О поведении натрия в стеклах R7/T7 при облучении электронным пучком

© В.А. Кравец, Т.Б. Попова

04

Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия E-mail: vladislav2033@yandex.ru

Поступила в Редакцию 27 июля 2023 г. В окончательной редакции 27 июля 2023 г. Принята к публикации 1 августа 2023 г.

Представлено феноменологическое описание явлений, происходящих при облучении электронным пучком натрийсодержащих стекол R7/T7, предназначенных для иммобилизации ядерных отходов. Стекла были исследованы следующими методами: локальная катодолюминесценция, рентгеноспектральный микроанализ.

Ключевые слова: катодолюминесценция, боросиликатные стекла R7/T7, изменение состава.

DOI: 10.61011/FTT.2023.10.56319.96

1. Введение

Элементный состав и люминесцентные свойства оксидных материалов, содержащих натрий, крайне восприимчивы к облучению электронным пучком. Известным в рентгеноспектральном микроанализе является эффект термической диффузии натрия из облучаемого электронным пучком микрообъёма образца [1,2]. Известен эффект кластеризации натрия в стекле [3]. Данное явление объясняется полевой миграцией подвижных положительных ионов натрия в область стекла, отрицательно заряженную электронным пучком.

Также известен эффект падения интенсивности катодолюминесценции (КЛ) в люминесцентных стеклах, содержащих натрий. Данное падение КЛ связано с формированием в образце дефектов (центров безызлучательной рекомбинации), ассоциированных с диффузией натрия из сетки стекла [4,5]. Целью настоящей работы является феноменологическое описание явлений, происходящих при облучении электронным пучком натрийсодержащих стекол R7/T7, предназначенных для иммобилизации ядерных отходов [6,7]. Стекла были исследованы следующими методами: локальная катодолюминесценция, рентгеноспектральный микроанализ.

2. Образец

В качестве исследуемого образца было выбрано оксидное стекло, используемое для иммобилизации ядерных отходов "R7/T7" следующего состава:

mol%: (45.2SiO₂ $-17.3B_2O_3-3.9Al_2O_3-27.7Na_2O-6CaO$ -0.6Eu₂O₃), где в качестве люминесцентных центров выступают ионы Eu³⁺.

Eu³⁺, обладает интенсивной люминесценцией в красном оптическом диапазоне. Также Eu³⁺ можно использовать в качестве люминесцентного зонда, спектр которого крайне чувствителен к структурным изменениям легированного материала [8–10].

Образец был синтезирован методом варки шихты в корундовом тигле. Шихта нагревалась до 1480°С и выдерживалась около 60 min. в воздушной атмосфере. Более подробно процесс синтеза образца описывается [11].

3. Методы исследования

Для исследования элементного состава образцов использовался метод рентгеноспектрального микроанализа (ЕРМА). Люминесцентные свойства исследовались методами локальной катодолюминесценции (CL).

Для исследования образцов методами CL и EPMA использовался электронно-зондовый микроанализатор CAMEBAX (Cameca, Франция, 1984), совмещенный с катодолюминесцентной станцией оригинальной конструкции [12]. Так как исследования методами CL и EPMA проводятся на одном приборе, имеется возможность анализировать состав и регистрировать спектры КЛ в одной и той же области образца.

Для обеспечения стока заряда на образцы напылялась углеродная пленка с использованием вакуумного универсального поста JEE-4C (JEOL, Япония).

3.1. ЕРМА, X-ray-спектры и условия облучения образца в микроанализаторе.

Поставлена задача определить изменение состава стекла в области облучения его электронным зондом, за счет перемещения атомов натрия. Мы определяем не абсолютные концентрации элементов в стекле, а их изменение под воздействием электронного зонда. Поэтому мы можем ограничиться измерением интенсивности аналитических рентгеновских линий элементов, которые пропорциональны массовым концентрациям элементов с точностью до "поправок микроанализа" [13,14]. Нас интересует перемещение атомов натрия и соответственно изменение его концентрации в исследуемом объеме. Но изменение концентрации одного элемента соответственно ведет к изменению концентраций всех остальных элементов. Поэтому судить о перемещении натрия и изменении состава под действием зонда можно и при измерении интенсивности аналитических линий других элементов. Помимо измерения изменения интенсивности непосредственно линии Na($K\alpha$), мы проводили измерения по линии Si($K\alpha$), так как кремния в стекле больше чем других элементов и точность измерения по этой линии максимальна.

1. Облучение образца с плотностью тока $J = 10 \text{ nA}/\mu\text{m}^2$.

Облучение образцов при ускоряющем напряжении электронов 15 keV с плотностью тока $J = 10 \text{ nA}/\mu\text{m}^2$ проводилось в течение 1 min. Радиус электронного пучка составлял 5 μ m. Изменение состава образца при облучении электронным пучком исследовалось в процессе облучения in situ.

2. Облучение образца с плотностью тока $J = 100 \text{ nA}/\mu\text{m}^2$.

Облучение образцов с плотностью тока $J = 100 \text{ nA}/\mu\text{m}^2$ проводилось в течение 1 min. Изменение состава образца в месте облучения электронным пучком исследовалось после облучения при плотности тока $J = 10 \text{ nA}/\mu\text{m}^2$ также в течение 1 min. Ускоряющее напряжении электронов составляло 15 keV. Радиус электронного пучка составлял 5 μ m.

3.2. СL и CL-микроскопия

СL-свойства исходного стекла и областей, подвергнутых облучению, исследовались куда меньшими токами электронного пучка ($J = 0.1 \text{ nA}/\mu\text{m}^2$), при которых не происходит существенных изменений состава и люминесцентных свойств образца. Все спектры CL и изображения CL были получены при ускоряющем напряжении электронов 15 keV с плотностью тока $J = 0.1 \text{ nA}/\mu\text{m}^2$. При получении секторов CL радиус электронного пучка составлял 5 μ m.

Стоить отметить что глубина проникновения электронного пучка в образец стекла R7/Г7 при ускоряющем напряжении электронов 15 keV составляет $\sim 2 \,\mu$ m, а глубина залегания под поверхностью стекла области максимальных энергетических потерь электронов $\sim 0.5 \,\mu$ m.

4. Результаты и обсуждение

4.1. СL и CL-микроскопия

Были получены спектры CL из разных областей облученного стекла рис. 1 (слева). Результаты облучения стекол продемонстрированы рис. 1 (справа) с помощью метода CL-микроскопии. На рис. 1, *а* представлен спектр

Физика твердого тела, 2023, том 65, вып. 10

СL изначального стекла, до облучения большими плотностями электронного тока. В спектре видны переходы Eu^{3+} характерные, для боросиликатных стекол [14,15].

При облучении электронным пучком с плотностью тока $J = 10 \text{ nA}/\mu\text{m}^2$ было зарегистрировано, уменьшение интенсивности CL спектра Eu³⁺ в облучаемой области (рис. 1, *b*). Подобное снижение интенсивности CL, (уже описывалось ранее во введении), ассоциируется с диффузией натрия из облучаемой области стекла [4,5].

При облучении электронным пучком с плотностью $J = 100 \text{ nA}/\mu\text{m}^2$ было зарегистрировано: уменьшение интенсивности CL спектра Eu³⁺ в облучаемой области (рис. 1, *c*), поверхностные электростатические разряды [16] и соответствующие им треки (рис. 1, *d*). Подобные электростатические разряды не наблюдались авторами при облучении стекол, не содержащих щелочные компоненты. Это косвенно может свидетельствовать о том, что Na участвует в формировании треков электростатических разрядов.

При этом и в облучаемой области, и в области поверхностных электростатических разрядов наблюдалось значительное изменение цвета CL в микроскопе, в данной области было зарегистрировано появление синей широкой полосы в спектрах CL с максимумом в области 450 nm. Данная полоса имеет времена жизни менее 100 ns и вероятно связанна с изменением валентности $Eu^{3+} \rightarrow Eu^{2+}$ при облучении электронным пучком [17]. Однако данное предположение нуждается в дополнительных исследованиях.

4.2. ЕРМА и Х-гау-спектры

Наблюдаемые явления могут быть связанны с изменением состава стекла при воздействии электронного пучка. Для этого была определена динамика изменения содержания Na и Si при непрерывном облучении электронным пучком. При этом измерение содержания Na и Si в облученной области с плотностью тока $J = 10 \text{ nA}/\mu\text{m}^2$ происходило одновременно с облучением. А измерение динамики содержания Na и Si в облученной области с плотностью тока $J = 100 \text{ nA}/\mu\text{m}^2$ происходило после облучения при плотности тока $J = 10 \text{ nA}/\mu\text{m}^2$.

Результаты представлены на рис. 2, *а* для области облученной $J = 10 \text{ nA}/\mu\text{m}^2$ и на рис. 2, *b* для области облученной $J = 100 \text{ nA}/\mu\text{m}^2$. При этом (слева) на рис. 2 представлена динамика интенсивности X-гау линии Na($K\alpha$) (и соответственно изменение содержания Na в облучаемой области образца), а (справа) на рис. 2 представлена интенсивности X-гау линии Si($K\alpha$) (и соответственно изменение Si в облучаемой области образца), а (справа) на рис. 2 представлена интенсивности X-гау линии Si($K\alpha$) (и соответственно изменение содержания Si в облучаемой области образца). Резкие колебания интенсивности объясняются статистической природой рентгеновского излучения. На вставках на рис. 2 изображены собственно X-гау-спектры линий Na($K\alpha$) и Si($K\alpha$) исследуемого образца.

Для области облученной $J = 10 \text{ nA}/\mu\text{m}^2$ наблюдается уменьшение содержания Na. Данный эффект объясня-

Рис. 1. СL спектры, полученные из областей образца с разной плотностью облучения: *a*) спектры исходного стекла, *b*) спектры из области облученной при $J = 10 \text{ nA}/\mu\text{m}^2$, *c*) спектры из области облученной при $J = 100 \text{ nA}/\mu\text{m}^2$, *d*) спектры из области, где наблюдались поверхностные электростатические разряды.

Рис. 2. ЕРМА-исследование. Х-гау-интенсивность Na($K\alpha$) (слева) и Si($K\alpha$) (справа) при непрерывном облучении электронным пучком. a — для области облученной $J = 10 \text{ nA}/\mu\text{m}^2$, b — для области облученной $J = 100 \text{ nA}/\mu\text{m}^2$. На вставках изображены Х-гау-спектры Na($K\alpha$) и Si($K\alpha$).

Рис. 3. ЕРМА-исследование. Сглаженные и нормированные X-гау-интенсивности Na($K\alpha$) и Si($K\alpha$) при непрерывном облучении электронным пучком. Сверху: для области облученной $J = 10 \text{ nA}/\mu\text{m}^2$. Снизу: для области облученной $J = 100 \text{ nA}/\mu\text{m}^2$.

ется термической диффузией натрия из облучаемой области стекла [1,2].

Для области облученной $J = 100 \text{ nA}/\mu\text{m}^2$ наблюдается увеличение содержания Na. Данный эффект может объясняться образованием обеднённой натрием области стекла (область, подвергнутая облучению) из-за кластеризации натрия [3,18]. Обеднение натрием облучаемой области происходит из-за миграции натрия из сетчатой структуры стекла в кластеры, что создаёт градиент концентрации между облучаемой и не облучаемой областью стекла. Это приводит к наблюдаемому перемещению натрия в облучаемую область из-за градиента концентраций.

Если предположить, что облучение электронным пучком приводит к изменениям содержания именно натрия, то изменение содержания Si в стекле при изменении массового содержания Na имеет вид

$$-\Delta \mathrm{Si} = \Delta \mathrm{Na} \cdot M_{\mathrm{Si}} / \sum M_{\mathrm{All-Na}},$$

где ΔSi — изменение массовой концентрации Si в материале, ΔNa — изменение массовой концентрации Na в материале, M_{Si} — массовая концентрации кремния в материале и $\sum M_{All-Na}$ — сумма массовых концентраций всех элементов в материале, без (за вычетом) Na. При этом величина $M_{Si}/\sum M_{All-Na}$ — константа при изменении содержания Na.

Таким образом, изменения в содержании Si должны с точностью до константы симметрично повторять изменения в содержании Na в материале: $-\Delta Si \sim \Delta Na$.

На рис. 3. продемонстрированы нормализованные и сглаженные (обработанные) кривые изменения интенсивности излучения X-гау линий $Na(K\alpha)$ и $Si(K\alpha)$ при непрерывном облучении электронным пучком.

С учетом погрешностей изменения концентраций Si и Na в материале симметричны относительно друг друга $-\Delta Si \sim \Delta Na$. Таким образом, можно констатировать, что наблюдаемое изменение концентрации Si в облучаемом материале происходит за счет либо термической диффузии Na, либо кластеризации Na в облучаемой области материала.

Это косвенно подтверждает факт, что в стекле происходят изменения состава только из-за Na, если бы происходило изменение в содержании других элементов, то кривые на рис. 3, не были бы симметричными.

5. Заключение

При облучении электронным пучком, было зарегистрировано уменьшение интенсивности CL спектра Eu³⁺ в облучаемой области и поверхностные электростатические разряды и соответствующие им треки. Было замечено значительное изменение состава в области, подвергшейся длительному облучению электронным пучком. Были зафиксированы процессы, связанные как с термической диффузией натрия из облучаемой области, так и процессы, связанные с кластеризацией натрия в стекле. При этом в области, облученной с плотностью электронного тока $J = 10 \, \text{nA}/\mu\text{m}^2$ превалируют процессы термической диффузии Na, а в области облученной с плотностью электронного тока $J = 100 \text{ nA}/\mu\text{m}^2$ превалируют процессы кластеризации Na. Таким образом, было показано, что состав стекол серии R7/T7 не стабилен при воздействии электронного пучка. Это вызывает сомнения для целесообразности использовании данного стекла для отработки радиоактивных материалов.

Благодарности

Авторы выражают благодарность коллективу лаборатории "Диффузии и дефектообразования в полупроводниках" ФТИ им. А.И. Иоффе.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] D.M. Usher. C14, 2039 (1981).
- [2] H. Bach. Rad. Effects 28, 215 (1976).
- [3] E.S. Bochkareva, N.V. Nikonorov, O.A. Podsvirov, M.A. Prosnikov, A.I. Sidorov. Plasmonics **11**, 241 (2016).
- [4] M. Kayama, H. Nishido, M. Lee, K. Ninagawa. Am. Mineralogist 99, 1, 65 (2014).
- [5] N. Ollier, B. Boizot, P. L'henoret, S. Guillous, G. Petite. J. Appl. Phys. 11 (2009).

- [6] M.I. Ojovan, W.E. Lee, S.N. Kalmykov. Elsevier, Amsterdam, The Netherlands (2005). 497 p.
- [7] P. Frugier, S. Gin, L.D. Windt, G. Santarini. J. Nucl. Mater. 380, 1, 8 (2008).
- [8] E.V. Ivanova, V.A. Kravets, K.N. Orekhova, G.A. Gusev, T.B. Popova, M.A. Yagovkina, O.G. Bogdanova, B.E. Burakov, M.V. Zamoryanskaya. J. Alloys Compd. 808 (2019).
- [9] V. Kravets, E.V. Ivanova, M.I. Moskvichev, M. Zamoryanskaya. Opt. Spectroscopy 129, 2, 245 (2021).
- [10] G.A. Gusev, S.M. Masloboeva, V. Kravets, M.A. Yagovkina. Inorganic Mater. 57, 4, 383 (2021).
- [11] V. Kravets, E.V. Ivanova, A.N. Trofimov, M. Zamoryanskaya.
 J. Lumin. 226, 117419 (2020).
- [12] M.V. Zamoryanskaya, S.G. Konnikov, A.N. Zamoryanskii. Instrum. Exp. Tech. 47, 4, 477 (2004).
- [13] S.J.B. Reed. Electron microprobe analysis and scanning electron microscopy in geology. Cambridge University Press (2005).
- [14] L. Reimer. Measurement Sci. Technol. 11, 12, 1826 (2000).
- [15] H. Lin, D. Yang, G. Liu, T. Ma, B. Zhai, Q. An, J. Yu, X. Wang, X. Liu, E. Yue-Bun Pun. J. Lumin. 113 (2005).
- [16] R.H. Khasanshin, L. Novikov, S.B. Korovin. J. Surface Investigation-x-ray Synchrotron Neutron Techniques 9, 1, 81 (2015).
- [17] H. Ebendorff-Heidepriem, D. Ehrt. Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. B 61, 5, 189(2020).
- [18] Z.O. Lipatova, E. Kolobkova, A.I. Sidorov, N. Nikonorov. Opt. Spectroscopy 121, 2, 200 (2016).

Редактор Т.Н. Василевская