06,11

Влияние облучения нейтронами на элементный состав и структуру керамики BiScO₃–PbTiO₃

© Е.П. Смирнова¹, В.Н. Климов², Е.Г. Гук¹, П.А. Панкратьев¹, Н.В. Зайцева¹, А.В. Сотников¹, Е.Е. Мухин¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² НИЦ "Курчатовский институт" — ЦНИИ КМ "Прометей", Санкт-Петербург, Россия E-mail: esmirnoffa@gmail.com

Поступила в Редакцию 18 сентября 2023 г. В окончательной редакции 18 сентября 2023 г. Принята к публикации 19 сентября 2023 г.

Синтезирована керамика состава 0.64BiScO₃–0.36PbTiO₃ и исследована ее радиационная стойкость. Для анализа возможных радиационных повреждений проведены эксперименты по облучению керамических образцов быстрыми нейтронами и гамма-квантами в реакторе бассейнового типа. Параметры облучения по накопленному флюенсу нейтронов и гамма-квантов (~ $5 \cdot 10^{19}$ n/cm²(γ /cm²) при E > 0.1 MeV), а также энергетическому спектру приближены к ожидаемым в месте расположения пьезоэлектрических двигателей, которые разрабатываются в рамках проекта ИТЭР с использованием данной керамики. Элементный состав и кристаллическая структура керамики определялись до и после облучения. Результаты экспериментов демонстрируют устойчивость состава к воздействию высоких доз излучения.

Ключевые слова: пьезоэлектрическая керамика, быстрые нейтроны, радиационная устойчивость.

DOI: 10.61011/FTT.2023.11.56552.206

1. Введение

Пьезоэлектрическая керамика широко используется в качестве активного материала в пьезоэлектрических преобразователях для ультразвукового неразрушающего контроля, датчиках разнообразных физических величин, а также в микромеханических системах для прецизионного управления и контроля нано-, микрои макроперемещениями. К числу последних относятся пьезоэлектрические приводы (актюаторы) и пьезоэлектрические двигатели [1-4]. Особый интерес представляют высокотемпературные составы, которые позволяют значительно расширить диапазон рабочих температур выше 150°С, характерных для широко используемой пьезокерамики цирконата-титаната свинца (ЦТС) [5]. Модифицированные твердые растворы на основе ЦТС имеют температуру Кюри в диапазоне 300-350°C, что приводит к хорошей температурной стабильности пьезоэлектрических свойств и расширяет диапазон рабочих температур до примерно 175°С с учетом процесса деполяризации [5–7]. Твердые растворы BiScO₃-PbTiO₃ и составы на основе этой системы характеризуются более высокими температурами сегнетоэлектрического фазового перехода ($T_c = 450 - 500^{\circ}$ С), достаточно большими пьезоэлектрическими коэффициентами, и, соответственно, рассматриваются как перспективные высокотемпературные пьезоэлектрические материалы [8-13]. Такие материалы, в частности, оказались востребованы для создания силовых элементов пьезодвигателей [14], разрабатываемых в рамках проекта международного термоядерного экспериментального реактора ИТЭР (International Thermonuclear Experimental Reactor). Задача проекта ИТЭР заключается в демонстрации возможности коммерческого использования термоядерной реакции синтеза (получение положительного выхода с КПД > 10%) и решении физических и технологических проблем, которые могут встретиться на этом пути.

Применение пьезодвигателей в проекте предполагается для управления десятками "шторок" [15], используемых для защиты зеркал системы оптической диагностики от эрозии и осаждения материалов в процессе горения термоядерной плазмы при высоких тепловых и нейтронных/гамма-квантовых потоках. В процессе облучения гамма-квантами, сопутствущего нейтронному, первичной причиной радиационной деградации пьезокерамики является деполяризация, поскольку гамма-лучи взаимодействуют с электронной подсистемой, вызывая ионизацию, в отличие от нейтронов, которые взаимодействуют непосредственно с ядрами атомов [16]. Влияние облучения на электронную подсистему в рамках данной работы не рассматривается.

В процессе нейтронного облучения материалы могут существенно менять свои свойства из-за аморфизации, изменения механических свойств, а также изза трансмутации их элементного состава. Очевидно, что существует серьезная проблема выбора или разработки пьезокерамики, способной выдерживать значительные нейтронные повреждения, сохраняя при этом необходимые рабочие характеристики, такие как электромеханические свойства и широкий диапазон рабочих температур. Предполагаемый поток (флюенс) нейтронов и гамма-квантов при работе пьезодвигателя в реакторе ИТЭР составляет $\gtrsim 10^{19} \text{ n/cm}^2$ (E > 0.1 MeV) [17], а температурный режим при эксплуатации включает периодический нагрев до $250-300^{\circ}$ С в течение 24 h. Следует отметить, что существенное изменение свойств пьезокерамических материалов системы ЦТС наблюдаются уже при интегральных потоках быстрых нейтронов выше 10^{17} n/cm^2 (E > 0.1 MeV) [14,18].

Для синтеза и исследования был выбран твердый раствор 0.64BiScO₃-0.36PbTiO₃, расположенный вблизи морфотропной фазовой границы (МФГ), характеризующийся высокой температурой перехода в параэлектрическую фазу $T_c = 450^{\circ}$ С [19]. Отметим, что деполяризация керамических образцов этой системы с составом вблизи МФГ начинается при температурах выше 300°С [20], что превышает верхнюю границу температурного режима при эксплуатации в реакторе ИТЭР. Предположение о возможной радиационной стойкости этого состава возникло, в том числе, и в связи с высоким содержанием титаната свинца, который, согласно литературным данным [21,22], проявил устойчивость тетрагональной структуры к облучению при радиационном воздействии высокоэнергичными нейтронами и гамма-квантами до флюенса $\sim 10^{20} \,\text{n/cm}^2 \ (E > 0.1 \,\text{MeV})$. Устойчивость элементного состава и кристаллической структуры материала является необходимым условием использования керамики при воздействии радиации, а также представляет интерес с точки зрения фундаментальной проблемы влияния излучения на вещество.

2. Эксперимент

Керамические образцы твердого раствора 0.64BiScO₃-0.36PbTiO₃ изготавливались по обычной керамической технологии. В качестве исходных реактивов использовались оксиды Ві2О3, Sc_2O_3 , TiO₂ и PbO. Предварительный обжиг образцов проводился в платиновых тиглях при температуре 850°С в течение 4 h. Полученная шихта прессовалась в виде дисков диаметром 10 mm и толщиной 1.5-2 mm при давлении 8 МРа. Окончательный обжиг образцов проводился при температуре 1100°C в течение 2 h. В процессе изготовления принимались специальные меры для предотвращения потерь свинца и сохранения стехиометрии состава. Для этого при окончательном обжиге образцы в платиновой чашке накрывались второй платиновой чашкой меньшего диаметра с засыпкой пространства между чашками порошком PbZrO₃. Потери РЬО по весу составляли менее 1%. Для рентгенодифракционных (XRD) исследований полученных образцов использовался рентгеновский дифрактометр ДРОН-3 с излучением Cu K_{α} , $\lambda = 1.54178$ Å, Ni-фильтр, 38 kV, 18 mA. Сканирование проводилось в интервале углов 2θ от 10 до 60° с шагом 0.1° . При измерении параметров решетки в качестве эталона использовался германий. Рентгенодифракционные измерения показали, что девственные образцы были однофазными и имели структуру перовскита. Плотность образцов составляла 93-96% от теоретической рентгеновской плотности. Анализ элементного состава керамики проводился с помощью сканирующего электронного микроскопа с системой определения элементного состава Tescan Mira. Измерения проводились как на девственных образцах, так и на образцах после воздействия радиации. Радиационное испытание керамики проводилось в реакторе ВВР-М НИЦ "Курчатовский институт" — ПИЯФ. Для облучения был выбран канал в активной зоне реактора. Контейнер с образцами представлял собой вложенные друг в друга герметичные ампулы. Пространство между ампулами заполнялось карбидом бора для минимизации наведенной радиационной активности и формирования нейтронного спектра, близкого к спектру, ожидаемому в реакторе ИТЭР. Полный флюенс облучения составил $5 \cdot 10^{19} \,\mathrm{n/cm}^2$ ($E > 0.1 \,\mathrm{MeV}$). Проведенный анализ показал, что с учетом тепловыделения в образцах, контейнерах и экране из карбида бора температура образцов в процессе облучения составляла около 200°С. После воздействия нейтронов образцы "остывали" 8-10 лет до уровня, позволяющего проводить измерения. Исследовались керамические образцы как без электродов, так и с электродами, принимая во внимание необходимость электродов при использовании пьезокерамики. В качестве материала для электродов использовалось золото, напыленное на поверхность образца.

3. Результаты и обсуждение

Проведено измерение элементного состава образцов твердого раствора $0.36BiScO_3-0.64PbTiO_3$ до и после облучения. Для девственного образца состав определялся на торце образца, как в объеме (на расстоянии $315\,\mu\text{m}$ от поверхности, участок 9, площадь участка $S = 87444\,\mu\text{m}^2$, рис. 1, a), так и в приповерхностном слое ($55\,\mu\text{m}$ от поверхности, участок 10, площадь участка $S = 55555\,\mu\text{m}^2$, рис. 1, a) при толщине образца 685 $\,\mu\text{m}$. Сравнительно большие площади S определяют достоверность измерения состава. Для облученного образца измерения проводились также на торце образца, на глубине $341\,\mu\text{m}$, (участок 5, $S = 113229\,\mu\text{m}^2$, рис. 2, a) и на расстоянии от поверхности $68\,\mu\text{m}$ (участок 6, $S = 24391\,\mu\text{m}^2$, рис. 2, a) при толщине образца $705\,\mu\text{m}$.

Сравнение элементного состава объема и приповерхностного слоя керамики до и после облучения приведено в табл. 1 и 2.

Из рисунков и таблиц видно, что имеется слабая зависимость изменения весового состава для девственного и облученного образцов как в объеме образца, так и в приповерхностной области. Если для элементов Pb и Ві в объеме наблюдаются некоторые потери весового состава, то для приповерхностного слоя — небольшое увеличение весового содержания Pb после облучения.

Рис. 1. Электронное изображение участков (9) и (10) девственного образца (*a*) и спектры, отражающие элементный состав на этих участках, (*b*) и (*c*) соответственно.

Возможно, происходит выход оксида свинца и висмута из объема на поверхность, аналогично процессам испарения этих оксидов при синтезе керамики [23], что проявляется и в увеличении весового содержания элемента кислорода на поверхности после облучения. Обращает на себя внимание увеличение весового содержания Sc в объеме на фоне уменьшения содержания Ti. При облучении среды быстрыми нейтронами возможна

Таблица 1. Весовое содержание химических элементов в объеме керамики BiScO₃-PbTiO₃ до и после облучения нейтронами

Элемент	Pb	Bi	Ti	Sc	0		
Bec, %	До облучения						
	42.4	23.6	9.0	5.2	19.5		
	После облучения						
	42.1	23.2	8.9	5.4	20		
	Изменение весового содержания, %						
	-0.7	-1.7	-1.1	-3.8	+2.6		

реакция [24]:

_

$$\mathrm{Ti}_{22}^{46} + n_0^1 \to \mathrm{Sc}_{21}^{46} + p_1^1 + \gamma,$$

где n_0^1 — нейтрон, p_1^1 — протон, γ — гамма-излучение.

Принципиальная возможность такой реакции качественно объясняет увеличение содержание Sc в объеме после облучения. В то же время, проблема изменения

Таблица 2. Весовое содержание химических элементов в приповерхностном слое керамики BiScO₃-PbTiO₃ до и после облучения нейтронами

Элемент	Pb	Bi	Ti	Sc	0		
Bec, %	До облучения						
	41.7	23.2	9.0	5.9	18.9		
	После облучения						
	42.1	23.2	8.9	5.4	20		
	Изменение весового содержания, %						
	+0.9	0	-1.1	-8.5	+5.8		

Рис. 2. Электронное изображение участков (5) и (6) облученного образца (*a*) и спектры, отражающие элементный состав на этих участках, (*b*) и (*c*) соответственно.

содержания скандия и титана после облучения нуждается в дополнительном экспериментальном исследовании.

Как уже отмечалось, именно поток быстрых нейтронов с энергией $E > 0.1 \,\text{MeV}$ определяет в условиях ИТЭР степень радиационных повреждений, происходящих за счет смещений, вызванных прямыми упругими столкновениями с ядрами, в результате которых этим ядрам передается кинетическая энергия [1,14]. Нуклидный состав керамики до и после облучения в зоне размещения образцов [25] был рассчитан с применением системы FISPACT-II [26] и библиотеки констант [27]. Согласно полученным результатам, ожидаемые потоки нейтронов не приводят к изменению процентного содержания элементов (суммарного нуклидного состава каждого элемента) данного твердого раствора. Результат сравнения элементного состава керамики до и после облучения, полученный экспериментально, качественно, согласуется с выводом расчета о пренебрежительно малом воздействии нейтронного флюенса $\sim 10^{19}\,\mathrm{n/cm}^2$ на элементный состав.

Структура девственных и облученных образцов твердого раствора $0.36BiScO_3 - 0.64PbTiO_3$, расположенного на МФГ, идентифицируется как тетрагональная (*P4mm*), аналогичная структуре PbTiO₃ (рис. 3). У облученного образца близкие рефлексы (001) и (100), (002) и (200) более выражены по сравнению с девственным, а также наблюдается расщепление рефлекса (101) на два рефлекса (101) и (110) у облученного образца.

Перечисленные рефлексы характеризуют существование тетрагональной фазы и относительное увеличение степени тетрагональности у облученного образца. Параметры решетки девственного и облученного образцов составляют $a = 3.987 \pm 0.002$ Å, $c = 4.071 \pm 0.002$ Å (до облучения) и $a=3.9820\pm001$ Å, $c=4.085\pm0.001$ Å (после облучения). Таким образом, происходит радиационное изменение решетки с анизотропным изменением параметров, при котором растет параметр с. Степень тетрагональности кристаллической решетки, отношение параметров с/а, увеличивается после облучения с 1.021 до 1.026, т.е. на 0.47%, что указывает на сохранение состава вблизи МФГ при обнаруженном изменении небольшом процентного содержания элементов. Интересно, что увеличение тетрагональности решетки наблюдалось и у соединения PbTiO₃ после облучения до $4 \cdot 10^{19} \text{ n/cm}^2$ с последующим разрушением решетки при более высоких флюенсах $> 10^{20}$ n/cm² нейтронного излучения [21,22].

Рис. 3. Рентгенограммы *a*) девственного и *b*) облученного образцов керамики BiScO₃-PbTiO₃.

Полученный результат крайне важен для оценки стойкости пьезокерамики при воздействии нейтронного излучения, поскольку сохранение кристаллической структуры и нахождение состава (даже при небольших изменениях элементного состава) в области МФГ указывает на принципиальную возможность сохранения электрофизических свойств, присущих необлученному материалу.

4. Заключение

Синтезирована высокотемпературная керамика состава $0.36BiScO_3 - 0.64PbTiO_3$. Проведено исследование влияния интенсивных потоков (флюенс $5 \cdot 10^{19}$ n/cm², E > 0.1 MeV) быстрых нейтронов на элементный состав и кристаллическую структуру. Измерено весовое содержание элементов состава до и после облучения. Обнаружено небольшое изменение весового содержания элементов как в объеме, так и в приповерхностном слое, при котором состав керамики сохраняется вблизи морфотропной фазовой границы. Кристаллическая структура остается тетрагональной, при этом степень тетрагональности увеличивается на 0.47%. Полученные

результаты свидетельствуют о радиационной устойчивости элементного состава и кристаллической структуры керамики BiScO₃-PbTiO₃ при флюенсе $5 \cdot 10^{19}$ n/cm², E > 0.1 MeV. Этот вывод является важным показателем возможности применения такого керамического материала для разработки пьезодвигателей, способных функционировать в составе оптических диагностических систем при реализации проекта ИТЭР.

Благодарности

Авторы выражают благодарность НИЦ "Курчатовский институт" — ЦНИИ КМ "Прометей" (Санкт-Петербург) за предоставленную возможность использования высокопроизводительного научного оборудования центра "Состав, структура и свойства конструкционных и функциональных материалов" для проведенных исследований.

Финансирование работы

Работа выполнена при поддержке госзаданий РАН РФ 0040-2019-0031 и 0034-2019-0001, а также контракта Росатома № Н.4а.241.19.23.1014 от 18.01.2023 в счет работ для организации ИТЭР. Взгляды и мнения, выраженные здесь, не обязательно отражают взгляды и мнения Организации ИТЭР.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] I. Favero, K. Karrai. Nature Photon. 3, 4, 201 (2009).
- [2] X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, S. Dong. Adv. Mater. Technol. 5, *1*, 1900716 (2019).
- [3] N. Savage. Nature Photon. 2, 10, 636 (2008).
- [4] T. Bifano. Nature Photon. 5, 1, 21 (2009).
- [5] B. Jaffe, W.R. Cook, H. Jaffe. Piezoelectric ceramics. Academic Press, London (1971). 302 c.
- [6] N.J. Donnelly, T.R. Shrout, C.A. Randall. J. Am. Ceram. Soc. 90, 2, 490 (2007).
- [7] T.R. Shrout, S.J. Zhang. J. Electroceram. 19, 1, 185 (2007).
- [8] R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.-E. Park. Jpn J. Appl. Phys. 40, 10R, 5999 (2001).
- [9] K. Shahzad, H. Li, Zhenrong Li, M. Nasir Khan. J. Alloys. Compounds 762, 780 (2018).
- [10] J.G. Chen, Z.Q. Hu, H.D. Shi, M.Y. Li, S.X. Dong. J. Phys. D 45, 46, 465303 (2012).
- [11] Z. Liu, C. Zhao, J.-F. Li, K. Wang, J. Wu. J. Mater Chem. C 6, 3, 456 (2018).
- [12] H. Zhao, Y. Hou, X. Yu, M. Zheng, M. Zhu. Acta Mater. 181, 238 (2019).
- [13] T.-L. Zhao, A.A. Bokov, J. Wu, H. Wang, C.-M. Wang, Y. Yu, C.-L. Wang, K. Zeng, Z.-G. Ye, S. Dong. Adv. Funct. Mater 29, 12, 1807920 (2019).

- [14] E.E. Mukhin, V.M. Nelyubov, V.A. Yukish, E.P. Smirnova, V.A. Solovei, N.K. Kalinina, V.G. Nagaitsev, M.F. Valishin, A.R. Belozerova, S.A. Enin, A.A. Borisov, N.A. Deryabina, V.I. Khripunov, D.V. Portnov, N.A. Babinov, D.V. Dokhtarenko, I.A. Khodunov, V.N. Klimov, A.G. Razdobarin, S.E. Alexandrov, D.I. Elets, A.N. Bazhenov, I.M. Bukreev, A.P. Chernakov, A.M. Dmitriev, Y.G. Ibragimova, A.N. Koval, G.S. Kurskiev, A.E. Litvinov, K.O. Nikolaenko, D.S. Samsonov, V.A. Senichenkov, R.S. Smirnov, S.Y. Tolstyakov, I.B. Tereschenko, L.A. Varshavchik, N.S. Zhiltsov, A.N. Mokeev, P.V. Chernakov, P. Andrew, M. Kempenaars. Fusion Eng. Design **176**, *9*, 113017 (2022).
- [15] C. Vorpahl, A. Alekseev, S. Arshad, T. Hatae, A. Khodak, J. Klabacha, F. Le Guern, E. Mukhin, S. Pak, C. Seon, M. Smith, E. Yatsuka, A. Zvonkov. Fusion Eng. Des. **123**, *11*, 712 (2017).
- [16] A.N. Sinclair, A.M. Chertov. Ultrasonics 57, 1 (2015).
- [17] Е.Е. Мухин, Е.П. Смирнова, Н.А. Бабинов, И.А. Ходунов, Р.С. Смирнов, М.С. Кулыгин. Письма в ЖТФ 48, 23, 6 (2022). [Е.Е. Mukhin, Е.Р. Smirnova, N.A. Babinov, I.A. Khodunov, R.S. Smirnov, M.S. Kuligin. Tech. Phys. Lett. 48, 12, 4 (2022)].
- [18] M.G. Cain, P.M. Weaver, M.J. Reece. J. Mater. Chem. A 4, 27, 10394 (2016).
- [19] R.E. Eitel, S.J. Zhang, T.R. Shrout, C.A. Randall, I. Levin. J. Appl. Phys. 96, 5, 2828 (2004).
- [20] S. Chen, X. Dong, C. Mao, F. Cao. J. Am. Ceram. Soc. 89, 10, 3270 (2006).
- [21] S.P. Solov'ev, I.I. Kuzmin, V.V. Zakurkin. Ferroelectrics 1, 1, 19 (1970).
- [22] С.П. Соловьев, В.Я. Дударев, В.В. Закуркин, И.И. Кузьмин. Изв. АН СССР.Сер. физ. **25**, *9*, 1931 (1971).
- [23] К. Окадзаки. Технология керамических диэлектриков. Энергия, М. (1976). 336 с. [К. Okazaki. Ceramic engineering for dielectrics. Gakken-sha Publishing Co. Ltd, Tokyo (1969). 532 p.].
- [24] V.V. Larionov, V.A. Varlachev, S. Xu. J. Hydrogen Energy 45, 30, 15294 (2020).
- [25] M.J. Loughlin, N.P. Taylor. Recommended Plasma Scenarios for Activation Calculations. ITER Report ITER_D_2V3V8G v 1.1 (2009).
- [26] The FISPACT-II User Manual / Eds M. Fleming, T. Stainer, M. Gilbert. UKAEA-R(18)001 (2018).
- [27] TENDL-2017: TALYS-based evaluated nuclear data library (release date December 30, 2017).

Редактор Е.В. Толстякова