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1. Introduction

Two-dimensional higher-order topological superconduc-

tors and insulators differ from traditional ones in that the

dimension of their gapless excitations is two less than the

system dimension [1]. Majorana corner states occurring

in superconducting systems are separated by an energy

gap both from edge and bulk excitations. Taking into

account strict localization in the 2D system corners, such

objects may be more attractive in terms of topologically

protected quantum computations than traditional Majorana

states [2,3].

The Dirac mass sign change criterion is one of possible

methods used to detect conditions for topological corner

state occurrence in 2D systems. The criterion can be used

provided that there is some interaction (e. g. superconduct-
ing pairing or hybridization) that breaks one the traditional

topological system symmetries and results in emergence of

a mass term in the Dirac dispersion law for edge states.

The sign of this mass shall be different on the adjacent

sides of the 2D structure. This variable was used before

as a topological index to describe occurrence of Majorana

corner modes in various superconducting systems without

many-body interaction [2,4–6].

It should be noted that lively discussion is being held now

regarding which of the proposed invariants describes the

higher-order topological phases to the fullest extent possible

for interaction-free systems as well as for a situation when

charge correlations play a significant role. In addition to the

Dirac mass analysis, it is proposed to calculate topological

indices on the bases of, for example, eigenvalues of inverse

Green’s function [7], electric multipole moments [8,9], polar-
ization and other quantum entanglement properties [10,11],
Berry phase [12].
This article contains detailed analytical description of

edge state wave functions of a 2D topological insulator

and their Dirac mass that occurs when superconducting

pairing is included and induces the nontrivial phase in

a strong electron correlation regime at U → ∞ (where

U is an on-site Coulomb repulsion intensity). The derived

expressions are used to analyze the phase diagram of

a higher-order topological superconductor (HOTSC) and

define the applicability limits of a criterion based on the

Dirac mass.

2. HOTSC Hamiltonian in strong electron
correlation regime

The problem of higher-order topological superconducti-

vity in strong correlation regime will be discussed using

a model of 2D two-orbital topological insulator on a

square lattice in the shape of a square that is expected

to be on the surface of a high-temperature superconductor

with s±-type of order parameter symmetry [13], for

example, iron-based [14]. Due to the proximity effect,

superconducting pairing of the expanded s -type is induced

in the 2D structure. It should be noted that the resulting

relationship between the pairing amplitude and wave vector

is a critical factor for appearance of different sign Dirac

masses in edge states at adjacent boundaries. Significance of

this circumstance for the implementation of correspondence

between spectral properties of the system with periodic
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boundary conditions along one of the directions and the

system with open boundary conditions (
”
edge-corner corre-

spondence“) has been also stressed in [13]. However, the

authors described these considerations outside the context

of the Dirac mass.

As shown in [15], in the limit U → ∞, when using

the atomic representation, the Hamiltonian of this system

reduces to the description of lower Hubbard subbands for

each orbital and is written as

H =
∑

f σ

∑

l=A,B

(−µ + ηl1ε)X
σσ
f l

+
∑

f lσ

∑

δ=±x ,±y

ηltδX
σ 0
f l X0σ

f +δ,l +
∑

f δlσ

ασ δX
σ 0
f l X0σ̄

f +δ,l̄

+
∑

f δl

(11X↑0
f l X↓0

f +δ,l + 1∗
1X0↓

f +δ,lX
0↑
f l ), (1)

where l = A(B) is the orbital index for which l̄ = B(A),

respectively; µ is the chemical potential, 1ε defines the one-

site energy shift for different orbitals as a result of ηA = +1,

ηB = −1.

The Hubbard operators are defined in the standard form:

Xnm
f l = | f l, n〉〈 f l, m|, where | f l, n〉 are basic electron states

on site f for orbital l . After projecting using operator

P = 5 f
∑

l=A,B(X00
f l + X↑↑

f l + X↓↓
f l ) to a state subspace con-

taining no state with two electrons on a site (n = 2) in each

orbital, a set of basic states is as follows: n = 0 is a state

without electrons, n = σ is a state with one electron with

spin momentum projection σ . It should be noted that one-

site states with two electrons from different orbitals are not

allowed. Effect of the Hubbard operators on the state basis

is defined as follows

Xnm
f l | f

′l′, p〉 = δ f f ′δll′δmp| f l, n〉,

where δi j are the Kronecker’s symbols. Relation of

the initial fermionic operators with the Hubbard opera-

tors before projection is written as c f lσ = X0σ
f l + σX σ̄ 2

f l .

It is easy to verify that, taking into account projec-

tion for Hamiltonian (1), transition between the oper-

ators is written as: X0σ
f l = Pc f lσ P , Xσσ

f l = Pc+
f lσ c f lσ P .

The Hubbard operator algebra is described in detail

in [16,17].

In Hamiltonian (1), fermion hopping parameters satisfy

relations t±x = −t±y = t . Whilst their opposite signs

for different orbitals defined by factor ηl provides in-

verted bare electron bands. Spin-orbit coupling has

properties ασ,±x = ∓ασ , ασ,±y = ±iα. The Cooper

pairing amplitude on the nearest lattice sites is defined

by 11. However, one-site Cooper pairings in limit

U → ∞ are completely suppressed by the Hubbard repul-

sion.

3. Green’s functions and the effective
Hamiltonian

3.1. Equations of motion for Green’s functions

The equation of motion for operator X0σ
f l (t) in the

Heisenberg representation is written as:

i
d
dt

X0σ
f l (t) = (−µ + ηl1ε)X

0σ
f l

+
∑

δ=±x ,±y

tδηl[(X
00
f l + Xσσ

f l )X0σ
f +δ,l + X σ̄ σ

f l X0σ̄
f +δ,l]

+
∑

δ

[ασ δ(X
00
f l + Xσσ

f l )X0σ̄
f +δ,l̄ + ασ̄ δX

σ̄ σ
f l X0σ̄

f +δ,l̄ ]

+
∑

δ

11σ [(X00
f l + Xσσ

f l )X σ̄ 0
f +δ,l − X σ̄ σ

f l Xσ 0
f +δ,l ]. (2)

Then we use the formalism of Green’s two-time temper-

ature functions defined as

〈〈A(t)|B(t′)〉〉 = −i2(t − t′)
〈

{A(t), B(t′)}
〉

, (3)

where 2(t − t′) is the Heaviside function, A(t) and B(t′)
are the arbitrary Hubbard operators in general. In order to

calculate the fermionic excitation spectrum, the fermionic

operators are chosen, so the brackets {. . .} designate the

anticommutator. We use the Hubbard-I approximation [18]
with the simplest decoupling of equations of motion carried

out for Green’s functions with emergence of correlators

H f lσ = 〈X00
f l + Xσσ

f l 〉 = 1− 〈X σ̄ σ̄
f l 〉. (4)

The latter equality is derived from the Hubbard operator

fullness condition. Correlators 〈X σ̄ 0
f l X0σ

f l 〉 describing the

fermion spin flip on the site are also not included in

this approximation. In U → ∞ regime, the Hubbard-I

approximation may be considered as a good first ap-

proximation against which correlation corrections can be

considered (see, for example, [19–23]). Wherein some

spectral [24] and superconducting [25,26] properties of

strongly correlated systems are described adequately within

the specified approximation.

It can be seen that the closed system of equations of

motion in the used approximation is derived for a set of

operators X0σ
f l , X0σ̄

f l̄
, X σ̄ 0

f l , Xσ 0
f l̄
. Then the system of equations

for Green’s functions in the designated state subspace in the

quasi-momentum representation is written as

G−1(k, ω) · V = C; (5)

G−1(k, ω) =











ω − ξkl αklσ −σ1kl 0

α∗
kl̄σ ω − ξkl̄ 0 σ1kl̄

−σ1∗
kl 0 ω + ξkl αklσ

0 σ1∗
kl̄ α∗

kl̄σ ω + ξkl̄











;
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V =















〈〈X0σ
kl |B〉〉

〈〈X0σ̄
kl̄

|B〉〉

〈〈X σ̄ 0
kl |B〉〉

〈〈Xσ 0
kl̄

|B〉〉















;

C =
(

〈{X0σ
kl , B}〉, 〈{X0σ̄

kl̄ , B}〉, 〈{X σ̄ 0
kl , B}〉, 〈{Xσ 0

kl̄ , B}〉
)T

.

Matrix G−1 involved herein is an equivalent of inverse

matrix Green’s function after analytical continuation derived

in the Matsubara representation by the diagram technique

in an approximation including only loopless diagrams (see,
for example, [17,21,27]). The difference is that the

correlators are calculated from the complete Hamiltonian,

rather than from its diagonal part. The following notations

are introduced

ξkl = −µ + ηl1ε + 2ηltl(cos kx − cos ky),

αklσ = αl(sin ky + iσ sin kx ),

1kl = 21l(cos kx + cos ky), (6)

where tl = tHl , αl = 2αHl and 1l = 11Hl are renormalized

hopping, spin-orbit coupling and Cooper pairing parameters

between the nearest neighbors. In this case, the Hubbard

renormalizations H f lσ ≡ Hl are homogeneous on the lattice

and do not depend on the spin momentum projection, but

at 1ε 6= 0, they are different for different orbitals.

3.2. The effective Hamiltonian

In order to calculate the excitation spectrum we proceed

to a new
”
quasi-particle“ representation using an unitary

matrix U :

G−1V → G
−1Ṽ = UG−1U+UV = UC,

where

G
−1 = UG−1U+

= diag(ω − E1k , ω − E2k, ω + E1k , ω + E2k),

which eigenvalues are E jk ( j = 1, 2). The latter notation

actually describes the effective Hamiltonian diagonalization

problem

H̃(k) = ω − G−1(k). (7)

To determine the Dirac mass, it is initially enough to

perform diagonalization of this matrix for the topological

insulator (without superconductivity, 11 = 0). In this case

the effective Hamiltonian matrix is represented as a direct

sum of
”
Hamiltonians“ in the electron and hole subspaces

H̃ = H̃e ⊕ H̃h =

(

ξkl −αklσ

−α∗
kl̄σ ξkl̄

)

⊕

(

−ξkl −αklσ

−α∗
kl̄σ −ξkl̄

)

.

(8)
Eigen vectors for matrices H̃e and H̃h will be designated as

(ukσ , wkσ̄ )T and (vkσ , z kσ̄ )T , respectively.

In this approach, the Hubbard renormalizations

Hl = 1− 〈nl〉/2 and correlators 〈nl〉 are also determined

without considering the corrections for superconducting

pairing amplitude (11 = 0). As a result, a self-consistent

equation is derived from the correlator coupling with

Green’s function

〈nl〉 ≡
∑

σ

〈Xσ 0
f l X0σ

f l 〉 = HlI0 + ηlHlI1,

I0 =
∑

k

( f 1k + f 2k),

I1 =
∑

k

1

λk
[1ε + (HA + HB)tk/2]( f 2k − f 1k), (9)

where f 1,2k are the Fermi-Dirac functions corresponding to

the spectrum branches of topological insulator ε1,2k with the

periodic boundary conditions

ε1,2k = −µ +
HA − HB

2
tk ∓ λk ,

λk =
√

(1ε + (HA + HB)tk/2)2 + αkAσαkB σ̄ . (10)

Further, the excitation spectra and Dirac masses are

calculated in the zero temperature limit and the temperature

corrections in (9) are ignored.

3.3. Continual description

Consider the system in the vicinity of symmetric points

(kx0, ky0) = (0, π), (kx0, ky0) = (π, 0) at which inversion of

the topological insulator bands can occur [13]. Then,

cos kx → cx −
1

2
cx (kx − kx0)

2;

sin kx → cx (kx − kx0); cx = cos kx0, (11)

cos ky → cy −
1

2
cy (ky − ky0)

2;

sin ky → cy (ky − ky0); cy = cos ky0, (12)

Then, to proceed to the continuum description, the

following replacements are made

kx − kx0 → −i∂x , ky − ky0 → −i∂y ,

and electronlike and holelike wave functions of the effective

Hamiltonian with quasi-momenta p and q, respectively, will

be written as:
(

ukσ

wkσ̄

)

∼

(

uσ

w σ̄

)

ei(px x+py y);

(

ukσ

z kσ̄

)

∼

(

uσ

z σ̄

)

ei(qx x+qy y), (13)

where vectors (uσ , w σ̄ )T and (vσ , z σ̄ )T have a meaning

of envelope electronlike and holelike wave functions. Pro-

ceeding to the continuum description, the eigenproblem
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for the electron subspace will be written as (further
ml = −µ + ηl1ε + 2tlηl(cx − cy)):

(E −He)Ue

=

(

E−ml+ηltl(cx p2
x −cy p2

y) αl(cy py +iσ cx px )

αl̄(cy py −iσ cx px ) E−ml̄−ηltl̄(cx p2
x −cy p2

y)

)

×

(

ulσ

w l̄σ̄

)

=

(

0

0

)

. (14)

Wherein the problem for the hole subspace

(E −Hh)Uh = 0 can be derived from the above problem by

replacement ml → −ml, tl → −tl . Therefore, the obtained

results will be further also generalized to this case.

It should be noted that system of equations (14) shall

be expanded to calculate the excitation spectrum and edge

mode wave functions in the spatially limited lattice, because

the Hubbard renormalizations become dependent on the

coordinate. However, to determine the Dirac masses whose

ratio plays a role of topological invariant in higher-order

topological systems and to plot a topological phase diagram,

it will be sufficient to consider an idealized boundary for

which correlators 〈nl〉 are defined from equation (9) derived
for the periodic boundary conditions, and Hamiltonian

parameters (1) are unchanged near the boundaries. In

other words, a real system with boundaries shall be

described taking into account the appropriate corrections

that, however, do not result in change of fundamental

conclusions regarding the existence and implementation area

of topologically protected states. Such approach has been

used, for example, in [15,28].
In this regard, to calculate the topological invariant,

we will use the system of equations for homogeneous

correlators case (14) for which the type of solution depends

on the considered lattice boundary. To find conditions for

realization of topological corner states on the square-form

lattice, it is sufficient to use simple cases:

− in the case of the boundary along the Ox axis,

px → p, py → iλ : ℑ(p) = 0, ℜ(λ) > 0,

− in the case of the boundary along the Oy axis,

px → iν, py → q : ℑ(q) = 0, ℜ(ν) > 0.

4. Dirac mass calculation

The case when the system boundary is along the Ox axis

will be discussed in detail. Then, the Schrödinger equation

will be written as

(E −He)Ue

=

(

E−ml+ηltl(cx p2+cyλ
2) iαl(cyλ+σ cx p)

iαl̄(cyλ−σ cx p) E−ml̄−ηltl̄(cx p2+cyλ
2)

)

×

(

ulσ

w l̄σ̄

)

=

(

0

0

)

. (15)

The condition for the solution existence is

det(E −He) = − tAtBλ
4 + (b1E + b0)λ

2

+ (E2 + c1E + c0) = 0, (16)

where

b1 = cy(tA − tB);

b0 = −2cx cy tAtB p2 + αAαB − cy(tAmB − tB mA);

c1 = cx (tA − tB)p2 − mA − mB ;

c0 = −tAtB p4 − (cx (tAmB − tB mA) + αAαB)p2 + mAmB .

(17)
Then we have two solutions for r = λ2:

r1,2 =
b1E + b0

2tAtB
±

√

(b1E+b0)2+4tAtB(E2 + c1E+c0)

2tAtB
.

(18)
In the used approach for edge states whose wave functions

decay with distance from the boundary, solutions shall

satisfy condition ℜ(λ) > 0. Then in the parameter area of

interest, roots r1,2 are complex conjugate. In this case

λ1 6= λ2 =⇒ 9(x , y)

= C1

(

u1lσ

w1l̄σ̄

)

ei px−λ1y + C2

(

u2lσ

w2l̄σ̄

)

ei px−λ2y . (19)

Using the edge condition 9(x , y = 0) = 0, equations

for C1,2 are derived:

(

u1lσ u2lσ

w1l̄σ̄ w2l̄σ̄

)(

C1

C2

)

=

(

0

0

)

;

u1,2;lσ = −iαl(cyλ1,2 + σ cx p);

w1,2;l̄σ̄ = E − ml + ηltl(cx p2 + cyλ
2
1,2). (20)

Solvability condition of this system reduces to equation

ηlσ cx tl p(λ1 + λ2) = −ηlcy tlλlλ2 + E − (ml − ηlcx tl p2).
(21)

For λ1,2, the following relations are satisfied

λ21λ
2
2 = −

E2 + c1E + c0

tAtB
; λ21 + λ22 =

b1E + b0

tAtB
. (22)

These combinations may be obtained by twice squaring

equation (21). As a result, we obtain the equation of the

4-th degree by ω which, as can be easily seen, has a linear-

in-p solution (with t > 0, α > 0):

E = σ cx s(p − p0); s = 4
HAHB

HA + HB
α,

p0 = −σ cx
−µ(HA + HB) − 1ε(HA − HB)

4HAHBα
. (23)

The case without the Coulomb interaction is restored

from (23), if we put HA = HB = 1. In this case, it can

be seen that p0 = 0 at µ = 0 and the Dirac cone is centered
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Figure 1. a) System excitation spectrum: solid lines — numerical diagonalization of the effective Hamiltonian (7) with the periodic

boundary conditions along the Ox axis with 1000 sites and open boundary conditions along the Oy axis with 100 sites; various solid lines

correspond to various values of m; dashed lines — calculations using equation (23). Detail — scaled-up Dirac spectrum of edge states.

b) Electronlike wave function behavior for the quasi-momentum corresponding to the vertex of the Dirac spectrum cone; a — lattice

constant. System parameters in units t : µ = −0.25, α = 3/4, 1ε = 1, kx0 = π, ky0 = 0, σ = +1.

precisely in the expansion point (in this case kx0 = π).

Existence of the Hubbard renormalizations in the strong

correlation regime results in the moving of the Dirac point

in particular, at µ = 0 (displacement from point kx0 is

defined by p0). Comparison of the analytical expression

for the linear part of the excitation spectrum (dashed lines)

and numerical calculation of the system spectrum (solid

lines) with the boundary along the Ox axis are shown

in Figure 1. Comparison of the analytical and numerical

calculations is shown on the left side of Figure 1. The

numerical calculations were carried out by diagonalization

of the effective Hamiltonian (7) with the periodic boundary

conditions along direction Ox and open boundary con-

ditions along direction Oy . This allowed to introduce

quasi-momentum kx . While the Hubbard renormalizations

Hl in equation (4) were calculated self-consistently with

the excitation spectrum Ekx on the assumption of the

periodic boundary conditions along both spatial directions.

The analytical finding of the Dirac spectrum was carried

out using equation (23). Similar equations for the hole

components may be obtained by replacement E → E , which

are also shown in Figure 1. It can be easily seen that

the Dirac spectrum occurs symmetrically and for negative

quasi-momenta.

Using self-consistent equations (9), the Hubbard renor-

malization combinations included in (23) may be written

as

HAHB

HA + HB
=

1

2 + I0
,

HAHB

HA − HB
= −

1

I1
. (24)

In the most interesting case, when the chemical potential

lies in the gap between the spectrum branches ε1,2k and

edge states occur, I0 = 1 in the zero temperature limit.

Then, when strong correlations are considered, the Dirac

cone slope coefficient is 1.5 times lower than that in the

case when no interaction exists, for which s = 2α.

Using the solution of the system (20), the general form

of edge states wave functions can be written as

9
(e)
Ox (x , y ; p) =

1
√

NxNy
Fy ei px ,

where normalization factors are Nx =
∫ Lx

0
dx ,

Ny =
∫∞

0
(F+

y Fy)dy , Lx = Nx a is the lattice size along

the Ox axis, and

Fy =

(

u1σ u2σ

w1σ̄ u2σ

)

e−λ1y −

(

u1σ u2σ

u1σw2σ̄

)

e−λ2y . (25)

However, as mentioned above, the case when

λ1 = λ∗2 = λ is of interest. In this case, the wave function ex-

pression may be reduced to a simple form. For such simpli-

fication, assume that from system of equations (20) follows

ω1σ̄ u2σ = u1σω2σ̄ . Then, from (20) we get u1σ = −u∗
2σ and

w1σ̄ = w∗
2σ̄ . Finally, we deduce w2σ̄ = iu2σ . Then, the

following expressions for the edge state wave functions may

be derived easily

9
(e)
Ox(x , y ; p) =

√

2λ′

Nx

(

|λ|

|λ′′|

)(

−i
1

)

ei px−λ′y sin(λ′′y).

(26)

Physics of the Solid State, 2023, Vol. 65, No. 7
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9
(h)
Ox(x , y ; p) =

√

2λ′

Nx

(

|λ|

|λ′′|

)(

−i
−1

)

ei px−λ′y sin(λ′′y).

(27)
In the latter expressions λ′ = ℜ(λ), λ′′ = ℑ(λ). Taking this

into account, we obtain the final expression for the Dirac

mass in case of the boundary along the Ox axis (it is

sufficient to consider p = p0):

MDx = (9
(e)
Ox , 1̂9

(h)
Ox )

=
1

2
11σ (HA + HB)

[

2(cx + cy) − cx p2
0 − cy |λ|

2
]

;

1̂ = σ11(2cx + 2cy + cx∂
2
x + cy∂

2
y )

(

Hl 0

0 −H l̄

)

;

|λ|2 =

√

tAtB p4
0 + (cx(tAmB − tB mA) + αAαB)p2

0 − mAmB

tAtB
.

(28)
Operator 1̂ was obtained from off-diagonal matrix

blocks (5) when proceeding to the continual description.

Acting in the similar way, the edge state wave functions

can be easily derived for the periodic boundary conditions

along the Oy axis and for the open boundary conditions

along the Ox axis:

9
(e)
Oy(x , y ; q) = i

√

2ν ′

Ny

(

|ν |

|ν ′′|

)

(

−1

1

)

eiqy−ν′x sin(ν ′′x),

(29)

9
(h)
Oy(x , y ; q) = i

√

2ν ′

Ny

(

|ν |

|ν ′′|

)

(

−1

−1

)

eiqy−ν′x sin(ν ′′x).

(30)
In the latter expression ν ′ = ℜ(ν), ν ′′ = ℑ(ν), Ny =

=
∫ Ly

0
dy , Ly = Ny a is the lattice size along the Oy axis.

Therefore, the matrix element of the interaction operator

caused by the proximity-induced superconducting pairing at

the boundary along the Oy axis is written as:

MDy = (9
(e)
Oy , 1̂9

(h)
Oy )

=
1

2
11σ (HA + HB)[2(cx + cy) − cx |ν |

2 − cy q2
0];

|ν |2 =

√

tAtB q4
0 − (cy(tAmB − tBmA) − αAαB)q2

0 − mAmB

tAtB
,

q2
0 = p2

0. (31)

5. Topological invariant for the corner
modes

Sign change of the Dirac mass at the adjacent idealized

boundaries of the 2D higher-order topological supercon-

ductor is known to indicate the generation of topologically

protected corner Majorana modes. Therefore, ratio of the

Dirac masses obtained by the described approach on the

boundaries along the Ox and Oy axes may serve as a

topological invariant equivalent for such states:

MDx

MDy
=

2(cx + cy ) − cx p2
0 − cy |λ|

2

2(cx + cy ) − cx |ν |2 − cy p2
0

. (32)

For the given points (kx0, ky0) cx = −cy . Then |ν |2 = |λ|2

and the Dirac mass relation is equal to −1 throughout the

region where the solution with linear spectrum exists (23).
This region is defined from the condition that the bulk

energy spectrum of the topological insulator (without super-

conducting pairings) with the periodic boundary conditions

has a gap, i.e. the chemical potential is between the

lower Hubbard subbands (see (10)). Therefore, the cal-

culations use the Hubbard renormalizations defined exactly

by equations (9) without considering the boundary effects.

The boundaries of this phase are shown in Figure 2 on

the diagram in variables µ − 1ε with solid light lines for

parameters α = 3/4, 11 = 0.5, and the phase itself is

designated as MCM1 .

As shown above, the superconducting pairings in this

phase induce a mass in the Dirac spectrum of the topolo-

gical insulator, and, since the Dirac masses for the adjacent

boundaries have different signs, may result in appearance

of the Majorana corner modes in the 2D system with open

boundary conditions. When the chemical potential intersects

the Hubbard subbands, the bulk spectrum becomes gapless

and, thus, the type of solution at zero energy in the restricted

system changes and includes the contributions from the

bulk states and from the boundaries. Therefore, in this

parameter region, the developed approach to the Dirac mass

calculation becomes inappropriate.

Generally, when proceeding to the spatially limited 2D

lattice, the excitation energy of the Majorana corner modes

depends only on overlapping of localized mode wave

functions at different corners. Thus, with the increase

in the lattice sizes (the number of sites Nx ,y along the

boundary), the excitation energy of the Majorana corner

modes becomes exponentially low ∼ exp(−Nx ,y), and the

energy of the next (in order of magnitude) excitation is

defined by the Dirac mass ∼ 11 and corresponds to the

state localized along the lattice boundaries.

However, the corner modes with zero energy may exist

inside a wider region whose boundaries are shown in Fi-

gure 2 by dark solid lines. These lines define the boundaries

between the nodal phases designated as N, where the bulk

excitation spectrum is gapless, even when superconducting

pairings are considered, and the regions with the gap in

the bulk spectrum induced by the superconductivity. It

should be noted that these boundaries are defined from the

analysis of the quasi-particle spectrum of the system with

the periodic boundary conditions calculated using (5) and

taking into account the Cooper pairings. For this system,

the Hubbard renormalizations are spatially homogeneous

on the lattice. Thus, in the regions enclosed between

the dark and light solid lines and designated as MCM2,
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Figure 2. The topological phase diagram of HOTSC with

phase MCM1 in which the Dirac mass ratio equal to −1 allows

implementation of the Majorana corner modes. In phase MCM2 ,

the Dirac solution is absent, however, the Majorana corner modes

can appear in it as well (the explanation is given in the text

herein). In nodal phases N, HOTSC bulk spectrum is gapless

and no topological states occur. Dashed lines show the gap

closure conditions in the HOTSC edge spectrum for the discussed

approximate approach, however, no topological transitions occur

on these lines. The dotted lines in phase MCM1 are approximate

solutions obtained from Dirac mass vanishing. Parameters

α = 3/4, 11 = 0.5.

other corner mode formation mechanism is implemented

that is different from that described above. In regions

MCM2, the bulk spectrum of the topological insulator is

gapless, therefore (26)−(29) type solutions are absent when

the idealized boundaries are addressed. Incorporation of

superconductivity induces the gap both in the bulk and

edge spectra, instead of only resulting in the generation

of the Dirac mass in the linear spectra along the boundaries

like in phase MCM1. Whilst for the 2D system with open

boundary conditions in parametric phases MCM2, zero

corner modes may also occur (see [15]). Figure 2 shows that

when superconductivity is incorporated, transition between

phases MCM1 and MCM2 may be implemented without

any gap closure in the spectrum (to the left of the dashed

line in the region of the negative chemical potential values

and to the right of the dashed line with positive µ).
Consequently, the corner modes in phases MCM2 can be

also of Majorana type.

In [15], regions where topologically trivial phases are

implemented in the considered model were found and

designated as 0. Figure 2 does not show these phases,

because they border on phases N with lower and higher

chemical potential values than the range of µ addressed

herein. Whilst these regions are trivial without edge states,

because they correspond either to fully empty or fully

filled Hubbard bands in the topological insulator model.

Therefore the approach using the Dirac masses in also

inapplicable in these phases like in regions N and MCM2.

It should be noted that the Dirac masses may vanish. The

analytical expressions derived within the described approxi-

mate approach for the parameters at which MDx = MDy = 0

are written as (in accordance with the Dirac point position

in Figure 1, cx = −1 is considered herein):

1εc1,2 = −µ
HA + HB

HA − HB
− 2

HAHB

HA − HB

HA + HB

HA − HB

α2

t

+ 2
HAHB

HA − HB

α

t

√

(

HA + HB

HA − HB

)2

α2 + 8t2 + 4
µt

HA − HB
.

(33)
The obtained solutions are shown by dotted lines in

Figure 2. As noted above, the Hubbard factors included

in expression (33) do not depend on the site number in

the lattice and shall satisfy self-consistent equations (9)
with the selected parameters. New combinations of

Hubbard renormalizations may be also represented through

integrals I0, I1 calculated in (9):

HA + HB

HA − HB
= −

2 + I0
I1

,
1

HA − HB
= −

(2 + I0)2 − I21
4I1

.

(34)
Then using (24), expression (33) may be rewritten in terms

of I0 and I1 that, however, depend on HA, HB .

Zero Dirac masses indicate that the gap in the edge spec-

trum is closed when superconducting pairings are taken into

account. These conditions shall be considered only in phase

MCM1 with MDx/MDy = −1, because the Dirac solution is

absent in other regions. Figure 2 shows that the dotted lines

with zero Dirac masses in phase with MDx/MDy = −1 are

formed only near the phase boundaries. However, as shown

above, the gapless excitations induced on these lines do not

change relation MDx/MDy = −1 and do not result in the

topological transition.

The dashed lines show the conditions for gapless excita-

tion occurrence in the edge spectrum of the higher-order

topological superconductor which were obtained within the

numerical solution when constant correlator values on the

lattice were also addressed (9). It can be seen that in

phase MDx/MDy = −1, the analytical approximate solution

is near the numerical one. The differences are caused by

the fact that displacement p0 from points (kx0, ky0) near

the phase boundaries increases up to ≈ 0.5, as a result

the expansion (11) becomes inaccurate. The most well-

developed approach is applicable far from the boundaries

inside phase MCM1 (see Figure 1).
It should be noted that the boundary effects, e.g. depen-

dence of the Hubbard renormalizations on the distance from

the lattice boundaries may change the dashed line position.

However, this will not affect the topological phase diagram

description as long as the dashed line intersects the region

of phase MCM1. The fact that implementation of gapless

excitations in the edge spectrum in this phase of the higher-

order topological superconductor does not result in any

change of the topological invariant — the Dirac mass ratio

and, therefore, topological phase transition, means that the
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topological states in regions MCM2 have to be equivalent

to the states in MCM1 . It should be noted that in [13,15]
such transition was induced by means of variation of 10 of

the on-site superconducting pairings which were completely

suppressed when the Coulomb repulsion is high. As a result,

the Majorana corner modes shall be induced both on the

left and on the right of the dashed lines in regions MCM2.

6. Conclusions

To calculate the topological invariant — the Dirac

mass ratio on the adjacent boundaries of the higher-order

topological superconductor when ensemble of the Hubbard

fermion is formed in the extremely strong Coulomb corre-

lation regime (interaction parameter U → ∞), approximate

analytical expressions were obtained for the edge state wave

functions near the boundaries of the 2D lattice and the

corresponding Dirac energy spectrum with neglecting any

heterogeneities near the boundary. This allowed to describe

in detail the topologically non-trivial phase which admits the

appearance of the Majorana zero modes in the restricted

2D system.

Compared with the results for the model without inter-

actions, the approximate Dirac spectrum obtained for the

Dirac mass calculation taking into account the correlations

has a smaller angle and displaced Dirac point. Like in

the case without interactions, superconducting pairings that

occur, for example, due to the proximity effect in the topo-

logical insulator–superconductor structure result in opening

of the energy gap in the edge excitation spectrum (non-zero
Dirac mass). It is shown that, throughout the parametric

region where the described solutions are implemented, the

Dirac masses on the adjacent boundaries of the square

lattice have different signs resulting to the implementation

of a higher-order topological superconducting phase where

the Majorana modes localized in the lattice corners shall be

formed.

Possibility of corner mode appearance is also demon-

strated in the restricted parameter regions with gapless

excitations in the bulk energy spectrum of the topological

insulator obtained when the periodic boundary conditions

along both square lattice directions are addressed. In these

regions, the Dirac solution for edge conditions is absent

and the Dirac mass calculation approach offered herein is

not applicable. However, in this case Cooper pairings may

induce the gap both in the bulk and edge spectrum. It is

shown that these phases may be coupled with the phase

with non-trivial Dirac mass ratio on different boundaries by

means of parameter variation without gap closure in both

types of spectra. Thus, the corner modes occurring in the

considered regions are also topologically protected.

It is proved that gap closure in the edge spectrum in the

higher-order topological superconductivity phase does not

result in any topological phase transition. Other parameter

regions correspond to the nodal phases where the bulk

spectrum remains gapless even when superconductivity is

present or to topologically trivial phases described above.
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