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X-ray reflection from a curved multilayer mirror
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A new theoretical method has been developed for calculating the X-ray reflection from a curved multilayer

mirror. It is performed the numerical simulation of reciprocal space maps from such mirror, as well as reflection

curves in the specular and non-specular directions.
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X -ray reciprocal space mapping (RSM) is commonly

used to examined defects [1] and nanostructures [2] in

crystals. In multilayer systems, RSM was performed

with the use of hard X-ray [3] and extreme ultraviolet

radiation [4] to obtain data on interlayer roughness. Numer-

ical calculation techniques were developed exclusively for

diffuse scattering off both crystals and multilayer structures.

Coherent scattering, which is significantly more intense than

the diffuse component, was either neglected [1,3,4] or taken
into account in the form of the instrumental function [2].
Computational techniques for reciprocal space mapping

of coherent scattering intensity utilizing two-dimensional

recurrence relations (TDRRs) [5,6] and the Takagi−Taupin

equations [7] are available at present. It has recently

been demonstrated that TDRRs and the Takagi−Taupin

equations are identical in the case of dynamical X-ray

diffraction in a perfect crystal and transform into each other

in passing from a discrete-layered structure to a model of

a periodic medium with a continuous electron density [8].
It was also established that numerical calculations based on

TDRRs are always stable, whereas calculations utilizing the

Takagi−Taupin equations yield unstable solutions in certain

cases.

In contrast to planar aperiodic multilayer systems [9],
curved multilayer X-ray mirrors (MXRMs) with various

surface curvatures belong to the class of lateral gradient

structures [10]. Note that elastic bending of crystals may

be induced mechanically, while MXRMs are fabricated by

depositing multilayer coatings onto substrates with a curved

surface profile. Magnetron sputtering is normally used

for the purpose. Just as the common one-dimensional

recurrence relations of Parratt [11], the two-dimensional

recurrence relations obtained earlier are applicable only to

planar periodic structures [5,6] and are not suitable for

calculations of reflection off curved MXRMs.

In the present study, wave optics and TDRRs are

used to formulate a new approach to calculation of X-

ray diffraction by curved multilayer mirrors. The two-

dimensional recurrence relations from [5,6] are generalized

for this purpose to the case of deformed periodic structures.

Modified TDRRs are used to develop an algorithm for

calculation of RSMs and their cross sections in vertical

(specular) and lateral (non-specular) directions as functions

of the MXRM curvature radius. Almost all studies into

X-ray reflection off curved MXRMs are concerned with

radiation focusing. The present study is, in contrast,

focused on the development of a new theoretical approach

to nondestructive X-ray diffraction diagnostics of curved

multilayer structures.

Two-dimensional recurrence relations have been derived

for the first time in order to characterize dynamical X-

ray diffraction in a lateral crystal with a rectangular cross

section [5]. These relations for transmitted T and diffracted

S waves in a perfect planar periodic structure take the form
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izes the phase difference accumulated in propagation of an

X-ray beam within a periodic structure from one numerical
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Figure 1. Schematic diagram of nodes of a curved MXRM. The

mesh region corresponding to a planar multilayer structure with

period d is outlined with dashed lines. Dotted arrows represent

vectors 1rm+1,n+1 (transmitted wave direction) and 1rm+1,n−1

(diffraction wave direction) for a planar multilayer structure.

Dashed arrows denote the directions of transmitted and diffraction

waves in a curved MXRM.

where χt,b and dt,b are the Fourier coefficients of polariz-

abilities and thicknesses of the top (t) and bottom (b) layers
of the structure period.

TDRRs (1) are written in a rectangular coordinate frame

with axis x aligned with the entrance surface of a planar

MXRM and axis z is directed toward the bulk of the

structure. In a two-dimensional periodic grid, axis z is

divided into equal sections d that correspond to the period

of a planar MXRM (Fig. 1). Sections are numbered

from top to bottom as 1, 2, . . . , n, . . . , Nz , where Nz

corresponds to the position of a period at the lower

boundary of a multilayer structure and n specifies the node

number in the vertical direction. Axis x is then divided

into sections 1x = dcotθB, where θB is the Bragg angle for

an incident X-ray beam. The positions of these sections

are numbered as 1, 2, . . . , m, . . . , Mx , where m is the node

number in the horizontal direction and Mx is the number of

nodes in this direction.

In the general case, nodes (m, n) shift in horizontal

and vertical directions in passing from a planar periodic

system to a deformed structure. Let nodes with coordinates

(m, n) and (m + 1, n + 1) be specified by vectors rm,n and

rm+1,n+1, respectively, in a planar MXRM. Vector 1rm+1,n+1

between these nodes in the direction of a transmitted X-ray

wave is then written as 1rm+1,n+1 = rm+1,n+1 − rm,n (Fig. 1).
Vector 1rm+1,n−1 from node (m, n) in the direction of

diffraction wave node (m + 1, n − 1) is written accordingly

as 1rm+1,n−1 = rm+1,n−1 − rm,n. Nodes shift in a deformed

periodic structure by, e.g., vector um,n for (m, n). The node

positions then change in the following way:

rm,n → rm,n + um,n, rm+1,n+1 → rm+1,n+1 + um+1,n+1

and

rm+1,n−1 → rm+1,n−1 + um+1,n−1.

Therefore, the phase factors in TDRRs (1) also change:
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where

ϕ0 = k01rm+1,n+1 + k0(um+1,n+1 − um,n)

= ϕ + k0(um+1,n+1 − um,n),

ϕ1 = ϕ + k1(um+1,n−1 − um,n),

and k0,1 are the wave vectors of incident and reflected X-

ray waves. TDRRs (2) characterize diffraction reflection

off a multilayer structure with an arbitrary spatial period

variation. Let us consider for simplicity a cylindrically

curved MXRM with (m, n) node displacement

um,n = um,nn = −(1xm)2/(2R), (3)

where n is the normal to the surface of a planar periodic

structure and R is the curvature radius of a cylindrically

curved MXRM. Figure 1 presents the displacement vectors

of nodes of a cylindrically curved MXRM, which are di-

rected downward along axis z . The displacement magnitude

within a specific column of nodes (e.g., with number m)
remains the same for each number n in the vertical direction.

Numerical modeling of RSM was performed using the

example of reflection of X-ray radiation (with a photon

energy of 2.5 keV and a wavelength of λ = 0.5 nm) off a
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Figure 2. Schematic diagram of X-ray diffraction by a curved

MXRM. T — incident beam amplitude, S — reflected (diffracted)
beam amplitude, ω — rotation angle of a curved MXRM, and

ε — rotation angle of an analyzer.
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Figure 3. Calculated RSMs for a Pd/B4C MXRM (a — planar multilayer structure; b — curved MXRM with a curvature radius

of 3m). c, d — Reflection curves for a Pd/B4C MXRM in lateral (non-specular) and vertical (specular) directions, respectively. 1 —
Planar multilayer structure, 2 — curvature radius R = 5m, 3 — R = 3m, and 4 — R = 1m. The lateral width of incident X-ray radiation

is 80µm.

curved Pd/B4C MXRM with layer thicknesses dPd = 2 nm

and dB4C = 2 nm [12] and varying curvature radii.

A substrate with a curved surface profile may be either

amorphous (glass) or single-crystalline (silicon). X-ray

radiation is not reflected off an amorphous medium. The

lattice period of a single-crystalline substrate is normally an

order of magnitude lower than the one-dimensional MXRM

period. Since the Bragg condition is unlikely to be fulfilled

in both structures with significantly different periods, it is

fair to assume that X-ray radiation is also not reflected off

a single-crystalline substrate. Thus, the influence of the

substrate was neglected in numerical calculations.

The Bragg angle for a multilayer X-ray mirror with period

d = 4 nm is 3.6◦. The Fourier coefficients of polarizabilities

of MXRM layers are

χPd = (−0.58 + i0.05) · 10−3,

χB4C = (−0.16 + i0.001) · 10−3.

The MXRM has 50 periods and a thickness of 0.2 µm. The

primary extinction depth for a multilayer Pd/B4C structure

is 0.073 µm.

Figure 2 presents the diagram of calculations for mapping

the intensity of reflection off a curved MXRM as applied to

triple-axis diffractometry. Angles of rotation of a sample

(curved MXRM) ω and an analyzer ε are related to

projections qx and qz of vector q = Q− (2π/d)n in the

following way:

qx = (2π/λ) sin θB(2ω − ε),

qz = −(2π/λ) cos θBε,

where Q = k1 − k0 is the diffraction vector.

The MXRM surface region irradiated by an incident X-ray

beam (length AD in Fig. 2) with a lateral width of 80µm is

Lx = 1xd = 1.3mm. If the sizes of incident and diffracted

beams are the same, the diffraction X-ray field of a spatially

limited wave in a curved multilayer mirror forms primarily

within trapezoid ABCD [8]. The procedure for calculation

of RSMs with TDRRs was detailed in [5,8].
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Figure 3 shows the calculated RSMs for planar and

curved (with a curvature radius of R = 3m) Pd/B4C

MXRMs. Equal-intensity contours are plotted on a log-

arithmic scale; the coefficient of reflection off a planar

multilayer structure is 0.7. The angular distribution of

diffracted intensity for the curved MXRM is normalized

by multiplication by a factor of 50. Figures 3, c and d

present the reflection curves for the Pd/B4C MXRM in

lateral (non-specular) and vertical (specular) directions,

respectively. As the curvature radius decreases (lateral
deformation intensifies), qx cross sections of RSMs broaden

(Fig. 3, c). The profiles of qz cross sections of maps do not

vary in shape, since the MXRM period remains unchanged.

Note that the profile of the qz cross section of the Pd/B4C

planar multilayer structure matches the reflection curve

from [11].

In the present study, the procedure of calculation of

the angular distribution of coherent scattering intensity in

reciprocal space was demonstrated using the example model

of a cylindrically curved multilayer X-ray mirror. RSMs

for MXRMs have been obtained earlier with the use of

hard [3] and soft [4] X-ray radiation to examine the specifics

of diffuse scattering off interlayer roughness. The more

intense coherent component was neglected in numerical

calculations [3,4], which made it somewhat more difficult to

retrieve data on the structural characteristics of multilayer

systems. One may obtain more accurate information

regarding the MXRM structure by calculating the total

scattering intensity with coherent and diffuse components.

The developed approach is also applicable in the analysis

of X-ray reflection off MXRMs with other curvature

geometries (specifically, elliptical [10], parabolic [13], and
hyperbolic [14] curvature). Matrix elements of node

displacement um,n for such multilayer structures change in

both lateral and vertical directions in accordance with the

MXRM curvature profile.
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