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Calculation of relative dispersions of magnetization, heat capacity

and susceptibility in a two-dimensional weakly diluted
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Using the Monte Carlo method, the relative dispersions of magnetization Rm, heat capacity Rc and susceptibility

Rχ are calculated for a weakly diluted 3-state Potts model on a square lattice at a spin concentration p = 0.90. It

is revealed that the introduction of disorder in the form of nonmagnetic impurities into the two-dimensional Potts

model leads to non-zero values for Rm, Rc , Rχ at the critical point. It is found that these values decrease markedly

for systems with linear dimensions L > 40.
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1. Introduction

The main problem of condensed matter physics is still

the influence of nonmagnetic order on various thermal and

magnetic characteristics of the studied system. This is due

to the fact that real systems always have various defects,

impurities or other imperfections that impair the system

uniformity, and their consideration is essential [1–5] for

the analysis of various physical properties. In addition, it

can be reasonable expected that critical parameters of the

studied system may depend on the disordering method.

In particular, [6,7] found that disorder provided by a

canonical method (fixed fraction of magnetic nodes) gave

results which were different from the case when disorder

was implemented by a grand canonical method (fraction of

magnetic nodes in each impurity configuration fluctuated).
Later, [8] used a renormalization group to explain such

behavior by the difference of finite-size effects in these two

types of dilution.

As of today, these problems have not been investigated

sufficiently. Features in terms of the Potts lattice models

attract great theoretical and experimental interest. For

the Potts models, features of thermodynamic parameter

distribution over the corresponding assembly depending on

sizes L of the studied systems. Rigorous study of such

behavior is possible in the nearest future only on the basis

of numerical experiment data and is virtually impossible by

other methods.

Therefore, this study uses the Monte Carlo method to

investigate self-averaging of thermodynamic critical parame-

ters of a two-dimensional weakly diluted 3-state Potts model

depending on the sizes of the studied systems. Note that the

Potts models can be used to check the effecy of impurities

on the phase transitions (PT) and to determine their role

as a stabilizing factor in case of second-order PT. On the

other hand, in accordance with the Harris criterion [9],

for the two-dimensional Potts models with q = 3 or q = 4,

impurities shall also influence the critical behavior, because

for these models in undiluted state α = 1/3 and α = 2/3,

respectively.

2. Three-dimensional impurity Potts
model on the square lattice

Here we provide a three-dimensional impurity Potts

square-lattice model used to describe a wide range of

objects and phenomena in condensed matter physics. In

this model, impurities are canonically distributed [2]. For

building such model, the following aspects shall be taken

into account:

1. The square lattice sites have spins Si , which can be

oriented in 3 symmetric directions in space with q − 1,

so that the angles between any two spin directions are

equal and nonmagnetic impurities (vacancies) (see Fig. 1).

Nonmagnetic impurities are randomly distributed and fixed

at various lattice sites (quenched disorder).

2. The bond energy between two sites is equal to zero,

if they are in different states (whichever) or, if at least one

site contains a nonmagnetic atom, and is equal to J, if the
interacting sites are in the identical states (again, whichever).
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Figure 1. Standard two-dimensional 3-state weakly diluted Potts

square-lattice model.

Taking into account these features, a microscopic Hamil-

tonian of such system can be written as [12]:

H = −
1

2
J

∑

i, j

ρiρ jδ(Si , S j), Si = P1, P2, P3, (1)

where

δ(Si , S j) =

{

1, if Si = S j,

0, if Si 6= S j

and

ρi =











1, if there is a spin in the node

0, if a non-magnetic impurity

is located in the node

,

Pq is the spin state with number i , J is the exchange

ferromagnetic interaction parameter.

The concentration of magnetic spins is defined by expres-

sion

p =
1

L2

L2

∑

i=1

ρiδ(Si , q). (2)

Then p = 1 corresponds to the Potts model and p = 0 —
to an empty purely impurity lattice.

3. Investigation procedure

Wolff cluster algorithm of the Monte Carlo method is

currently the most effective algorithm [13,14]. The algorithm
procedure is addressed in detail in [15,16]. This study uses

the algorithm as follows.

1. A random lattice site is chosen. If this site contains a

nonmagnetic impurity, then a site is randomly chosen again

until a site with Si is chosen.

2. All the nearest neighbors S j of this spin Si are

considered. If the adjacent site is occupied by a spin co-

directional with this unflipped spin Si , then with probability

p = 1− exp(−K), where K = J/kBT , this spin is also

flipped and its coordinated are stored in the stack. Then

the nearest neighbors of the last spin with which the bond

was established are reviewed. This process lasts until the

system boundaries are achieved.

3. All bonded spins form
”
a cluster“.

4. The spin flip procedure ends when the stack is empty.

This process is called a cluster flip.

Calculations were performed for the systems with

periodic boundary conditions at spin concentrations

p = 1.0, 0.9. Systems with linear sizes L × L = N,

L = 20−160 were studied. The initial configurations were

set in such a way that all spins were in the same states.

In order to bring the system to equilibrium, a non-

equilibrium section τ0 in length was separated for the

system with the linear dimensions L. This nonequilibrium

section was discarded. Then,averaging was carried out

for a Markov chain section τ = 400τ0 in length. For the

largest system, L = 160, τ0 = 2 · 103 MC steps per spin.

Moreover, averaging over various initial configurations was

carried out. For p = 1.0, 10 initial configurations were used

for averaging. For systems with concentration p = 0.90,

configuration averaging over 1000 various configurations

was performed.

4. Simulation results

Fluctuation relations [17] were used to observe the

temperature behavior of susceptibility and heat capacity:

χ = (NK)(〈m2〉 − 〈m〉2), (3)

C = (NK2)(〈U2〉 − 〈U〉2), (4)

where K = J/kBT , (J > 0), N = pL2 is the number of

magnetic nodes, m is the system magnetization, angle

brackets denote thermodynamic averaging, the top bar

denotes averaging over the canonical assembly with various

disordering.

To calculate magnetization in a two-dimensional weakly

diluted Potts model, the following relation was used:

mF =

[

q
(

Nmax

N

)

− 1
]

q − 1
. (5)

Figure 2 shows susceptibility values χ j for various

impurity configurations j of the two-dimensional 3-state

Potts model in the weakly diluted mode with p = 0.90,

T = Tc(p), 0 ≤ j ≤ Ns , Ns is the total number of impurity

configurations. Averaged values of χ̄ j are also given herein

for the corresponding assembly with various distribution of

nonmagnetic impurities for the systems with linear size

L = 160. As shown in the illustration, the number of
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Figure 2. Susceptibility distribution over the canonical assembly

with various distribution of nonmagnetic impurities for the system

with p = 0.90, T = Tc and linear size L = 160.

impurity configurations Ns used for averaging allows to

achieve the asymptotic critical mode.

Among the computational physics method used to de-

termine the phase transition temperature Tl(p), the fourth-

order Binder cumulant method is widely recognized [18,19]:

VL(T, p) = 1−
〈E4〉L

3〈E2〉2L
, (6)

UL(T, p) = 1−
〈m4(T, p; L)〉L

3〈m2(T, p; L)〉2L
, (7)

where E is the energy and m is the magnetization of a

system with linear dimension L. Equations (6) and (7) allow
to determine Tl(p) with the highest accuracy in the first- and

second-order phase transitions, respectively. This method is

also well proven for determining the kind of phase transition.

Peculiarities of this method when used to determine the

temperature and kind of phase transition are described

in [20]. Second-order PT has the following distinguishing

features [19]:

− Averaged Binder cumulant with respect to energy

VL(T, p) tends to trivial V ∗ according to

V (T, p) = V ∗ + bL−d, (8)

with L → ∞ and T = Tl(L), where V ∗ is equal to 2/3;

− Binder cumulant curves with respect to magnetization

in a critical region have a strongly pronounced crossover

point.

Typical dependences of Binder cumulants VL(T, p) and

UL(T, p) on temperature for systems with different linear

sizes at p = 0.90 are shown in Figure 3 and 4, respectively.

As shown in Figure 4, critical point Tc = 0.842(1) in

units J/kB .

To calculate relative dispersions (squared variation co-

efficients) of magnetization Rm, susceptibility Rχ and heat

capacity Rc at T = Tc depending on linear sizes L of the

system, the following expressions were used

Rm =
m2(L) − m(L)

2

m(L)
2

, (9)

Rχ =
χ2(L) − χ(L)

2

χ(L)
2

, (10)

RC =
C2(L) −C(L)

2

C(L)
2

. (11)

By numerical data in the critical point Tc calculated

using (9)−(11), self-averaging behavior of thermodynamic

parameters and their error depending on L can be inferred.

Corresponding values of Rm, Rχ and Rc depending on L
with spin concentrations p = 0.90are shown in the Table.
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Figure 3. Temperature dependence of Binder cumulants VL(T )
for the weakly diluted 3-state Potts model with p = 0.90.
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Figure 4. Temperature dependence of Binder cumulants UL(T )
for the weakly diluted 3-state Potts model with p = 0.90.
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Values of relative susceptibility, magnetization and heat capacity

dispersions for two-dimensional 3-state weakly diluted Potts model

L Rχ Rm Rc

10 0.03121 0.00125 0.00542

20 0.02217 0.00114 0.00535

40 0.01504 0.00112 0.00477

80 0.01163 0.00108 0.00307

160 0.00789 0.00101 0.00247

1/L
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Figure 5. Dependence of relative dispersions of magnetization

Rm, heat capacity Rc and susceptibility Rχ on inverse sizes 1/L at

p = 0.90 and T = Tc .

As shown in the table, introduction of weak disorder

into the two-dimensional 3-state Potts model results in non-

zero values of Rm, Rχ and Rc . This data allows to estimate

the errors associated with the sizes of the studied systems.

Figure 5 shows dispersions of Rm, Rc , Rχ depending on 1/L.
It can be seen that with the increase in the linear sizes,

values of Rm, Rc , Rχ decrease considerably.

Thus, from the obtained data Rm, Rc , Rχ , it follows

that systems with linear sizes L > 80 shall be studied for

unambiguous determination of PT kind, critical parameters

and other features of a weakly dulited 3-state Potts model.

5. Conclusion

This study for the first time uses a common procedure

based on the Monte Carlo cluster algorithm to calculate

relative dispersions of magnetization Rm, susceptibility Rχ

and heat capacity Rc in the weakly dulited Potts model at

spin concentration p = 0.90. The obtained data prove the

following.

1. Introduction of a weak disorder in the form of

nonmagnetic impurities into the two-dimensional 3-state

Potts square-lattice model results in non-zero values for

Rm, Rχ and Rc indicating bad self-averaging for the studied

thermodynamic parameters.

2. For the weakly diluted systems described by the 3-state

Potts model, it has been found that distinctive decrease

of Rm, Rχ , Rc occurs only at L > 40. To obtain valid

characteristics for this model, spin systems with L > 40

shall be studied.
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