11,19

Высокотемпературная теплоемкость и термодинамические свойства германатов CaEu₂Ge₄O₁₂ и CaHo₂Ge₄O₁₂ в области 320-1050 К

© Н.А. Галиахметова, Л.Т. Денисова, Г.В. Васильев, В.М. Денисов

Сибирский федеральный университет, Красноярск, Россия E-mail: Idenisova@sfu-kras.ru

Поступила в Редакцию 6 июня 2023 г. В окончательной редакции 6 июня 2023 г. Принята к публикации 8 июня 2023 г.

> Последовательным обжигом на воздухе в интервале температур 1223–1373 К из стехиометрических смесей CaO, Eu₂O₃ (Ho₂O₃) и GeO₂ синтезированы германаты CaEu₂Ge₄O₁₂ и CaHo₂Ge₄O₁₂. С использованием рентгеновской дифракции уточнена их кристаллическая структура. Теплоемкость C_p полученных германатов измерена методом дифференциальной сканирующей калориметрии в области 320–1050 К. На основании экспериментальной зависимости $C_p(T)$ рассчитаны термодинамические характеристики анализируемых оксидных соединений.

> Ключевые слова: кальций-германаты европия и гольмия, твердофазный синтез, дифференциальная сканирующая калориметрия, высокотемпературная теплоемкость, термодинамические свойства.

DOI: 10.61011/FTT.2023.10.56332.102

1. Введение

После сообщения в 2006 г. о получении кальциевого тетраметагерманата иттрия CaY2Ge4O12 [1] появилось много работ по получению и исследованию других изоструктурных соединений (пр. гр. P4/nbm, число формульных единиц в ячейке Z = 2) [2–7]. Из полученных данных следует, что эти соединения перспективны для практического применения в качестве преобразователей лазерного излучения [2] и люминофоров [3-7]. Поэтому в опубликованных ранее работах основное внимание было уделено изучению как оптических свойств таких германатов, так и их кристаллической структуры. Несмотря на внимание к подобным соединениям, многие их свойства не исследованы до сих пор. В первую очередь это касается теплофизических свойств. При этом нужно иметь в виду, что использование подобных материалов на практике предполагает знание их поведения в условиях эксплуатации. Диаграммы состояния СаО-Еи2О3-GeO2 и СаО-Но2О3-GeO2 полностью не построены, а имеющиеся сведения относятся к граничащим бинарным системам: CaO-Eu₂O₃(Ho₂O₃) [8], Еи2O3(Ho2O3)-GeO2 [9-11], CaO-GeO2 [12,13]. Для компьютерного моделирования фазового равновесия в этих системах необходимы надежные сведения о термодинамических свойствах всех образующихся соединений. Такие сведения для систем CaO-Eu₂O₃-GeO₂ и CaO-Ho₂O₃-GeO₂ в литературе отсутствуют.

С учетом сказанного выше представлялось необходимым экспериментально определить высокотемпературные теплоемкости германатов $CaEu_2Ge_4O_{12}$ и $CaHo_2Ge_4O_{12}$ (в интервале температур 320-1050 K) и

на этом основании рассчитать их термодинамические свойства.

2. Методика экспериментов

Германаты CaEu₂Ge₄O₁₂ и CaHo₂Ge₄O₁₂ получали твердофазным методом. Для этого использовали СаО (ос.ч.), Eu₂O₃ и Ho₂O₃ (х.ч.), GeO₂ (99.99%). Их предварительно прокаливали: СаО — при температуре 1173 К в течение 2h; Eu₂O₃, Ho₂O₃ и GeO₂ при температуре 773 К в течение 1 h. Затем в стехиометрических соотношениях перетирали в агатовой ступке. После этого прессовали таблетки, которые обжигали на воздухе при 1223 К (в течение 10 h) и 1373 К (семь раз по 10 h). После каждого обжига образцы перетирали и снова прессовали. Контроль фазового состава синтезированных образцов проводили методом рентгенофазового анализа (использовался дифрактометр D8 ADVANCE фирмы Bruker с линейным детектором VANTEC, СиКа-излучение) подобно [14].

Теплоемкость германатов $CaEu_2Ge_4O_{12}$ и СаНо₂Ge₄O₁₂ измеряли на термоанализаторе STA 449 С Jupiter (NETZSCH, Германия) методом дифференциальной сканирующей калориметрии. Методика проведения экспериментов подобна описанной нами ранее [15]. Экспериментальные результаты обрабатывали с помощью пакета программ NETZSCH Proteus Thermal Analysis и лицензионной программы Sistat Sigma Plot (Sistat Software Inc., США). Ошибка экспериментов не превышала 2%.

Рис. 1. Влияние температуры на молярную теплоемкость CaEu₂Ge₄O₁₂. *1* — расчет методом Неймана-Коппа, *2* — эксперимент, сплошная линия — аппроксимирующая кривая.

Рис. 2. Влияние температуры на молярную теплоемкость CaHo₂Ge₄O₁₂. *1* — расчет методом Неймана-Коппа, *2* — эксперимент.

3. Результаты и обсуждение

Дифрактограммы исследованных германатов были проиндицированы на основе тетрагональной решетки (пр. гр. *P4/nbm*). Полученные нами данные о параметрах элементарных ячеек в сравнении с результатами других авторов приведены в табл. 1. Видно, что они достаточно хорошо согласуются между собой.

На рис. 1 и 2 показано влияние температуры на молярную теплоемкость CaEu₂Ge₄O₁₂ и CaHo₂Ge₄O₁₂. Сглаживание экспериментальных кривых $C_p(T)$ проводили с использованием программы Sistat Sigma Plot, подбирая аппроксимационные уравнения. Наилучшим полиномом, описывающим температурные зависимости теплоемкости в исследуемом интервале температур, является уравнение Майера–Келли [16]:

$$C_p = a + bT - cT^{-2}, (1)$$

которое для $CaEu_2Ge_4O_{12}$ и $CaHo_2Ge_4O_{12}$ имеет, соответственно, следующий вид (J/(K mol):

$$C_p = (418.10 \pm 1.74) + (56.27 \pm 1.80) \cdot 10^{-3}T$$
$$- (48.24 \pm 1.72) \cdot 10^5 T^{-2}, \quad (2)$$
$$C_p = (438.02 \pm 0.91) + (18.31 \pm 0.90) \cdot 10^{-3}T$$

$$-(68.89\pm0.91)\cdot10^{5}T^{-2}.$$
 (3)

Коэффициенты корреляции между экспериментально измеренными значениями теплоемкости и точками сглаживающих кривых (2) и (3) равны 0.9978, 0.9992, а максимальное отклонение экспериментальных значений от сглаживающих кривых составляет 1.50 и 0.79%.

Отсутствие различного рода экстремумов на зависимостях $C_p(T)$ дает основание считать, что в области 320-1050 K у этих соединений нет полиморфных превращений.

Сравнить полученные значения теплоемкостей $CaEu_2Ge_4O_{12}$ и $CaHo_2Ge_4O_{12}$ с данными других авторов не представлялось возможным вследствие их отсутствия. Поэтому был проведен расчет $C_p(T)$ этих германатов методом Неймана-Коппа [17]. Для этого исходные данные брали из литературы: $Eu_2Ge_2O_7$ — из работы [18], $Ho_2Ge_2O_7$ — из [19], CaO — из [20], GeO_2 — из [21].

Из рис. 1 и 2 видно, что рассчитанные значения теплоемкости близки к экспериментальным величинам только при низких температурах.

Расчет C_p исследуемых германатов при 298 К проводили методом Неймана-Коппа (НК) [17], инкрементным методом Кумока (ИМК) [22] и Келлога (Кел) [23] (в последнем случае только для CaHo₂Ge₄O₁₂, так как для Еu нет исходных данных). Сравнение этих результатов

Таблица 1. Параметры элементарной ячейки германатов CaEu₂Ge₄O₁₂ и CaHo₂Ge₄O₁₂

Порометри	CaEu ₂ C	Ge_4O_{12}	CaHo ₂ Ge ₄ O ₁₂	
параметры	Наст. работа	[4]	Наст. работа	[2,4]
Пр. гр. $a = b$. Å	P4/nbm	P4/nbm	P4/nbm	P4/nbm
	10.10223(6)	10.09892(8)	9.99693(5)	9.99176(4)
$\begin{array}{c}c, \text{ \AA}\\V, \text{ \AA}^3\end{array}$	5.11576 (5)	5.11491(5)	5.06974(4)	5.06810(2)
	522.089	521.660	506.663	505.975

Таблица 2. Сравнение аппроксимации экспериментальных значений теплоемкости в соответствии с уравнением Майера-Келли (МК) германатов $CaEu_2Ge_4O_{12}$ и $CaHo_2Ge_4O_{12}$ при 298 К с рассчитанными различными методами (J/(mol·K))

Германат	МК	НК	ИМК	Кел
CaEu ₂ Ge ₄ O ₁₂	380.6	386.9 (1.66)	386.3 (1.50)	_
CaHo ₂ Ge ₄ O ₁₂	365.9	377.18 (3.08)	378.9 (3.55)	371.95 (1.65)

<i>Т</i> , К	$C_p,$ J/(mol·K)	$H^{\circ}(T)-H^{\circ}(320\mathrm{K})$ kJ/mol	$S^{\circ}(T) - S^{\circ}(320 \mathrm{K}) \mathrm{J/(mol \cdot K)}$	$-\Delta G/T^*,$ J/(mol·K)
320	389.0	_	_	_
350	398.5	11.82	35.29	1.53
400	410.5	32.06	89.32	9.18
450	419.6	52.82	138.2	20.85
500	427.0	73.99	182.8	34.85
550	433.1	95.50	223.8	50.19
600	438.5	117.3	261.7	66.26
650	443.3	139.3	297.0	82.67
700	447.7	161.6	330.1	99.18
750	451.8	184.1	361.1	115.6
800	455.6	206.8	390.4	131.9
850	459.3	229.6	418.1	147.9
900	462.8	252.7	444.4	163.6
950	466.3	275.9	469.6	179.1
1000	469.6	299.3	493.6	194.2
1050	472.8	322.9	516.6	209.3
	-			

Таблица 3. Термодинамические свойства CaEu₂Ge₄O₁₂

Примечание. * $\Delta G/T = [H^{\circ}(T) - H^{\circ}(320 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(320 \text{ K})].$

Таблица 4. Термодинамические свойства CaHo₂Ge₄O₁₂

Т, К	C_p , J/(mol · K)	$H^{\circ}(T)-H^{\circ}(320\mathrm{K})$ kJ/mol	$\frac{S^{\circ}(T) - S^{\circ}(320 \mathrm{K})}{\mathrm{J}/(\mathrm{mol} \cdot \mathrm{K})}$	$-\Delta G/T^*, \ { m J/(mol \cdot K)}$
320	376.6	_	_	—
350	388.2	11.5	34.28	1.48
400	402.3	31.3	87.10	8.94
450	412.2	51.6	135.1	20.33
500	419.6	72.4	178.9	34.03
550	425.3	93.6	219.2	49.06
600	429.9	115.0	256.4	64.80
650	433.6	136.5	291.0	80.89
700	436.8	158.3	323.2	97.06
750	439.5	180.2	353.4	113.1
800	441.9	202.2	381.9	129.1
850	444.0	224.4	408.7	144.7
900	446.0	246.6	434.2	160.1
950	447.8	269.0	458.3	175.2
1000	449.4	291.4	481.3	189.9
1050	451.0	313.9	503.3	204.3

Примечание. * $\Delta G/T = [H^{\circ}(T) - H^{\circ}(320 \text{ K})]/T - [S^{\circ}(T) - S^{\circ}(320 \text{ K})].$

с величинами, рассчитанными по уравнениям (2) и (3), приведено в табл. 2 (в скобках — отклонение, %).

Можно отметить, что лучшее согласие с экспериментом наблюдается для $CaEu_2Ge_4O_{12}$.

С использованием соотношений (2) и (3) по известным термодинамическим уравнениям [17] для кальций германатов европия и гольмия рассчитаны изменения энтальпии $(H^{\circ}(T)-H^{\circ}(320 \text{ K}))$, энтропии $(S^{\circ}(T)-S^{\circ}(320 \text{ K}))$ и энергии Гиббса ΔG .

Полученные результаты приведены в табл. 3 и 4 соответственно.

Из представленных данных следует, что при всех исследованных температурах значения C_p для этих гер-

манатов не превышают предел Дюлонга-Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице соответствующего оксидного соединения.

4. Заключение

Твердофазным синтезом получены германаты $CaEu_2Ge_4O_{12}$ и $CaHo_2Ge_4O_{12}$. Исследовано влияние температуры на их молярную теплоемкость. Установлено, что в интервале температур 320–1050 К зависимость $C_p = f(T)$ хорошо описывается уравнени-

ем Майера-Келли. По экспериментальным данным по теплоемкости рассчитаны термодинамические свойства оксидных соединений.

Финансирование работы

Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- H. Yamane, R. Tanimura, T. Yamada, J. Takahashi, T. Kajiwara, M. Shimada. J. Solid State Chem. **179**, *1*, 289 (2006).
- [2] В.Г. Зубков, И.И. Леонидов, А.П. Тютюнник, Н.В. Таракина, И.В. Бакланова, Л.А. Переляева, Л.Л. Сурат. ФТТ 50, 9, 1635 (2008).
- [3] N.V. Tarakina, V.G. Zubkov, I.I. Leonidov, A.P. Tyutyunnik, L.L. Surat, J. Hadermann, G. van Tedeloo. Z. Kristallogr. Suppl. 30, 401 (2009).
- [4] V.G. Zubkov, N.V. Tarakina, I.I. Leonidov, A.P. Tyutyunnik, L.L. Surat, A.M. Melkozerova, E.V. Zabolotskaya, D.G. Kellerman. J. Solid State Chem. 183, 1186 (2010).
- [5] M.A. Melkozerova, N.V. Tarakina, L.G. Maksimova, A.P. Tyutyunnik, L.L. Surat, I.I. Leonidov, V.G. Zubkov, E.V. Zabolotskaya, R.F. Samigullina. J. Sol-Gel Sci. Technol. 59, 338 (2011).
- [6] V.G. Zubkov, I.I. Leonidov, A.P. Tyutyunnik, N.V. Tarakina, L.L. Surat, L.A. Perelyaeva, I.V. Baklanova, O.V. Koryakova. J. Lumin. **129**, 1625 (2009).
- [7] I.I. Leonidov, V.G. Zubkov, A.P. Tyutyunnik, N.V. Tarakina, L.L. Surat, O.V. Koryakina, E.G. Vovkotrub. J. Alloys Compd. 509, 1339 (2011).
- [8] П.А. Арсеньев, Л.М. Ковба, Х.С. Багдасаров, Б.Ф. Джуринский, А.В. Потемкин, Б.И. Покровский, Ф.Н. Спиридонов, В.А. Антонов, В.В. Илюхин. Соединения редкоземельных элементов. Системы с оксидами элементов I–III групп. Наука, М. (1983). 280 с.
- [9] Л.Н. Демьянец, А.Н. Лобачев, Г.А. Емельяненко. Германаты редкоземельных элементов. Наука, М. (1980). 152 с.
- [10] И.А. Бондарь, Н.В. Виноградова, Л.Н. Демьяненко, Ж.А. Ежова, В.В. Илюхин, В.Ю. Кара-Ушанов, Л.Н. Комиссарова, Е.В. Лазаревски, Б.Н. Литвин, П.П. Мельников, Д.А. Мурашов, В.П. Орловский, К.К. Палкина, М.А. Петрова, И.А. Розанов, Н.Н. Чудинова, А.А. Фотиев. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. Наука, М. (1983). 288 с.
- [11] К.И. Портной, Н.И. Тимофеева. Кислородные соединения редкоземельных элементов. Металлургия, М. (1986). 480 с.
- [12] Н.А. Торопов, В.П. Барзаковский, В.В. Лопатин, Н.Н. Кудрявцева. Диаграммы состояния силикатных систем. Двойные системы. Справочник. Вып. 1. Наука, Л. (1969). 822 с.

- [13] M.O. Marychev, I. Koseva, G. Gencheva, R. Stoyanova, R. Kukeva, V. Nikolov. J. Cryst. Growth 461, 46 (2017).
- [14] Л.Т. Денисова, М.С. Молокеев, Н.А. Галиахметова, В.М. Денисов, Н.В. Белоусова. ЖФХ 96, 5, 615 (2022).
- [15] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы 53, 1, 71 (2017).
- [16] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 3234 (1932).
- [17] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman. Thermochim. Acta 395, 27 (2003).
- [18] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, Н.В. Белоусова, В.М. Денисов. Неорган. материалы 54, 2, 181 (2018).
- [19] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, Н.В. Белоусова, В.В. Белецкий, В.М. Денисов. Неорган. материалы 54, 4, 382 (2018).
- [20] Ю.Д. Третьяков. Твердофазные реакции. Химия, М. (1978). 360 с.
- [21] И.В. Тананаев, М.Я. Шпирт. Химия германия. Химия, М. (1967). 451 с.
- [22] В.Н. Кумок. В сб.: Прямые и обратные задачи химической термодинамики / Под ред. В.А. Титова. Наука, Новосибирск (1987). С. 108.
- [23] P.J. Spencer. Thermochim. Acta, 314, 1 (1998).

Редактор Е.Ю. Флегонтова