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Frustrations in the ground state of a dilute Ising chain in a magnetic field
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The properties of the ground state of one of the simplest models of frustrated magnetic systems, a dilute Ising

chain in a magnetic field, are considered for all values of the concentration of charged non-magnetic impurities.

An analytical method is proposed for calculating the residual entropy of frustrated states, including states at the

boundaries between the phases of the ground state, which is based on the Markov property of the system under

consideration and allows direct generalization to other one-dimensional spin models with Ising-type interactions.

The properties of local distributions and concentration dependences of the composition, correlation functions,
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ordering and the absence of pseudo-transitions in the dilute Ising chain is proved.
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1. Introduction

Absence or difficulty of long-range order formation is

the basis of unusual behavior of low-dimensional spin and

pseudospin systems. One-dimensional spin chains, including

one-dimensional generalized Ising models, which have

become popular in recent years [1], feature frustrated phases

in the ground state. Frustrated states may be associated

with different exotic properties of these systems such as

magnetization plateau, quasiphases or pseudotransitions

detected in decorated Ising systems [2–12].

Impurities may be the source of frustrations in magnetics,

besides the lattice geometry. The dilute Ising chain is

the simplest system model where the ground state is

frustrated due to the presence of impurities. In the zero

magnetic field, this model has an exact solution [13]. Its

various properties are thoroughly investigated in [14–16],
and the exact solution is analyzed in the most general

form by Balagurov, Vaks and Zaitsev [17]. Taking into

account the magnetic field, the standard transfer matrix

method allows to study the thermodynamic properties of

this model using the numerical solution of a nonlinear

algebraic equation system. This method was used to address

the entropy and Gruneisen magnetic parameter at finite

temperatures [18]. However, the ground state properties,

in particular concentration dependences of various physical

values, may be only investigated within the standard method

at the qualitative level from the numerical solution review at

low temperatures.

An analytical calculation method is offered herein for

various physical properties of the ground state of the

dilute Ising chain in a longitudinal magnetic field at all

possible model parameter values. The set of states at

the ground state phase boundaries was defined according

to the maximum residual entropy concept whose explicit

expression was derived from the Markov property of the

considered system [19]. The offered method allows obvious

generalizations for one-dimensional pseudospin models with

anisotropic interactions such as Ising, Potts, Blume−Capel

and Blume−Emery−Griffiths. The ground state of the

dilute Ising chain in the longitudinal magnetic field and

its transformations induced by the magnetic field were

investigated thoroughly and, in particular, it was shown

that an unusual magnetoelectric effect occurs at certain

parameters when a change in external magnetic field results

in ordering of non-magnetic impurities.

The paper is organized as follows. In section 2, ground

state phase diagrams are plotted and studied, correlation

functions and properties of the local distributions of frus-

trated ground state phases are obtained. In section 3, the

general equation is derived and concentration dependences

are found for the residual entropy of the frustrated phases.

The method to determine the set of states and residual

entropy at the phase boundaries is described in Section 4,

where comparison with the exact solution in zero field

is also given. In section 5, magnetization for the phase

boundary states is discussed. Summary is given in Section 6.

2. Ground state parameters

The ground state of the dilute Ising chain in the

zero magnetic field is described in [19] and qualitatively

described in [18] taking into account the magnetic field.

This Section offers a strict procedure for obtaining phase

diagrams of the model ground state with fixed impurity

concentration in the external magnetic field.
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The model Hamiltonian may be written as [18]:

H = −J
N

∑

j=1

Sz , j Sz , j+1 + V
N

∑

j=1

P0, j P0, j+1 − h
N

∑

j=1

Sz , j .

(1)
Pseudospin operator S = 1 is used herein, where the spin

doublet and nonmagnetic impurity states correspond to pro-

jections Sz = ±1 and Sz = 0, J is the exchange interaction

constant, V > 0 is the effective inter-site interaction for

impurities, P0 = 1−S2
z is the projection operator on the im-

purity state. Fixed concentration of nonmagnetic impurities

n = 〈6 j P0, j〉/N is assumed. Further we will assume an

annealed system case. Interaction with V = V0 + V1 − 2V01

is known to be equivalent to a more general interaction:

V0

∑

j

P0, j P0, j+1 + V1

∑

j

Ps , j Ps , j+1

+ V01

∑

j

(P0, j Ps , j+1 + Ps , j P0, j+1),

where Ps = S2
z is the projector on magnetic states.

For pre-defined n, the system energy may be expressed in

the form of a sum over bonds. Write Na,b for the number

of bonds with the left site in state a and with the right

site in state b, where a, b = 1, 0,−1, so 6abNa,b = N, and

calculate concentrations xα by expressions xa,a = Na,a/N,

xa,b = (Na,b + Nb,a)/N, a 6= b. Then, index α corresponds

to the unordered pair (a, b), and 6αxα = 1. Values of xα

generally depend on temperature and all other model

parameters and are expressed through the corresponding

pair distribution functions [19]. In the ground state, the

system energy per site, ε = E/N, is the linear function of

variables xα :

ε = −J(x1,1 + x−1,−1 − x1,−1) + V x0,0

− h

(

x1,1 − x−1,−1 +
1

2
(x0,1 − x0,−1)

)

. (2)

Search for minimum ground state energy is reduced to

the solution of the canonical linear programming problem

solution







































ε(xα) → min,

x0,0 +
1

2
(x0,1 + x0,−1) = n,

x1,1 + x−1,−1 + x1,−1 +
1

2
(x0,1 + x0,−1) = ns ,

xα ≥ 0,

(3)

where ns = 1− n is the spin site concentration.

Solutions of problem (3) correspond to the vertices,

edges or faces of the feasible solution polyhedron of xα .

Solutions on vertices are listed in Table 1. They define the

ground state phase existence regions in the diagram shown

in Figure 1. Hereinafter m denotes the deviation from the

half-filling for the concentration of impurities, m = n−1/2.

The magnetization is defined by extression

M = x1,1 − x−1,−1 +
1

2
(x0,1 − x0,−1). (4)

Solutions from 1 to 3 exist at all n, 0 ≤ n < 1. In the

absence of impurities at n = 0, only ferromagnetic (FM)
ordering (solutions 1 and 2) and antiferromagnetic (AFM)
ordering (solution 3) are implemented which are separated

by the critical field |h| = −2J (the spin-flip field). Phase

diagram for this case is shown in Figure 1, a. At n 6= 0 ,

solutions 1 and 2 describe FM phases where macroscopic

domains of ferromagnetically ordered spins directed along

the field are separated by the nonmagnetic impurity do-

mains. In this case, x0,0 6= 0 and x±1,±1 6= 0, and x0,±1 = 0

in the thermodynamic limit. FM phases have the lowest

energy at J > V > 0, h 6= 0. Magnetization of FM phases is

equal to the spin site concentration, M = ns . AFM phase 3

occurs at J < −V − |h| and consists of the alternating

macroscopic domains of antiferromagnetically ordered spins

and impurity domains, and has zero magnetization.

Solutions from 4 to 7 exist only for low-dilute spin

chain, 0 < n < 1/2, and their energies do not depend on V
(see Figure 1, b). Concentrations x0,0 = 0 and x0,±1 = 2n
show that dilute AFM or FM state is implemented where

(A)FM spin clusters of different sizes, including single

spins, are separated by single nonmagnetic impurities.

As shown below, these solutions have nonzero residual

entropy, therefore phases 4 and 5 may be called frustrated

ferromagnetic phases (FR−FM), and phases 6 and 7 —
as frustrated antiferromagnetic phases (FR−AFM). Expres-
sions for the residual entropy are also listed in Table 1.

At n = 1/2, charge-ordered state occurs where spin and

impurity sites alternate and the energy does not depend

on the interaction constants J and V . Magnetization

in FR−FM phases is equal to the spin center concentration,

M = ns , and decreases with increasing n, and in FR−AFM

phases M = n.
Solutions No. 8 and 9 exist only for the high-dilute spin

chain, 1/2 ≤ n < 1, at −V − |h| < J < V (see Figure 1, c).
For these solutions x±1,±1 = 0, x1,−1 = 0, x0,0 = 2m, and

x0,±1 = 2ns , which corresponds to frustrated paramagnetic

phases (FR−PM). In these phases, single spins directed

along the filed are separated by the impurity clusters of

different sizes, magnetization M = ns and energy does

not depend on J .
For solutions 10 and 11, energy is always higher than the

minimum energy at h 6= 0, but, as will be shown below,

these solutions are included in the states at the phase

boundary h = 0.

Transition from the AFM phase to FR−AFM or FR−PM

phase at the specified impurity concentration may be

caused by the magnetic field variation. Filed |h| = −J−V
(where J < −V < 0) that defines the boundary between

AFM and frustrated phases may be called frustration field.

When the magnetic field exceeds the frustration field, an

unusual effect occurs: charge ordering occurs in the system

Physics of the Solid State, 2023, Vol. 65, No. 7
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Figure 1. ground state phase diagrams of the dilute one-dimensional Ising model in the longitudinal magnetic field in (h, J)-plane
for (a) pure spin chain, n = 0; (b) low-dilute spin chain, 0 < n < 1/2; (c) high-dilute spin chain, 1/2 < n < 1. The digits in the diagram

correspond to the solutions in Table 1.

Table 1. The set of {xα} problem solutions (3) in the vertices of polyhedron, feasible solutions and corresponding values of residual

entropy s0

Solution and condition ε x0,0 x1,1 x−1,−1 x1,−1 x0,1 x0,−1

1 −(J + h)ns + V n n ns 0 0 0 0

2 −(J − h)ns + V n n 0 ns 0 0 0

3 Jns + V n n 0 0 ns 0 0

s0 = 0 []

4 m < 0 2Jm − hns 0 −2m 0 0 2n 0

5 m < 0 2Jm + hns 0 0 −2m 0 0 2n

s0 = −2|m| ln(2|m|) −
(

1
2
− |m|

)

ln
(

1
2
− |m|

)

+
(

1
2

+ |m|
)

ln
(

1
2

+ |m|
)

6 m < 0 −2Jm − hn 0 0 0 −2m 2n 0

7 m < 0 −2Jm + hn 0 0 0 −2m 0 2n

s0 = −|m| ln |m| −
(

1
2
− |m|

)

ln
(

1
2
− |m|

)

− 1
2
ln 2

8 m ≥ 0 2V m − hns 2m 0 0 0 2ns 0

9 m ≥ 0 2V m + hns 2m 0 0 0 0 2ns

s0 = −2|m| ln(2|m|) −
(

1
2
− |m|

)

ln
(

1
2
− |m|

)

+
(

1
2

+ |m|
)

ln
(

1
2

+ |m|
)

10 m ≤ 0 2(J + h)m + hn 0 −2m 0 0 0 2n
11 m ≤ 0 2(J − h)m − hn 0 0 −2m 0 2n 0

caused by the change in the magnetic field. Nonzero x0,±1

in FR−AFM and FR−PM phases (see Table 1) are the

markers of charge ordering, while in AFM phase x0,±1 = 0.

The charge order reaches its maximum at half filling, m = 0,

and in this case the ground state variation will be manifested

more clearly: dilute AFM state at |h| < −J−V consisting

of macroscopic AFM domains and impurity domains and

having nonzero magnetization is followed by charge-ordered

state at |h| > −J−V , where spin and impurity centers

alternate and magnetization is equal to M = 1/2.

Using the data in Table 1, the correlation functions may

be defined and local state distribution characteristics in

the spin chain can be calculated [19] to supplement the

description of the system phase states.

Pair distribution functions 〈Pa,kPb,k+l〉, where Pa,k is

the projector on state a = 1, 0,−1 at site k , can be

found in [19] using the conditional probability matrix

Pab = P(a |b):

〈Pa,k Pb,k+l〉 = P
l
ab P(b). (5)

Conditional probability P(a |b) that the i-th site in

state a , provided that the (i + 1)-th site is in state b,
is defined by the type of bond. If a = b, then

xa,a = P(aa) = P(a)P(a |a). Probabilities P(a) are equal

Physics of the Solid State, 2023, Vol. 65, No. 7
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to the site concentrations in the corresponding states,

P(a) = xa,a + 1/26b 6=a xa,b . Considering the equal-

ity of the two directions along the chain, we ob-

tain that for a 6= b equalities Na,b = Nb,a = 1/2xa,bN
and P(ab) = P(ba) shall be satisfied, whence it fol-

lows that xa,b = 2P(ab) = 2P(a |b)P(b). Next, correlation

functions Kab(l) = 〈Pa,kPb,k+l〉 − 〈Pa〉〈Pb〉, and, taking

into account Sz ,k = P1,k−P−1,k , spin correlation function

C(l) = 〈Sz ,kSz ,k+l〉 − 〈Sz 〉2 can be calculated.

For FR−FM phase at h > 0 and m < 0, state a = −1

is not available, P(1) = 1/2 + |m|, P(0) = 1/2− |m|. The

conditional probability matrix at states a = 1, 0 is written as

P =









4|m|
1 + 2|m| 1

1− 2|m|
1 + 2|m| 0









. (6)

Using (5), find the pair distribution functions for impuri-

ties and for spins

〈P0,kP0,k+l〉=
(

1

2
−|m|

)2

+(−1)l

(

1

4
−m2

)(

1− 2|m|
1 + 2|m|

)l

,

(7)

〈Sz ,kSz ,k+l〉=
(

1

2
+|m|

)2

+(−1)l

(

1

4
−m2

)(

1− 2|m|
1 + 2|m|

)l

.

(8)

The first terms in these expressions are equal to 〈P0〉2
and 〈Sz 〉2, respectively, therefore

K00(l) = C(l) = (−1)l

(

1

4
− m2

)

e−l/ξ ,

ξ =

[

ln

(

1 + 2|m|
1− 2|m|

)]−1

. (9)

Correlation length ξ becomes infinite at m = 0, i. e. when

the chain is half filled with impurities.

For FR−AFM phase at h > 0 and m < 0, we have

P(1) = 1/2, P(0) = 1/2 − |m|, P(−1) = |m|, and the con-

ditional probability matrix at states a = 1, 0,−1 is writ-

ten as

P =







0 1 1

1− 2|m| 0 0

2|m| 0 0






. (10)

The corresponding correlation functions are characterized

by the infinite correlation length

K00(l) = (−1)l

(

1

2
− |m|

)2

, C(l) = (−1)l

(

1

2
+ |m|

)2

.

(11)

It should ne noted that in the zero field [19] at |J| < V ,

the impurity correlation functions are similar for J > 0

and J < 0, and the correlation length at T = 0 for impurities

is described by expression (9). The spin correlation length

ξs0 is also infinite, but has an other value

C0(l) = (±1)l

(

1

2
+|m|

)

e−l/ξs0 , ξs0 =

[

ln

(

1+2|m|
4|m|

)]−1

,

(12)
where +1 and −1 correspond to J > 0 and J < 0.

For FR−FM phase at h > 0 and m > 0, state a = −1

is not available, P(1) = 1/2 + |m|, P(0) = 1/2− |m|. The

conditional probability matrix at states a = 1, 0 is written as

P =









0
1− 2|m|
1 + 2|m|

1
4|m|

1 + 2|m|









. (13)

and the expressions for the correlation functions of FR−PM

and FR−FM phases are the same. At FR−PM phase

boundary at h = 0 and m > 0, the impurity correlation

function remains the same, but the spin correlation function

is equal to zero [19].
In addition, consider the characteristics of the local state

distribution over the chain sites. Write σ for the ordered set

of k adjacent sites in the specified states: σ ≡ a1, a2 . . . ak .

Let (σ ) be the sequence of some number of repeating

blocks σ , its lengths is written as l(σ ). Probabilities p(l(σ ))
of this value l(σ ) obey [19] the geometrical distribution

p(l(σ )) = (1− q(σ ))q
l−1
(σ ) , (14)

where l is the number of blocks in the sequence (σ ),
and q(σ ) has the meaning of the probability of cycle

from states σ :

q(σ ) = P(a1|a2) . . . P(ak−1|ak)P(ak |a1). (15)

The length of sequence (σ ) and its dispersion are written as

l̄(σ ) =
1

1− q(σ )
, D(l(σ )) =

q(σ )

(1− q(σ ))2
. (16)

For example, find in FR−FM phase at h > 0 the mean

length of spin sequence which is written as (σ ) = (1) in

this case. Using equations (6) and (15), we get

q(1) =
4|m|

1 + 2|m| , l̄(1) =
1 + 2|m|
1− 2|m| . (17)

The mean spin sequence length is maximum at m = −1/2

and reaches its minimum l̄(1) = 1 at half filling, m = 0.

For the impurity sequence l̄(0) = 1, which corresponds to

the isolated impurities. For the charge-ordered sequence

(σ ) = (01) , we get

l̄(01) =
1 + 2|m|
4|m| . (18)

As can be seen l̄(01) becomes infinite at the half filling.
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In FR−PM phase at h > 0 and m > 0, states 0 and 1

change places: in this case, single spins directed along he

field are separated by the impurity sequences with the mean

length

l̄(0) =
1 + 2|m|
1− 2|m| .

Expression (18) for l̄(01) is preserved.
In FR−AFM phase, any sequence (σ ) = (a), where

a = 1, 0,−1, has the minimum length l̄(a) = 1, and for the

antiferromagnetic sequence (σ ) = (−11), the mean length

l̄(−11) =
1

1− 2|m| (19)

becomes infinite when no impurities are available. However,

when the spin states are combined in a single state s using

projector Ps = P1 + P−1, then the picture will change.

For the spin sequence (σ ) = (s) and for charge-ordered

sequence (σ ) = (0s), we get

l̄(s) =
1 + 2|m|
1− 2|m| , l̄(0s) =

1 + 2|m|
4|m| . (20)

From this point of view, FR−FM and FR−AFM phases are

equivalent. Note that these properties of local distributions

are also preserved at the zero field [19].

3. General expression for the residual
entropy of the dilute Ising chain
in magnetic field

Using the Markov property of the dilute Ising chain [19],
write the state probability a1, a2 . . . aN of the closed chain

of N-sites (N ≫ 1):

PO(a1, a2 . . . aN) = P(a1|a2)P(a2|a3) . . . P(aN |a1)

=
∏

ab

P(a |b)Nab = pN
0 , (21)

where

p0 =

(

x0,0

P(0)

)x0,0
(

x1,1

P(1)

)x1,1
(

x−1,−1

P(−1)

)x−1,−1

×

√

(

x2
1,−1

4P(1)P(−1)

)x1,−1
(

x2
0,1

4P(0)P(1)

)x0,1
(

x2
0,−1

4P(0)P(−1)

)x0,−1

.

(22)
The ground state energy (2) is defined by values xα .

Assuming that a microcanonical distribution holds true for

the ground state, find the statistical weight Ŵ of the ground

state and residual entropy s0 :

Ŵ = P−1
O , s0 =

lnŴ

N
= − ln p0. (23)

Considering (22), we get

s0 = −
∑

α

xα ln xα + P2 ln 2 +
∑

a

P(a) lnP(a), (24)

where the total concentration of pairs from different states

P2 = x1,−1 + x0,1 + x0,−1 is introduced.

Equation (24) allows to find the concentration depen-

dence of the residual entropy at the given ground state

set {xα}. To solve this problem within the standard

approach, we need to find the maximum transfer matrix

eigenvalue, determine the parametrical dependence of the

entropy on concentration using the chemical potential as a

parameter, and find the limit at the zero temperature. For

the dilute Ising chain in magnetic filed, this can be made

only numerically [18], while equation (24) gives the exact

analytical result.

Table 1 shows the expressions for the residual entropy

of various ground state phases. FM and AFM solutions

have the zero entropy. Solutions from 4 to 9 have nonzero

residual entropy for all impurity concentrations, except

n = 0, 0.5 and 1. Note that for FR−FM and FR−PM

solutions, the entropy has the same dependence on |m|
demonstrating a kind of symmetry of impurity and spin

states in FM phases and, at the specified concentration, this

value is higher than the entropy of FR−AFM states.

Concentration dependences of the residual entropy for

solutions from 1 to 9 are shown in Figure 2, a. The

obtained dependences agree with the entropy behavior at

low temperatures that was obtained by numerical solution

of the nonlinear algebraic equation system with a grand

canonical ensemble [18]. The method described herein

allows to study the residual entropy behavior analytically.

For FR−FM and FR−PM phases, the entropy has maxima

s0,max = −1

2
ln

√
5− 1√
5 + 1

≈ 0.481

by m = ± 1

2
√
5
≈ ±0.224,

and for FR−AFM phase - the maximum is

s0,max =
1

2
ln 2 ≈ 0.347 achieved when m = −1

4
.

4. Residual entropy of states
at the phase boundary

Pseudotransitions are an outstanding feature of decorated

Ising 1D models and are associated with the presence of

frustrated phases in the ground state of these systems [2–12].
A stepwise change in the one-dimensional system state

occurs during the pseudotransition at a finite temperature,

as a result some thermodynamic functions demonstrate

very sharp features, though remain continuous. Entropy

and magnetization in the magnetic field are characterized

by the stepwise dependence on temperature, and the

heat capacity, susceptibility and correlation length have

clearly pronounced maxima. Despite the common phase

transition, the system state at the temperatures above the

pseudotransition point is the frustrated phase which is more

favorable due to the entropy contribution to the free energy.

The pseudotransition temperature is the function of system

parameters, including the magnetic field. This suggests the

Physics of the Solid State, 2023, Vol. 65, No. 7
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Figure 2. Concentration dependences of the residual entropy of the dilute Ising chain for (a) phase states listed in Table 1, (b, c) states

at the phase boundary at h = 0 and at h 6= 0 listed in Table 2.

pseudotransition and related thermal effect can be controlled

using the magnetic field.

To predict the pseudotransition, knowledge of exact

residual entropy values for all system parameters and, in

particular, at the phase boundaries in the ground state phase

diagram is critical. According to the Rojas criterion [10,11],
pseudotransition occurs near the frustrated phase boundary,

if the entropy at the boundary itself is equal to the frustrated

phase entropy. Such situation is rather uncommon, therefore

the mere existence of frustrated phase does not mean that a

pseudotransition exists.

The adjacent phase energies in the phase diagram become

equal at the phase boundary, therefore the state at the

boundary shall be a mixture of the adjacent phases, unless

such mixture results in the system energy increase. Define

coefficients cn as the variables in linear combinations

xα = 6ncnx (n)
α , where xα are unknown concentrations for

the state at the boundary, and x (n)
α are the found concen-

trations for the adjacent phases. Coefficients cn will be

found according to the maximum entropy concept. Using

equation (24) for s0, a nonlinear optimization problem is

derived


























s0(cn) → max,

∑

n

cn = 1,

cn ≥ 0.

(25)

Results for the ground state phase boundary at h = 0 are

listed in Table 2. Note that to obtain the states at m < 0,

0 < J ≤ V , solutions 10 and 11 from Table 1 shall be

considered. Compare these results with the exact solution

for the zero field [19]. Define the transfer matrix for

Hamiltonian H̃ = H−µ6 j P0, j , µ is the chemical potential

at h = 0 as follows

T =







eK eξ/2 e−K

eξ/2 e−W+ξ eξ/2

e−K eξ/2 eK






, (26)

where K = βJ, W = βV , ξ = βµ, β = 1/θ and θ = kBT .
Transformation

U =
1√
2







1 η2 η3

0 Aη2 Bη3

−1 η2 η3






, (27)

where AB = −2 and η2,3 are normalization factors, diago-

nalizes T:

T̃= U+TU =









λ1 0 0

0 λ2 0

0 0 λ3









, (28)

λ1 = 2 shK, (29)

λ2,3 = chK +
e−W+ξ

2
∓

[

2eξ +

(

chK − e−W+ξ

2

)2]1/2

.

(30)
The maximum eigenvalue λ3 allows to write the grand

potential � and impurity concentration n as a function of

chemical potential

� = Nω = −Nθ ln λ3, n =
1

λ3

∂λ3

∂ξ
. (31)

The latter expression results in quadratic equation for

activity eξ having roots

(eξ )± =
8e2W

1− 4m2
(g ± m)2, (32)

where

g =

[

m2 +

(

1

4
− m2

)

e−W chK

]1/2

. (33)

For an ideal system with K = 0 and W = 0 the following

expression can be derived directly

eξ = (1 + 2m)
/

(

1

2
− m

)

,

8 Physics of the Solid State, 2023, Vol. 65, No. 7



1154 XXVII International Symposium
”
Nanophysics and Nanoelectronics“

Table 2. Set of {xα} and residual entropy s0 at ground state phase boundaries. Phase numbers included in the linear combination are

listed in the first column, the necessary condition for solution existence is listed in the second column

Solution and condition x0,0 x1,1 x−1,−1 x1,−1 x0,1 x0,−1

h = 0

1, 2 J > V n 1
2

ns
1
2

ns 0 0 0

s0 = 0

h = 0

4, 5 ,10, 11 0 < J < V 0 −m −m 0 n n
6, 7 −V < J < 0 0 0 0 −2m n n
8, 9 |J| < V 2m 0 0 0 ns ns

s0 = −2|m| ln(2|m|) −
(

1
2
− |m|

)

ln
(

1
2
− |m|

)

+
(

1
2

+ |m|
)

ln
(

1
2

+ |m|
)

+
(

1
2
− |m|

)

ln 2

h = 0

1, 2, 4, 5, 10, 11 J = V x∗ + m x∗−m
2

x∗−m
2

0 1
2
− x∗ 1

2
− x∗

1, 2, 8, 9 J = V x∗ + m x∗−m
2

x∗−m
2

0 1
2
− x∗ 1

2
− x∗

3, 6, 7 J = −V x∗ + m 0 0 x∗ − m 1
2
− x∗ 1

2
− x∗

3, 8, 9 J = −V x∗ + m 0 0 x∗ − m 1
2
− x∗ 1

2
− x∗

s0 =
(

1
2

+ m
)

ln 1+2m
2x∗+2m +

(

1
2
− m

)

ln 1−2m
2x∗−2m

J = V
1, 4 h > 0 n2 n2

s 0 0 2nns 0

2, 5 h < 0 n2 0 n2
s 0 0 2nns

1, 8 h > 0 n2 n2
s 0 0 2nns 0

2, 9 h < 0 n2 0 n2
s 0 0 2nns

s0 = −
(

1
2
− m

)

ln
(

1
2
− m

)

−
(

1
2

+ m
)

ln
(

1
2

+ m
)

J = −V − |h|
3, 6 h > 0 x0 0 0 x1 x2 0

3, 7 h < 0 x0 0 0 x1 0 x2

3, 8 h > 0 x0 0 0 x1 x2 0

3, 9 h < 0 x0 0 0 x1 0 x2

s0 = −
(

1
2

+ m
)

ln(1− µα) + 1
2

(

1
2
− m

)

ln 1+α
1−α

J = −|h|/2
4, 6 h > 0 0 −2m − x∗∗ 0 x∗∗ 2n 0

5, 7 h < 0 0 0 −2m − x∗∗ x∗∗ 0 2n

s0 = −
(

1
2

+ m
)

ln(1 + 2m) + 1
2
ln(1− 2m − x∗∗) + m ln x∗∗

which defines the root selection

eξ = (eξ )+ = 2eW g + m
g − m

chK. (34)

This allows to exclude the chemical potential in the

eigenvalue expressions

λ2,3 =
2g ∓ 1

g − m
chK, (35)

and to express the matrix elements U :

η2 =

√

1

2
+ m, η3 =

√

1

2
− m,

Aη2 = −
√
1− 2m, Bη3 =

√
1 + 2m.

Using the found values, concentration dependences of all

thermodynamic model parameters in the zero field can be

found [19], including the pair distribution functions

〈Pa,kPb,k+l〉 = lim
N→∞

Tr(PaT
lPbT

N−l)

Tr(TN)
, (36)

where Pa,k is the projection operator on the site k per one

of the basis states a = ±1, 0 corresponding to Sz = ±1, 0.

In this case, pair distribution functions are required for the

nearest neighbors, because 〈Pa,kPb,k+1〉 = P(ab). These
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functions are written as:

〈P0,kP0,k+1〉 =
(1 + 2m)(g + m)

2g + 1
, (37)

〈P±1,kP±1,k+1〉 =
(1− 2m)(g − m)eK

4(2g + 1) chK
, (38)

〈P±1,kP±1,k+1〉 =
(1− 2m)(g − m)e−K

4(2g + 1) chK
, (39)

〈P0,k P±1,k+1〉 = 〈P±1,kP0,k+1〉 =
1− 4m2

4(2g + 1)
. (40)

In the limit at T → 0 for g included in these equations, the

following is derived from (33):

g −→
T→0































e(J−V )2/θ, J > V ;

|m|, |J| < V ;

√

1

2

(

1

4
+ m2

)

, |J| = V.

(41)

Considering these expressions in the limit at T → 0, we

obtain all values of xα listed in Table 2 for h = 0. This

confirms the correctness of equation (24) for the residual

entropy and method (25) to find the state entropy at the

phase boundary.

Solutions at the ground state phase boundaries are listed

in Table 2. The following notations is introduced:

x0 =

(

1

2
+ m

)

(1− µα), x1 =

(

1

2
− m

)

(1− α),

x2 = (1− 2m)α,

x∗ =

√

1

2
+ 2m2 − 1

2
,

x∗∗ =
1

5

(

1

2
− 9m −

√

1

4
− 9m + m2

)

.

α is here defined from equation

(1− µα)
√

1− α2 = 2µα2, µ =
1− 2m
1 + 2m

. (42)

If m > 0, then 0 ≤ α ≤ 1, and if m < 0, then 0 ≤ α ≤ 1/µ.

Solutions in Table 2 are divided into groups having

similar concentration dependences of entropy. The found

concentration dependences of entropy at h = 0 coincide

with those obtained before [19] from the exact solution for

the dilute Ising chain in the zero field in the limit at T → 0,

which again verifies correctness of equation (24). The state

entropy at h = 0 and |J| < V has two maxima:

s0,max= ln 2≈0.693 bym= ± 1/6 and a local minimum,

s0,max =
1

2
ln 2 ≈ 0.347 by m = 0.

At h = 0 and J = V , the entropy has its maximum

s0,max = ln(1 +
√
2) ≈ 0.881 by m = 0.

At the boundary between FM and frustrated phases, J = V ,

h 6= 0, the entropy is symmetric with respect to m = 0 and

has its maximum

s0,max = ln 2 ≈ 0.693 by m = 0.

The state entropy at the boundary between AFM and

frustrated phases, |h| = −J−V at J < −V < 0, is not

symmetric with respect to m = 0 and reaches its maximum

s0,max ≈ 0.589 at m = 0.043. At the boundary correspon-

ding to the spin flip field, m < 0, J = −|h|/2, h 6= 0, the

entropy has its maximum

s0,max = ln 2 by m = −1

3
.

The view of the concentration dependences of the

residual entropy from Table 2 is shown in Figure 2, b and c.

In all considered cases, the state entropy at the ground

state phase boundaries is higher than the entropy of the

adjacent phases. Using the Rojas criterion [10,11], it can be

concluded that the pseudotransition does not occur in the

one-dimensional dilute Ising model.

5. Magnetization of states at phase
boundaries

Magnetization of states at phase boundaries can be

calculated by equation (4) using the solutions in Ta-

ble 2. The magnetization at the boundary between FM

and FR−FM phases, J = V , h 6= 0, coincides with the

magnetization for these phases: M = ns = 1/2− m. At the

boundary corresponding to the spin flip field, |h| = −2J,
the magnetization is written as:

M =
1

5

(

2 + 4m +

√

1

4
− 9m + m2

)

. (43)

At the boundary corresponding to the frustration field,

|h| = −V−J, we obtain

M = α

(

1

2
− m

)

, (44)

where α is calculated by equation (42).
Figure 3 shows concentration dependences of magne-

tization for the phase states and states at the phase

boundaries at h 6= 0. At the boundaries, the magnetiza-

tion demonstrates non-linear dependence on m and has

an intermediate value compared with the magnetization

of the adjacent phases. Magnetization (43) is shown

in Figure 3, a. Its value for the pure spin chain is

equal to M0 = 1√
5
≈ 0.447 and reaches its maximum

Mmax = 4−2
√
3 ≈ 0.536 at m = 9/2 − 8/

√
3 ≈ −0.119.

8∗ Physics of the Solid State, 2023, Vol. 65, No. 7



1156 XXVII International Symposium
”
Nanophysics and Nanoelectronics“

0 0.1 0.2 0.3 0.4 0.5
n

a1.0

0.8

0.6

0.4

0.2

0

M

0 0.1 0.2 0.3 0.4 0.5
n

b1.0

0.8

0.6

0.4

0.2

0

M

4, 5

6, 7
| = –2h| J

8, 9

3

| = – –h| J V

6, 7

Figure 3. Concentration dependences of magnetization. Numbers

near the solid lines correspond to the states in Table 1, equations

near the dashed curves correspond to the ground state phase

boundaries.

At m = 0, FR−FM and FR−FM phases are transformed

into FR−PM phase, so all three dependences merge into

a single one, M = ns . Magnetization (44) at the boundary

between AFM and frustrated phases is shown in Figure 3, b.

Note that this curve is not symmetric with respect to line

m = 0 and has its maximum Mmax ≈ 0.242 at m ≈ 0.055.

6. Conclusions

In the paper, we present the calculation and analysis of

ground state phase diagrams of the dilute Ising chain in

the magnetic field at the fixed impurity concentration; find

correlation functions and properties of local distributions

for frustrated phases, derive the general expression for

the frustrated state entropy based on the Markov property

of the system, and offer the calculation method for state

entropy at the phase boundaries. These methods allow

extension to other one-dimensional models with the Ising

type interactions. It has been shown that the system

ground state in the magnetic field remains frustrated, if the

exchange interaction constant values satisfy the inequality

−|h| −V < J < V . When the magnetic field increases in

the AFM phase to the values higher than the frustration

field |h| = −J−V , charge ordering occurs in the system.

The maximum of this effect is observed when the spin

chain is filled with impurities by half. Explicit concentration

dependences of magnetization have been found for the

phase boundary states that exhibit nonlinear behavior, while

magnetization for the adjacent phases is linear by the

impurity concentration. The obtained expressions for the

residual entropy reproduce the known analytical results in

the zero magnetic field which verifies correctness of the

offered methods. It is shown that the residual entropy at the

phase boundaries is always higher than the adjacent phase

entropy, which proves that there are no pseudotransitions in

the dilute Ising chain. For pseudotransition to occur, such

system modification is required when the frustrated phase

does not form mixed states with the low-entropy phase at

the phase boundary.
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