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Low-temperature thermodynamic properties of spin ice have been studied for compounds with the structure of

antiperovskite containing rare-earth ions with the general chemical formula ReMeO (where Re — is a rare-earth

element, Me — is a divalent metal). The calculations were carried out in the cluster approximation. The cases of

undistorted and distorted ORe6 octahedron are discussed. In the case of an undistorted octahedron in the absence

of an external magnetic field, the ground state of the system is infinitely degenerate. When an external magnetic

field is applied, anomalies in the temperature dependences of heat capacity, entropy and magnetization are detected.

In the case of a distorted octahedron and assuming that this distortion leads to the energy efficiency of two of the

sixty-four configurations, it is obtained that there is a phase transition in the system of magnetic rare-earth ions.
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1. Introduction

Thermodynamic properties of geometrically frustrated

magnetic systems have been attracting attention of re-

searchers during decades. In such systems, the ground state

has a high degree of degeneracy resulting in residual entropy

at 0K and often to unusual behavior of thermodynamic

variables in the low temperature region. After discovery

of the spin ice state in compounds with the pyrochlore

structure containing rare-earth metal ions [1,2], the interest

in the study of geometrically frustrated magnets has been

grown considerably and by now there is a lot of studies

devoted to the investigation of spin ice properties (see,
for example, reviews [3,4]. In the pyrochlore structure,

the rare-earth ions form a lattice of tetrahedra connected

in their vertices, and the spin ice state corresponds to

the states where two magnetic moments of a rare-earth

ion in each tetrahedron are directed inside the tetrahedron

and to moments are directed outside (two-in-two-out).
thermodynamic properties of the Ising model). So-called

magnetic monopoles occur in the excited states and such

states are referred to as the Coulomb phase. Existence of the

Coulomb phase is not limited by the pyrochlore structure: it

was found, or example, in two-dimensional systems such as

the artificial spin ice [5] and kagome ice [6].

A recent paper [7] discusses the possibility of spin ice

state implementation in three-dimensional systems using the

case of compounds with chemical formula MeORe3 (where

Re is the rare earth element, Me is the bivalent metal) with

the antiperovskite structure where the rare-earth metal ions

are in the octahedron vertices, and the three-in-three-out

states correspond to the spin ice state. The authors of [7]

study the thermodynamic properties of the Ising model with

the exchange and dipole-dipole interactions by the Monte

Carlo method.

In compounds with the antiperovskite structure contain-

ing rare-earth ions, a three-dimension lattice of octahedra

connected in their vertices. Since the spins of f -electrons
of rare earth elements have a high magnetic moment, they

may be treated as classical variables and, at rather low tem-

peratures, their behavior is described as the Ising doublet

directed along the axis connecting the octahedron center

and vertex. Geometrical frustration is caused, on the one

hand, by the noncollinearity of the crystal field and effective

magnetic interaction and, on the other hand, by the fact

that the Ising doublet axes in the lattice cell are fixed and

are different, as a result each octahedron has eight possible

configurations with the sane energy which corresponds to

the minimum free energy and, thus, the ground state of

the magnetic moment system of rare-earth ions is endlessly

degenerate. Description of thermodynamic properties of

systems with competing interactions by the mean field

approximation results in qualitatively wrong results, and

for the description of such systems, approximations shall

be used where the interaction competition is more or less

considered explicitly. One of such approximations is the

approximation of clusters.

Investigation of thermodynamic properties in the mag-

netic rare-earth ion system in the antiperovskite structure

as well as the possibilities of magnetic ordering in this

system in case of distorted octahedron ORe6 in the cluster

approximation is the aim of this study.
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Figure 1. antiperovskite structure MeORe3. In the cube

vertices — Me, in the center — oxygen, in the center of faces —
rare earth Re.

2. Free energy in the six-particle cluster
approximation

Only the magnetic system of rare-earth ions will be

discussed below,

Figure 1 shows the antiperovskite structure in the highly

symmetric cubic phase Pm3̄m with rare-earth ions in the

octahedron vertices (designated by numbers from1−6) and

the Ising doublet vectors in the lattice cell. To describe

the thermodynamic properties of the model, the variational

cluster method [8,9] is used and the simplest cluster of six

spins will be addressed. The ground state of the magnetic

rare earth element ion system may be considered as vertex

with one of the possible 64 octahedron spin configurations.

In the crystal with cubic symmetry Pm3̄m, 20 configurations

”
allowed by the ice rule“, i. e. three-in-three-out, are divided

into two groups (8 and 12 configurations) with the same

configuration energy inside the group. Thirty configurations

(15 four-in-two-out with positive magnetic charge and 15

two-in-four-out with negative magnetic charge) are divided

into three groups with the same energy inside the group.

Twelve configurations have the same energy (6 five-in-one-

out with positive magnetic charge +2 and 6 one-in-five-

out with negative magnetic charge −2). And finally, two

configurations (1 all-in with positive magnetic charge +3

and 1 all-out with negative magnetic charge −3).

In case of distorted octahedron in the crystal with

symmetry other than cubic, degeneracy is removed and a

phase transition into the ordered state is possible in the

magnetic ion system.

Assume σ z = ±1 for two possible magnetic moment

directions of the rare-earth ion inside and outside the

octahedron. Then the Hamiltonian of the model may be

written as the Ising model Hamiltonian:

H =
∑

i j

J i, jσ
z
i σ

z
j − H

∑

i

σ z
i . (1)

Assume σ z
1 = σ z

2 = σ z
3 = σ z

4 = σ z
5 = σ z

6 = 1 for the

configuration in Figure 1. Then, in the cluster approxima-

tion, taking into account the external filed, the cluster and

single-particle Hamiltonians are written as

H6 = J1(σ
z
1 σ

z
2 − σ z

1 σ
z
4 + σ z

1 σ
z
5 − σ z

1 σ
z
6 − σ z

2 σ
z
3 + σ z

2 σ
z
5

− σ z
2 σ

z
6 + σ z

3 σ
z
4 − σ z

3 σ
z
5 + σ z

3 σ
z
6 − σ z

4 σ
z
5 + σ z

4 σ
z
6 )

− J2(σ
z
1 σ

z
3 + σ z

2 σ
z
4 + σ z

5 σ
z
6 )

−
(ϕ

2
+ h

)

(σ z
1 + σ z

2 + σ z
3 + σ z

4 + σ z
5 + σ z

6 );

H1 = (ϕ + h)σ z
1 . (2)

Expression (2) includes the external magnetic field ori-

ented along the spatial diagonal of the cubic cell h = gµBsH
(g — g-factor, µB — Bohr magneton, s — rare-earth ion

spin, and the direction cosines of the magnetic moments

of the cluster ions, which are the same in this case, are

included in h). The average energy per vertex is written as

E = 〈H6〉 − 3〈H1〉. (3)

In (2) ϕ is the self-consistency field applied to the spin

in the lattice. In the antiperovskite structure, rare-earth

ion octahedra are connected in their vertices with each

ion surrounded by ten ions of the connected octahedra.

In the single-particle Hamiltonian, the ion is exposed to

a full field from the ions of two connected octahedra. In the

cluster Hamiltonian, interaction of each rare-earth ion with

four ions with constant J1 and with one ion with constant

J2 is considered accurately; interaction with the remaining

adjacent ions is considered by the self-consistency field

which is twice weaker in this case.

To describe the average energy (3) in the cluster

approximation, the density matrices of the ρk k-th class

are described as ρk = const · exp(−βHk), where Hk is the

cluster H6 and single-particle H1 Hamiltonians calculated

in (2), β = 1/T (kB = 1). Free energy is calculated by

integration with respect to β of the relation E = ∂(βF)/∂β

βF = − lnZ6 + 3 lnZ1, (4)

where Z6 and Z1 are cluster and single-particle partition

functions. In case of cubic symmetry Z6 within the

monomial factor, exp(3βJ2) and Z1 are written as

Z6 = 2
(

cosh(3βϕ + 6βh) + 3 cosh(βϕ + 2βh)

+ 6K4 cosh(βϕ + 2βh) + 6LK cosh(2βϕ + 4βh)

+ 6LK + 3LK5 + 6L4 cosh(βϕ + 2βh) + L9K−3
)

;

Z1 = 2 cosh(βϕ + βh);

K = exp

(

−
βv

4

)

, L = exp

(

−
βw

4

)

,

v = 4J2 − 4J1, w = 4J2 + 4J1. (5)
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Figure 2. temperature dependences a) of entropy, b) heat capacity and c) average 〈σ z 〉 in case of cubic symmetry in the applied external

field; dots — w/2h → ∞, v/2h = 0; dashed line — w/2h → ∞, v/2h = 0.5; solid curve — w/2h = 4.5, v/2h = 0.5.

Field ϕ is derived from the minimum free energy

condition ∂F/ϕ = 0 and is defined by equation

(

sinh(3β(ϕ + 2h)) + sinh(β(ϕ + 2h))

+ 2K4 sinh(β(ϕ + 2h)) + 2LK sinh(2β(+2h))

+ 2L4 sinh
(

β(ϕ + 2h)
)

)

/
(

cosh(3βϕ + 6βh)

+ 3 cosh(βϕ + 2βh) + 6K4 cosh(βϕ + 2βh)

+ 6LK cosh(2βϕ + 4βh) + 6LK + 3LK5

+ 6L4 cosh(βϕ + 2βh) + L9K−3
)

= sinh(ϕ + h)/ cosh(ϕ + h). (6)

The average 〈σ z 〉 is calculated by

〈σ z 〉 = tanh β(ϕ + h). (7)

Entropy and specific heat capacity are calculated by

S = (−∂F/∂T ); CV = −T (∂2F/∂T 2). (8)

Expressions (4)−(8) determine the system thermody-

namics.

In case when the crystal symmetry is lower than the

cubic symmetry, octahedron ORe6 is distorted, degeneracy

is removed and a phase transition into the ordered state

is possible in the magnetic ion system. The simplest

degeneracy removal case will be addressed here. Assume

that due to the octahedron distortion, two of twelve

”
neutral“ three-in-three-out configurations have the lowest

energy which will be assumed as equal to zero. To minimize

the number of unknown parameters of the model and

for simplicity, assume that the energies of the remaining

configurations will vary by the same value and denote this

energy by ε. The energies of one-, two-and three-
”
charged“

configurations will be assumed the same as for the cubic

symmetry. In this case, expression (5) and equation (6) are

written as

Z6 = 2
(

cosh(3βϕ + 6βh) + 3G cosh(βϕ + 2βh)

+ 6GK4 cosh(βϕ + 2βh) + 6LK cosh(2βϕ + 4βh)

+ 6LK + 3LK5 + 6L4 cosh(βϕ + 2βh) + L9K−3
)

;

(9)
(

sinh
(

3β(ϕ + 2h)) + G sinh
(

β(ϕ + 2h)
)

+ 2GK4 sinh
(

β(ϕ + 2h)
)

+ 2LK sinh
(

2β(ϕ + 2h)
)

)

+ 2L4 sinh
(

β(ϕ + 2h)
)

)

/
(

cosh(3βϕ + 6βh)

+ 3G cosh(βϕ + 2βh) + 6GK4 cosh(βϕ + 2βh)

+ 6LK cosh(2βϕ + 4βh) + 6LK + 3LK5

+ 6L4 cosh(βϕ + 2βh) + L9 · K−3
)

= sinh(ϕ + h)/ cosh(ϕ + h),
(10)

where G = exp(−βε).

3. Results

Let us first discuss the cubic symmetry case. First of

all, note that equation (6) without the field H = 0 has

a unique solution ϕ = 0 at all temperatures, i.e. without

field, the system of magnetic moments of rare-earth ions is

endlessly degenerated at T = 0K. When J1 = J2 in (2), i.e.
at v = 0, all 20 three-in-three-out configurations have the

same energy. Note also that, if excited configurations with

magnetic charge are prohibited in this case, i.e. w → ∞ is

assumed, than from (4) follows the result for the residual

Pauling entropy: F = −T · ln 5/2, S = ln 5/2.

Now let us discuss the results at non-zero field H .

When
”
charged“ configurations are prohibited w → ∞ ,

the dependences of heat capacity, entropy and average 〈σ z 〉
on temperature T are shown in Figure 2 for two values of v .
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Figure 3. Temperature dependences of a) entropy, b) heat capacity and c) order parameter 〈σ z 〉 for distorted octahedron ORe6; dashed

line — w/ε → ∞, v/ε = 0.9; solid line — w/ε = 0.5, v/ε = 0.9; dots — w/ε = 4.5, v/ε = 0.9.

Dependence of the transition temperature and entropy change 1S = S(Tc) − S(0) (per formula unit) on v/ε and w/ε

w/ε → ∞ w/ε = 4.5 w/ε = 2.5 w/ε = 1.5 w/ε = 0.5

v/ε Tc/ε 1S/R Tc/ε 1S/R Tc/ε 1S/R Tc/ε 1S/R Tc/ε 1S/R

0 0.91 0.83 0.89 0.94 0.79 1.30 0.64 1.54 0.35 1.55

0.1 1.14 0.81 1.09 1.04 0.95 1.40 0.79 1.59 0.47 1.62

0.3 1.57 0.77 1.41 1.06 1.20 1.43 1.00 1.56 0.64 1.63

0.5 1.89 0.72 1.65 1.10 1.40 1.42 1.17 1.52 0.73 1.62

0.7 2.22 0.68 1.87 1.13 1.56 1.39 1.31 1.48 0.84 1.62

0.9 2.54 0.64 2.07 1.19 1.71 1.36 1.43 1.45 0.91 1.62

It can be seen that, depending on the heat capacity

for v = 0, there is a peak at a temperature approximately

equal to 2h. This temperature corresponds to the saturation

temperature in the dependence of the average 〈σ z 〉 on

temperature. With finite value of v, the qualitative behavior

of thermodynamic values remains the same as with v = 0,

but the abnormal behavior peak moves towards high

temperatures as shown in Figure 2.

With finite energy of
”
charged“ states w, besides the

abnormal behavior mentioned above, additional abnormal-

ities occur in the thermodynamic parameter dependences

which are associated with the excitation of these
”
charged“

states in a certain temperature region. Figure 2 shows the

dependences of heat capacity, entropy and average 〈σ z 〉
on temperature for w/2h = 4.5. It can be seen that at a

temperature about 2h, behavior of thermodynamic variables

does not differ from the case of w → ∞, however, at high

temperatures, additional washed-out abnormality occurs in

the dependence of heat capacity on temperature, which

is associated by the excitation of
”
charged“ states. The

maximum temperature of this abnormality is defined by the

value of w .

Consider the case of distorted octahedron and, therefore,

the phase transition into the ordered state at the external

field equal to zero. In expressions (9) and (10), assume

h = 0. The equation for the temperature instability of

the disordered phase Tc is derived from equation (10) by

expansion in ϕ with an accuracy up to the first order:

2Gc + 4GcK4
c + 4LcKc + 3LcGcK5

c + 4L4
c + L9

cK−3
c = 2,

(11)
where G, L, K are calculated in (5) with T = Tc .

When the configurations with magnetic charge (w → ∞)
are prohibited, the instability temperature of the disordered

phase is derived from Gc + 2Gc K4
c = 1. The same tem-

perature is the phase transition temperature at which the

order parameter 〈σ z 〉 is changed stepwise from zero to one

and the susceptibility becomes infinite. The minimum free

energy of the system which in this case is written as

βF = − ln
(

(

cosh(3βϕ)

+ 3G cosh(βϕ)(1 + 2K4)
)

/4 cosh(βϕ)
)

,

for T ≥ Tc corresponds to ϕ = 0, and for T ≤ Tc ϕ = ∞.

With J1 = J2 in (2), i.e. at v = 0, and with w → ∞, the

transition temperature is equal to Tc = ε/ ln 3.

It should be emphasized that the thermodynamic prop-

erties of the system in this case coincide with the Slater

model properties [9], except Tc which is equal to ε/ ln 2 in

the Slater model.

The temperature dependence of heat capacity, entropy

and order parameter 〈σ z 〉 for several finite values w is

shown in Figure 3.
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With finite energy value of
”
charged“ states, the phase

transition becomes the second order transition. The table

lists Tc values calculated by (7) for various values of v/ε

and w/ε.

4. Conclusion

The study used a simple model to investigate thermo-

dynamic properties of the spin ice in the antiperovskite

structure where the rare-earth metal ions occupy the vertices

of the octahedron with the oxygen ion in the center.

Thermodynamic functions are calculated in the cluster

approximation using the smallest cluster of six particles

considering the spin ice state and magnetically charged

states in the system of magnetic moments of the rare earth

ions. Two undistorted and distorted octahedron cases are

addressed.

The following result is obtained.

In case of undistorted octahedron, 8 states with three-in-

three-out configuration are assumed to have the lowest and

the same energy. Another 12 states with three-in-three-out

configuration also have the same energy. In the absence

of the external magnetic field, the system ground state

is endlessly degraded. When the external magnetic field

is applied, abnormalities in the temperature dependences

of heat capacity and entropy were found. Abnormal

behavior of the thermodynamic parameters at a temperature

approximately equal to the double external filed strength

is associated with full order established in the magnetic

ion system at this temperature. In the temperature

dependence of heat capacity at higher temperatures, the

second abnormality is observed which is associated with

the excitation of
”
charged“ magnetic configurations at these

temperatures.

In case of distorted octahedron and on the assumption

that the distortion results in energetical benefit of two

of eight three-in-three-out configurations, while the rest

six configurations have the same energy ε, it is also

assumed that the energy of rest twelve three-in-three-out

configurations increases by ε in this case. In this case

the rare-earth ion system has a phase transition to an

ordered state at a finite temperature. When the
”
charged“

configurations are prohibited and the energies of 18 three-

in-three-out configurations are equal, this transition occurs

at Tc = ε/ ln 3 with susceptibility becoming infinite and the

order parameter jumping to the maximum. Note that this

transition is similar to the transition in the six-vertex model

(Slater model) for which an accurate solution is known

and the transition and order parameter jump temperatures

calculated in the four-particle cluster approximation coincide

with the accurately calculated values.

At the finite energy of the
”
charged“ configurations, the

phase transition to the ordered state is the second-order

transition.
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