05.3;06.5

Влияние деформации на параметры твердотельных фазовых переходов в политетрафторэтилене

© А.К. Борисов¹, В.М. Егоров¹, В.А. Марихин¹, Л.П. Мясникова¹, С.А. Цыганков²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² ООО "Формопласт", Санкт-Петербург, Россия E-mail: Borisov.ak@mail.ioffe.ru

Поступило в Редакцию 11 июля 2023 г. В окончательной редакции 30 августа 2023 г. Принято к публикации 7 сентября 2023 г.

> Методом дифференциальной сканирующей калориметрии исследовано влияние гидроэкструзии и ориентационной вытяжки на параметры твердотельных фазовых переходов в политетрафторэтилене. Проведенный сравнительный анализ пиков теплоемкости на основе теории размытых фазовых переходов первого рода показал значительное увеличение периода спирали макромолекул от наноуровня в исходном полимере до микроуровня в ориентированном. В последнем обнаружен эффект образования "сверхспирали". Высказано предположение о механизме трансформации надмолекулярной структуры полимера, наблюдающейся при ориентировании политетрафторэтилена.

> Ключевые слова: фазовый переход, политетрафторэтилен, надмолекулярная структура, гидроэкструзия, ориентационная вытяжка, дифференциальная сканирующая калориметрия.

DOI: 10.61011/PJTF.2023.20.56344.19682

Из всех известных полимеров политетрафторэтилен (ПТФЭ) наиболее химически стоек и биологически инертен, вследствие чего он нашел широкое практическое применение в разных областях, в том числе в радио- и электротехнике, медицине, в качестве химических волокон и т.д. [1]. Важным аспектом при использовании такого рода материалов является прогнозирование их физико-механических, в частности прочностных, свойств. Последние, как известно, определяются структурными особенностями строения полимера [2].

Структура ПТФЭ в температурном диапазоне твердофазных переходов (250–350 К) претерпевает по мере повышения температуры значительные изменения. В кристаллической части полимера происходит двойной фазовый переход (ФП): сначала наблюдается переход первого рода из структуры с триклинной элементарной ячейкой, существующей при $T < T_1$, в структуру, упаковка молекул в которой близка к гексагональной. При более высокой температуре T_2 ($T_2 > T_1$) происходит ФП второго рода, связанный с изменением конформации спиралеобразной молекулы ПТФЭ — увеличением периода спирали [3]. В настоящей работе методом дифференциальной сканирующей калориметрии (ДСК) исследовано влияние гидроэкструзии и ориентационной вытяжки на параметры твердотельных ФП в ПТФЭ.

Термодинамические параметры образцов ПТФЭ определялись на калориметре ДСК-500 фирмы "Спецприбор" в атмосфере азота при скорости сканирования 2 К/тіп. Температурная шкала калибровалась по точкам плавления льда (273.1 К) и индия (429.7 К), шкала теплового потока — по теплоемкости лейкосапфира. Измерения проводились в области температур 250–640 К. Вес образцов для испытаний составлял менее 5 mg, что уменьшало термосопротивление образца и соответственно методическую погрешность [4]. По площади пиков на экспериментальной зависимости $C_p(T)$ определялись энтальпия ΔH и энтропия ΔS переходов по соотношениям $\Delta H_{exp} = \int C_p(T) dT$ и $\Delta S_{exp} = \int C_p(T) d(\ln T)$. Степень кристалличности χ рассчитывалась по соотношению $\chi = 100\Delta H_m/\Delta H_m^0$, где ΔH_m — экспериментально измеренная энтальпия плавления, $\Delta H_m^0 = 69$ J/g — энтальпия плавления совершенного кристалла ПТФЭ [3].

Образцы ПТФЭ, предоставленные ООО "Формопласт" для калориметрических испытаний, были подготовлены следующим образом.

1. Исходным образцом (образец № 1) служил ПТФЭ, предварительно расплавленный при 620 К и медленно охлажденный до комнатной температуры T_{room} со скоростью 1 К/min.

2. В качестве заготовки для следующего образца использовался полимер, предварительно подвергнутый процедуре гидроэкструзии под давлением 52.7 МРа со степенью экструзионной вытяжки 2.8 при температуре 393 К, в результате чего получались стержни, из которых вырезали пленки толщиной < 0.5 mm (образец № 2).

3. Затем пленка № 2 подвергалась одноосному растяжению при комнатной температуре с образованием "шейки" при степени вытяжки ~ 9 (образец № 3).

Кривые ДСК в температурном диапазоне 250–330 К, представленные на рис. 1, позволили охарактеризовать термодинамические параметры эндотермического дублета для каждого образца.

Рис. 1. Кривые ДСК ПТФЭ, полученные при нагревании. Номера кривых соответствуют номерам образцов. Жирные черные кривые — экспериментальные данные, тонкие красные линии — расчетные кривые. Цветной вариант рисунка представлен в электронной версии статьи.

Как видно из рисунка, на всех кривых вблизи комнатной температуры наблюдается двойной эндотермический эффект при температурах Т1 и Т2. Известно (см. работу [5]), что ПТФЭ претерпевает необычный твердофазный переход в районе температур 282-303 К, при котором сначала происходит ФП первого рода из структуры с триклинной элементарной ячейкой в гексагональную, а затем ФП второго рода, связанный с изменением спиральной хиральности длинноцепочечной молекулы кристалла ПТФЭ, т.е. с изменением элемента симметрии кристалла. Эндотермический эффект при температуре Т₁ связан с ФП первого рода, который проявляется на кривой ДСК в виде симметричного сравнительно узкого размытого Λ -образного пика при температуре T_1 , тогда как $\Phi\Pi$ второго рода проявляется на кривой ДСК в виде широкого размытого λ-образного пика при температуpe *T*₂.

Анализ первого пика проводился согласно термодинамической теории самосогласованного поля применительно к Л-образным размытым ФП первого рода [6,7].

Соотношение для температурной зависимости теплоемкости в рамках этой теории имеет следующий вид:

$$\Delta C_p(T) = 4\Delta C_m \exp\left[B(T - T_1)/T_1\right]$$
$$\times \left[1 + \exp\left[B(T - T_1)/T_1\right]\right]^{-2}, \qquad (1)$$

где T_1 — температура $\Phi \Pi$ первого рода, ΔC_m — максимальное значение теплоемкости при $T = T_1$, B — атермический параметр.

Расчет теплоемкости на основе выражения (1) проводился по каждому из пиков со значениями T_1 и ΔC_m , соответствующими температурам и амплитудам максимумов пиков для каждого образца. На рис. 1 тонкими красными линиями показаны результаты расчетов. Наилучшее совпадение расчетных и экспериментальных зависимостей наблюдалось при значениях параметра *B*, указанных в таблице.

Параметр *В* в соотношении (1) содержит наиболее интересную информацию о физической природе ФП, поскольку он связан с величиной пика теплоемкости $\Delta C_m = q_0 B/4T_1$ и элементарным объемом превращения ω (зародышем новой фазы) соотношением $B = \omega \rho q_0 / kT_1$, где q_0 — теплота превращения, k постоянная Больцмана, ρ — плотность. Параметр ω оказывается структурно-чувствительным, поскольку определяет в материалах с размытыми ФП объемы зародышей новой фазы. Из приведенных соотношений можно найти объемы ω (плотность кристаллов ПТФЭ $\rho \sim 2$ g/cm³ [3]). Результаты расчета по этим соотношениям также представлены в таблице.

Из сравнения значений ω, приведенных в таблице, видно, что элементарные объемы областей зародышеобразования новой фазы, связанные с твердотельным переходом первого рода, заметно снижаются в образцах № 2 и 3 в сравнении с величиной для исходного образца № 1. В то же время в результате экструзии и вытяжки наблюдается существенный рост степени кристалличности. Мы предполагаем, что такое противоречивое поведение объясняется эволюцией надмолекулярной структуры (HMC) полимера при обработке.

В исходном образце НМС полимера, как это следует из приведенных в таблице данных по степени кристалличности, аморфная (неупорядоченная) часть составляет около половины объема полимера. Кристаллическая часть содержится в микрофибриллах, протяженность которых вдоль оси макромолекул составляет несколько сотен нанометров при их поперечном размере в несколько десятков нанометров (рис. 2). Внутреннее строение микрофибрилл в ПТФЭ изучено недостаточно. По аналогии со строением микрофибрилл в хорошо исследованном полиэтилене предполагается, что кристаллические участки внутри каждой микрофибриллы чередуются с неупорядоченными областями или областями с повышенным содержанием дефектов. Косвенное подтверждение этого следует из сравнения данных по элементарным объемам ω , приведенным в таблице, с объемами микрофибрилл, которые значительно превосходят ω . Из этого следует, что в одной микрофибрилле содержится значительное число кристаллических участков, разделенных либо участками с большим количеством дефектов, образующих фазовую поверхность, либо неупорядоченными областями. Последние состоят из проходных цепей, соединяющих между собой кристаллические участки, и петель с разной степенью свернутости. По нашему мнению, на поверхности кристаллических участков микрофибрилл образуются спиралеобразные "мотивы", повторяющие спиральность индивидуальной макромолекулы полимера. Это обстоятельство может

Рис. 2. Электронно-микроскопические снимки недеформированной структуры тефлона (*a*) и диспергированного с помощью ультразвука ориентированного тефлона (*b*).

Термодинамические параметры твердофазных переходов образцов ПТФЭ

Номер образца	<i>T</i> ₁ , K	$\Delta C_m, J/(\mathbf{g}\cdot\mathbf{K})$	В	$\Delta H_1, J/g$	ω , nm ³	<i>T</i> ₂ , K	$\Delta H_2, J/g$	$\Delta S, J/(K \cdot g)$	Ζ	χ, %
1	294.3	0.85	450	2.22	185	304.4	6.28	0.0160	14-15	51
2	293.5	0.52	205	2.98	130	301.2	0.84	0.0028	~ 90	68
3	292.5	0.5	180	3.25	105	298.8	0.20	0.0006	> 400	75

сказываться на межфибриллярном взаимодействии и, как следствие, на свойствах материалов, изготавливаемых из ПТФЭ.

Экструзия и вытяжка приводят к изменению НМС полимера, так как под действием напряжений происходит ориентация микрофибрилл и индивидуальных макромолекул в аморфной части вдоль оси экструзии и вытяжки. Ориентация сравнительно жестких микрофибрилл неизбежно связана с изгибами и накоплением внутренних дефектов под действием сдвиговых напряжений, что приводит к наблюдаемому снижению ω . Более гибкие макромолекулы в аморфной части полимера при ориентации образуют локальные участки с параллельной укладкой, в которых происходит "холодная" кристаллизация в процессе ориентирования при T_{room} . Таким образом, кажущееся противоречивое сочетание двух процессов связано с изменением НМС в аморфной и кристаллической частях полимера.

Выше отмечалось, что эндотермический эффект при температуре T_2 вызван ФП второго рода, обусловленным изменением конформационной энтропии ΔS . Последняя связана с периодом спирали цепи для одного мо-

ля N_a звеньев –CF₂– соотношением $\Delta S = (N_a k \ln 2)/Z$, где Z — число звеньев –CF₂– в одном периоде спирали [8]. Используя экспериментальные значения ΔS , приведенные в таблице, можно оценить величину Z для исследуемых образцов. Оказалось, что для исходного образца № 1 оценка величины Z дает 14–15 звеньев CF₂-групп в одном периоде спирали, что находится в хорошем согласии с литературными данными [3].

Как видно из рис. 1 (кривая 2), интенсивность перехода при T_2 для образца № 2 заметно снижается. Подобный эффект наблюдался на образцах ПТФЭ, подвергнутых γ -облучению и допированию диоксидом кремния [9]. Оценка величины Z по приведенному выше соотношению вследствие уменьшения энтропии ФП дает $Z \sim 90$, т. е. период спирали в сравнении с исходным образцом многократно увеличился.

На кривой ДСК для вытянутой пленки по-прежнему наблюдается переход при T_1 , а переход при T_2 для образца № 3 практически исчезает, проявляясь только в виде небольшого "предплечья" пика с T_1 со стороны высоких температур (кривая 3 на рис. 1). Оценить величину Z при этом довольно сложно, поскольку ве-

Рис. 3. Оптическая микрофотография образца № 3 ПТФЭ, демонстрирующая "сверхспираль" (a), и схема предполагаемого механизма ее образования (b).

личина теплового эффекта перехода оказывается сопоставима с погрешностью измерения прибора. Оценка этой величины приводит к значениям Z > 400, которые указывают на приближение исходной спиралевидной молекулы полимера к конформации типа "плоский зигзаг" и проявлению спиральности уже не в нано-, а в микроскопическом масштабе. Для конформации макромолекулы типа "плоский зигзаг" описанный выше конформационный переход при T_2 должен отсутствовать, так как при $Z \to \infty$ конформационная энтропия $\Delta S \to 0$.

Кроме изменений термодинамических параметров твердотельных переходов в образце № 3 визуально обнаружено формирование необычной спирали в масштабе всего образца (рис. 3, *a*). Период этой спирали значительно превосходит период спирали макромолекулы в кристаллической части микрофибриллы. Механизм образования спирали макроскопических размеров или "сверхспирали" неясен. В рамках настоящей работы можно предположить, что образование спирали макроскопических размеров связано с особенностями механизма взаимодействия микрофибрилл и их "укладки" в процессе образования "шейки" при вытяжке.

Выше отмечалось, что на поверхности кристаллических участков микрофибрилл образуются спиралеобразные "мотивы", повторяющие спиральность индивидуальной макромолекулы (рис. 3, *b*). Вследствие этого при параллельной укладке микрофибрилл образуется вариативное когезионное взаимодействие ван-дер-ваальсового типа (более слабое между участками микрофибрилл с несовпадающими "мотивами" спиральности и более сильное между участками с совпадающими "мотивами").

Образование "шейки" и значительное удлинение образца происходят за счет проскальзывания микрофибрилл относительно друг друга. При совпадении "мотивов" у соседних микрофибрилл проскальзывание будет сопровождаться их незначительным поворотом относительно оси, напоминающим механизм продольного движения в зубчатой спиральной передаче. На наш взгляд, эти незначительные повороты между отдельными микрофибриллами лежат в основе образования макроскопической "сверхспирали". Поскольку число контактов при этом носит статистический характер, можно ожидать, что расстояние между "сильными" контактами будет значительно превосходить период спирали индивидуальной макромолекулы полимера. В этом случае период этой "сверхспирали" будет определяться не только периодом спирали макромолекулы полимера, т.е. расстоянием между "сильными" контактами, но и кинетическими параметрами процесса вытяжки: температурой и временем вытяжки. В настоящее время выяснение процесса формирования "сверхспирали" требует дополнительных исследований.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Ю.К. Машков, З.Н. Овчар, В.И. Суриков, Л.Ф. Калистратова, Композиционные материалы на основе политетрафторэтилена (Машиностроение, М., 2005).
- [2] В.Р. Регель, А.И. Слуцкер, Э.Е. Томашевский, Кинетическая природа прочности твердых тел (Наука, М., 1974).
- [3] Б. Вундерлих, Физика макромолекул (Мир, М., 1984), т. 3.
 [B. Wunderlich, Macromolecular physics (Academic Press, N.Y., 1980), vol. 3.].
- [4] V.A. Bershtein, V.M. Egorov, *Differential scanning calorimetry* of polymers: physics, chemistry, analysis, technology (Ellis Horwood, N.Y., 1994), p. 253.
- [5] E.S. Clark, in *Physical properties of polymers handbook*, ed. by J.E. Mark (Springer, N.Y., 2007), p. 619–624. DOI: 10.1007/978-0-387-69002-5_38
- [6] М. Фишер, Природа критического состояния (Мир, М., 1968). [М.Е. Fisher, *The nature of critical points* (University of Colorado Press, 1965).].
- [7] Г.А. Малыгин, УФН, 171 (2), 187 (2001).
 DOI: 10.3367/UFNr.0171.200102c.0187 [G.A. Malygin, Phys. Usp., 44 (2), 173 (2001).
 DOI: 10.1070/pu2001v044n02ABEH000760].
- [8] В.М. Егоров, П.Н. Якушев, ФТТ, 60 (9), 1824 (2018).
 DOI: 10.21883/FTT.2018.09.46405.060 [V.M. Egorov, P.N. Yakushev, Phys. Solid State, 60 (9), 1874 (2018).
 DOI: 10.1134/S1063783418090093].
- [9] B.M. Егоров, П.Н. Якушев, M.A. Арсентьев, A.C. Смолянский, ΦTT, 62 (8), 1339 (2020).DOI: 10.21883/FTT.2020.08.49624.083 [V.M. Egorov, P.N. Yakushev, M.A. Arsent'ev, A.S. Smolyanskii, Phys. Solid State, 62 (8), 1506 (2020). DOI: 10.1134/S1063783420080132].