

parent phase at θ ≪ θc . The medium is in a bistable state

with −β2/4 < α < 0. If −β2/4 < α < −2β2/9, then the

solution ϕ0 is stable, and ϕh — is metastable. The solution

ϕh(ϕ0) is stable (metastable) with −2β2/9 < α < 0. Both

solutions have the same stability with α = −2β2/9. The

temperature θc can be found from this equation. The

solution ϕh(ϕ0) is stable (unstable) with α > 0, any small

disturbance ϕ increases. The equation α = 0 determines

the temperature of the loss of stability of the parent phase.

The homogeneous stationary solutions of ϕh > 0, ηh > 0

equations (12), (13) were analyzed in [37,38].
Equations (12), (13) always have a homogeneous statio-

nary solution η0, ϕ0. Standard analysis shows that the solu-

tion of η0, ϕ0 is stable with respect to small homogeneous

and inhomogeneous disturbances with a frequency of ω and

a wave vector of k at

−τ + α < 0, (15)

−α > 0. (16)

These inequalities always hold with α < 0. Small

homogeneous and inhomogeneous disturbances do not lead

to structural relaxation. But the solution η0, ϕ0 may be

unstable with respect to perturbations of finite amplitude.

The development of instability leads to the excitation of

localized solutions ϕ(x , t), η(x , t), called autosolitons (AS)
in [39]. They are nonequilibrium localized states of a

nonlinear medium. Kinetic variables change sharply inside

the autosoliton, and on its periphery they are equal to

stationary values (in this case equal to zero). There are
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Figure 1. Spatio-temporal distribution of parameters of the order

ϕ, η in a damped autosoliton.

running and static AS. Static AS are of interest, which

represent the mathematical image of the nuclei of a new

phase. Static AS can be excited when the following

inequalities are met [39]:

τ < 1, l ≪ 1, τ > l. (17)

According to the last inequality l1/t1 < l2/t2. That is, the
characteristic rate of change of DSRO should be less than

the characteristic rate of longitudinal displacements. This is

always the case in solids.

The analysis of equations (12), (13) shows the following.

First of all, the amplitude of the initial disturbance 1ϕ0

should satisfy the inequality to excite a static autosoliton

1ϕ0 > ϕin. (18)

Further, the damped and oscillating AS can be excited

with d > 1/ϕin, while oscillating and static AS can be

excited with d < 1/ϕin.

The equations (12), (13), describing the dynamics

of the origin and development of various types of AS

can be solved only by numerical methods. The equa-

tions (12), (13) were numerically solved using the finite-

difference method with a completely implicit scheme in

the interval 0 ≤ x ≤ X . The system is in the state η0, ϕ0

with t = 0. The initial perturbation for the variable ϕ was

given as 1ϕ = 1ϕ0 exp[σϕ(x−x0)
2]. Here 1ϕ0, σϕ , x0 is the

amplitude, variance and coordinate of the initial disturbance,

respectively. The initial perturbation for the variable η is

taken stochastic with an amplitude of 0 ≤ 1η(x) ≤ 10−3.

Periodic boundary conditions were set.
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Figure 2. spatial-temporal distribution of parameters of the order

ϕ, η in an oscillating autosoliton.

As an example, Fig. 1−4 shows the dynamics of the origin

and development of various types of AS at

β=0.6, τ =0.9, l =0.05, 1ϕ0=0.1, σϕ =1, x0 = 15

(19)
and different values of α, c, d . With α = −0.04 ϕin ≈ 0.08,

ϕh ≈ 0.52. A damped AS is formed with d = 15 > 1/ϕin,

c = 0.4. Fig. 1 shows the spatio-temporal distributions

of OP. There are three stages. At the first stage OP ϕ

increases to the value ϕmax ≈ 0.24 during t ≈ 44, OP η is

close to zero. The second stage occurs when the value

(−1 + dϕ) becomes positive. OP η starts to grow rapidly.

Its growth rate is determined by the value (−1 + dϕ). This
can be seen from equation (12), in which η̇ ∝ (−1 + dϕ)η.
At this stage, the OP ϕ hardly changes during 1t ≈ 1. At

the third stage, both OP decrease. But OP ϕ decreases

slower η. Physically, this means that a slowly decreasing

perturbation ϕ can act as an initial perturbation with a

further temperature change.

An oscillating AS is excited when c decreases. A typical

spatial and temporal distribution of OP is shown in Fig. 2

at c = 0.2. Each AS is excited against the background of

η = ϕ = 0. Additional analysis shows that the amplitude

of the AS decreases with time. The number of oscillations

depends on the value of c , the oscillation period decreases

with a decrease of c . This means that the nucleus is formed

in an auto-oscillatory mode with a decreasing amplitude

over time.

With α=−0.02, ϕh≈0.56 ϕin≈0.04. At d =10 < 1/ϕin,

c = 0.3 an oscillating AS is excited (Fig. 3), but the spatio-

temporal distribution of OP differs from that shown in Fig. 2.

The amplitude of the oscillations decreases with time, but

a stationary localized state is established ϕ > 0, η > 0. At

the same time, the maximum values of OP are not equal to

stationary values. The number of oscillations decreases with

a decrease of c . A static AS is formed almost immediately

with c = 0.1 (Fig. 4).
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Figure 3. Spatio-temporal distribution of parameters of the order

ϕ, η in a damped autosoliton.
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Figure 4. Spatio-temporal distribution of parameters of the order

ϕ, η when a static autosoliton is excited.
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4. Discussion of results

The excited AS describes the dynamics of the formation

of unstable and stable nuclei in the metastable phase. An

initial disturbance is required to excite the AS, the amplitude

of which is 1ϕ0 > ϕin. The value of ϕin at a given value θ is

determined by the probability of a non-adiabatic transition

of atoms P . For a system of two atoms whose energy levels

near the intersection point have the same signs of derivatives

of potential energy at the coordinate [15]:

P = exp
(

−2πW 2
0 /(~v|F2 − F1|)

)

. (20)

Here v — the displacement velocity of atoms determined

by the rate of volume change during heating/cooling,

F1, F2 — derivatives of potential energy at the coordinate

near the intersection point of energy levels 1 and 2, respec-

tively, 2W0 — the width of the energy gap between the

levels. It can be seen from formula (20) that the probability

of transition from temperature does not depend, increases

with a decrease in W0 and an increase in the displacement

velocity of atoms v dV/dt v ∝ dV/dt . The probability of

displacement of several hundred atoms remains a finite value

in a system with a large number of atoms and a continuous

energy spectrum of electronic states. Therefore, there is

no need to introduce any defects for the formation of the

nucleus. Although their presence, leading to an increase in

the potential energy of the metastable phase, may contribute

to the formation of the nucleus. The energy interval between

the PES increases with a decrease in the volume of the

system (the number of atoms), the probability of non-

adiabatic transitions decreases. As a consequence, PT in

such systems may be difficult, or may not occur at all. The

dynamics of the system is determined by the vibrational

degrees of freedom at v → 0 P → 0. In the absence of

inhomogeneities, the parent phase will remain metastable

up to the temperature of its loss of stability with respect to

small perturbations of the medium density.

It follows from the formula (18) that the characteristic

time of the non-adiabatic transition

tLZ = W0/(v|F2 − F1|). (21)

The characteristic time of nucleus formation t1 ≈ tLZ does

not depend on temperature. This explains the fact that phase

transitions of the first kind also occur at low temperatures.

For example, a phase transition of the first kind occurs

at a temperature of Tc0 = 28−30K in a proustite crystal

(Ag3AsS3) under equilibrium conditions [24].

Let the formation of a critical nucleus of a new phase

under equilibrium conditions (v ≈ 0) be determined by the

time t1 = t01 . The critical size of the nucleus will be reached

within t1 < t01 under nonequilibrium conditions (v > 0).
This is equivalent to the fact that the temperature of the

nonequilibrium phase transition will be higher than θc when

cooled and lower than θc when heated. This pattern is

observed experimentally [24].

5. Conclusion

In the proposed model, the metastable phase is con-

sidered as an open system of nuclei and electrons, in

which the dynamics of nuclei is non-adiabatic. The nucleus

of a new phase is formed in two stages, at each of

which the potential energy of the system decreases. The

dynamic displacements of atoms are excited at non-adiabatic

Landau−Zener transitions at the first stage. When the

temperature threshold value is reached, the homogeneous

distribution of dynamic displacements becomes unstable

relative to displacements with a wavelength exceeding the

interatomic distance. The development of instability is

accompanied by an increase in the number of displacement

modes with wavelengths close to the wavelength of the

unstable mode. The localized displacement distribution

represents the germs of a new phase. The presence of

any defects in the metastable phase is not required for

their formation. Nuclei are stable if their formation is

accompanied by a decrease in the elastic part of the potential

energy of the system.

The dynamics of nuclei formation is described by two

nonlinear parabolic equations for order parameters (ampli-

tudes of unstable modes). The solutions of the equations

describing the resulting nuclei are static autosolitons. De-

pending on the temperature, the nuclei can be attenuated,

stable, and exist in self-oscillating mode. An increase of the

rate of heating (cooling) of a solid facilitates the nucleation,

as a consequence, a decrease (increase) of the temperature

of the phase transformation.
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