01 Столкновения спин-поляризованных щелочных атомов Na и Cs в основном состоянии

© В.А. Картошкин

ФТИ им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail:victor.kart@mail.ioffe.ru

Поступила в редакцию 22.03.2023 г. В окончательной редакции 31.07.2023 г. Принята к публикации 05.09.2023 г.

Рассмотрены столкновения с участием поляризованных щелочных атомов Na и Cs в основном состоянии. Рассчитаны комплексные сечения спинового обмена и упругого рассеяния указанных атомов в интервале энергий от 10^{-4} до 10^{-2} a.u.

Ключевые слова: оптическая ориентация, поляризованные атомы, поперечные сечения, спиновый обмен.

DOI: 10.61011/OS.2023.08.56294.4731-23

Введение

В последние годы возобновился интерес к изучению взаимодействия между атомами щелочных металлов в основном состоянии. Это справедливо для изучения как гомоядерных [1], так и гетероядерных димеров щелочных металлов [2]. Рост числа таких исследований обусловлен различными факторами, в частности, интересом к свойствам холодных и ультрахолодных столкновений в газах щелочных металлов в ловушках разного типа [2,3], а также возможностью переноса поляризации при столкновении спин-поляризованных щелочных атомов с атомами ядерных парамагнетиков [4] с последующим использованием их в качестве рабочих сред в квантовых магнитометрах [5,6] и гироскопах [7]. Изучение взаимодействия с участием спинполяризованных щелочных атомов возможно в экспериментах по оптической ориентации атомов. Оптическая ориентация атомов — это передача углового момента от поляризованного резонансного излучения ансамблю атомов, находящихся либо в основном, либо в возбужденном состояниях и имеющих нескомпенсированный электронный спин. При этом перенос поляризации возможен как между электронными степенями свободы сталкивающихся атомов [8], так и между электронными и ядерными степенями свободы [4,9].

Столкновения атомов щелочных металлов в основном состоянии со спином электрона S = 1/2 сопровождаются обменом электронными координатами между сталкивающимися частицами, что приводит к передаче поляризации между ними (т. е. к известному явлению спинового обмена). Кроме того, наряду с передачей поляризации от одного партнера к другому [8] происходит уширение и смещение линий магнитного резонанса сталкивающихся атомов при спин-обменных столкновениях [10,11]. Последние два процесса зависят, в частности, от комплексного сечения спинового обмена. Действительная часть

сечения определяет так называемое "сечение спинового обмена", отвечающее за уширение линий магнитного резонанса, а мнимая часть — сечение сдвига определяет сдвиг частоты магнитного резонанса. При столкновении щелочных атомов в основном состоянии наряду с процессом спинового обмена имеет место также упругое рассеяние.

Целью данной работы является расчет поперечных сечений столкновений щелочных атомов Na и Cs. К ним относятся различные поперечные сечения — сечение упругого рассеяния, комплексное сечение спинового обмена, состоящее из действительной и мнимой частей. Как следует из стандартной теории рассеяния, все вышеперечисленные сечения могут быть рассчитаны с помощью фаз рассеяния на соответствующих термах димера NaCs [12]. Следует отметить, что при столкновениях щелочных атомов при не слишком низких температурах, когда время сверхтонкого взаимодействия $2\pi/\Delta\omega$ (например, $\Delta\nu = 9192 \cdot 10^6$ Hz для ¹³³Cs и $\Delta v = 1771 \cdot 10^{6}$ Hz для ²³Na [13]) значительно больше времени столкновения, которое составляет порядка 10⁻¹² s, процесс спинового обмена можно рассматривать только как эволюцию спинов электронов во время столкновения. Другими словами, предполагается, что полный электронный спин сохраняется в процессе столкновения. Между столкновениями происходит взаимодействие электронных и ядерных спинов. В этом случае молекула, образовавшаяся из двух щелочных атомов в процессе столкновения, может быть описана в основном состоянии с помощью двух потенциалов, соответствующих суммарным спинам системы $S_1 = 0$ и $S_2 = 1$. Сечения столкновения рассчитаны на основе данных о синглетном ($S = 0, X^1 \Sigma^+$) и триплетном ($S = 1, a^3 \Sigma^+$) потенциалах, описывающих взаимодействие щелочных атомов в основном состоянии [14].

1. Потенциалы взаимодействия системы NaCs

Потенциалы взаимодействия системы NaCs исследовались достаточно давно [14-17] и, как уже отмечалось выше, в последнее время интерес к исследованию этой системы существенно вырос [3,17]. В настоящей работе для расчета интересующих нас сечений спинового обмена и упругого рассеяния мы воспользуемся результатами работы [14], в которой на основании экспериментальных данных, полученных с использованием метода фурьеспектроскопии, были найдены синглетный и триплетный термы димера NaCs. Искомые потенциалы были разбиты на три области в соответствии с межъядерным расстоянием: область малых межъядерных расстояний $(R < R_{\rm SR})$, область больших межьядерных расстояний $(R > R_{LR})$, область средних межьядерных расстояний $(R_{\rm SR} \leq R \leq R_{\rm LR})$. Численные значения параметров $R_{\rm SR}$ и R_{LR} приведены ниже. Область малых межъядерных расстояний ($R < R_{SR}$) характеризуется сильным отталкиванием, область больших межъядерных расстояний $(R > R_{LR})$ обусловлена ван-дер-вальсовым взаимодействием, в области средних межъядерных расстояний $(R_{\rm SR} \leq R \leq R_{\rm LR})$ синглетный и триплетный потенциалы взаимодействия характеризуются наличием потенциальной ямы.

В работе [14] синглетный и триплетный потенциалы были представлены в аналитическом виде следующим образом.

Для малых межъядерных расстояний ($R < R_{SR}$) потенциал имел вид отталкивания:

$$U_{\rm SR}(R) = A + \frac{B}{R^3},\tag{1}$$

где $A = -0.121078258 \cdot 10^5$ cm⁻¹, $B = 0.278126476 \cdot 10^6$ cm⁻¹Å³ для синглетного терма и $A = -0.147429182 \cdot 10^4$ cm⁻¹, $B = 0.160029429 \cdot 10^6$ cm⁻¹Å³ для триплетного терма.

Для больших межъядерных расстояний ($R > R_{LR}$) потенциал описывался ван-дер-ваальсовым взаимодействием с учетом члена, описывающего обменное взаимодействие:

$$U_{\rm LR} = -\frac{C_6}{R^6} - \frac{C_8}{R^8} - \frac{C_{10}}{R^{10}} \pm E_{\rm ex}.$$
 (2)

Обменное взаимодействие E_{ex} входит со знаком (+) в триплетный терм и со знаком (-) в синглетный терм, его явный вид представлен в [14]:

$$E_{\rm ex} = A_{\rm ex} R^{\gamma} \exp(-\beta R). \tag{3}$$

Для расстояний $R_{\rm SR} < R < R_{\rm LR}$ потенциал был представлен в следующем виде:

$$U_{\rm IR}(R) = \sum_{k=0}^{n} a_k x^k, \qquad (4)$$

где $x = \frac{R-R_m}{R+bR_m}$, a_i — подгоночные коэффициенты, R_m — расстояние, близкое к равновесному, равное

Рис. 1. Синглетный (1) и триплетный (2) потенциалы димера NaCs по данным работы [14] в атомной системе единиц.

3.85062906 Å для синглетного терма и 5.75585938 Å для триплетного терма. Явный вид параметров в выражениях (1)-(4) представлен в [14] в виде таблицы. Используя выражения (1)-(4) и входящие в них параметры, приведенные в [14], мы построили потенциалы взаимодействия димера NaCs в атомной системе единиц (рис. 1). Зная синглетный и триплетный термы димера NaCs в основном состоянии, можно перейти к расчету интересующих нас сечений.

В [14] также были определены энергия диссоциации молекулы NaCs и равновесное расстояние: для синглетного терма $D_e = 4954.237(10) \text{ cm}^{-1}$, $R_e = 3.8506 \text{ Å}$, для триплетного терма $T_e = 217.168(10) \text{ cm}^{-1}$, $R_e = 5.7448 \text{ Å}$. При этом для синглетного терма $R_{\text{SR}} = 2.8435 \text{ Å}$, $R_{\text{LR}} = 10.2 \text{ Å}$, для триплетного терма $R_{\text{SR}} = 4.78 \text{ Å}$, $R_{\text{LR}} = 10.2 \text{ Å}$.

2. Расчет фаз рассеяния при столкновении атомов Na и Cs

Как следует из теории рассеяния, расчет сечений обусловлен знанием фаз $(\delta_l^{s,t})$ рассеяния (здесь индекс *s* относится к синглетному терму, *t* — к триплетному терму) на соответствующих термах. Амплитуда рассеянной волны на триплетном (f_t) и синглетном (f_s) термах определяется следующим выражением через фазы рассеяния [18,19]:

$$f_{t,s} = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) [\exp(2i\delta_l^{t,s}) - 1] P_l(\cos\theta).$$
(5)

Фаза рассеяния $\delta_l^{s,t}$ может быть получена из регулярного решения уравнения парциальных волн:

$$\frac{d^2g_l^{t,s}}{dR^2} + \left[k^2 - V_{t,s} - \frac{l(l+1)}{R^2}\right]g_l^{t,s} = 0.$$
 (6)

Оптика и спектроскопия, 2023, том 131, вып. 8

При больших значениях R функция $g_l^{t,s}$ имеет следующий асимптотический вид:

$$g_l^{t,s} \sim k^{-1} \sin\left(kR - \frac{1}{2}\,l\pi + \delta_l^{t,s}\right).$$
 (7)

Здесь *l* — орбитальный момент, *k* — волновой вектор, *V*_{*t*,s} — триплетный (или синглетный) потенциал взаимодействия, *P*_{*l*} — полином Лежандра.

Расчет фаз рассеяния проводился в квазиклассическом приближении на основании метода Джефриса, модифицированного Лангером [18], в интервале энергий столкновения $E = 10^{-2} - 10^{-4}$ а.u. В соответствии с этим методом фаза рассеяния на потенциале V_s может быть представлена в следующем виде:

$$\delta_l = \int\limits_{R_0}^{\infty} F_1(R) dR - \int\limits_{R'_0}^{\infty} F_0(R) dR, \qquad (8)$$

где

$$F_1^S(R) = \left[2\mu(E - V_S(R) - \frac{(l+1/2)^2}{2\mu R^2} \right], \ S = s, t, \quad (9)$$
$$F_0(R) = \left[2\mu E - \frac{(l+1/2)^2}{R^2} \right].$$

Здесь E — энергия столкновения, R_0 и R'_0 — корни уравнений $F_1^S(R) = 0$, $F_0(R) = 0$ (причем для $F_1^S(R)$ берется наибольший корень), $V_S(R)$ — потенциал взаимодействия, соответствующий полному спину S (0 или 1).

3. Расчет сечений при столкновении атомов Na и Cs

Расчет комплексных сечений спинового обмена и сечений упругого рассеяния можно провести, опираясь на стандартную теорию рассеяния. Расчет комплексных сечений спинового обмена при столкновении атомов натрия и цезия проводился аналогично тому, как это было сделано, например, при столкновении изотопов рубидия [20]. При столкновении двух атомных частиц, обладающих электронными спинами, возможен процесс обмена электронами, а если одна из частиц была предварительно поляризована, то и обмен электронной поляризацией. Подобный процесс можно условно представить следующим образом:

$$A(\uparrow) + B(\downarrow) \leftrightarrow A(\downarrow) + B(\uparrow). \tag{10}$$

Здесь стрелками показана возможная электронная поляризация атома.

Процесс спинового обмена можно описать с помощью комплексного сечения спинового обмена вида

$$q^{AB} = \bar{q}^{AB} + i\bar{\bar{q}}^{AB}.$$
 (11)

Вместе с тем, зная потенциалы взаимодействия атомов Na и Cs, можно также определить сечения упругого рассеяния на каждом из потенциалов.

Комплексное сечение спинового обмена можно представить стандартным образом через матрицу рассеяния $T_S^{AB}(l)$ [12]:

$$q^{AB} = \frac{\pi}{k_{AB}^2} \sum_{l=0}^{\infty} (2l+1) [1 - T_0^{AB}(l) T_1^{AB}(l)^*].$$
(12)

Здесь k_{AB} — волновое число, * указывает на комплексное сопряжение, S — полный спин системы. Матрица рассеяния может быть представлена через фазы рассеяния $\delta_S^{AB}(l)$ в канале с полным спином S следующим образом:

$$T_S^{AB}(l) = \exp(2i\delta_S^{AB}(l)), \tag{13}$$

где *l* — орбитальное квантовое число. При этом сечение упругого рассеяния можно представить [12] в виде

$$q^{s,t} = \frac{\pi}{k_{AB}^2} \sum_{l=0}^{\infty} (2l+1)|1 - T_{s,t}^{AB}(l)|^2.$$
(14)

Здесь индексы *s* и *t* соответствуют рассеянию на синглетном (S = 0) или триплетном (S = 1) термах.

Из выражений (12)-(13) следует, что действительная и мнимая части комплексного сечения спинового обмена имеют следующий вид:

$$\bar{q}^{AB} = \frac{\pi}{k_{AB}^2} \sum_{l=0}^{\infty} (2l+1) \sin^2[\delta_1^{AB}(l) - \delta_0^{AB}(l)], \qquad (15)$$

$$\bar{\bar{q}}^{AB} = \frac{\pi}{k_{AB}^2} \sum_{l=0}^{\infty} (2l+1) \sin 2[\delta_1^{AB}(l) - \delta_0^{AB}(l)].$$
(16)

При этом сечение упругого рассеяния на синглетном и триплетном термах можно представить в виде

$$q^{0,1} = \frac{\pi}{k_{AB}^2} \sum_{l=0}^{\infty} (2l+1) \sin^2(\delta_{0,1}^{AB}(l)).$$
(17)

В соответствии с [21] полное сечение упругого рассеяния в случае столкновения неодинаковых атомов может быть представлено в виде

$$q_{el} = (1/4)(q^0 + 3q^1).$$
(18)

Таким образом, для расчета интересующих нас сечений с использованием выражений (15)–(18) необходимо рассчитать фазы рассеяния на синглетном и триплетном термах, представленных в разд. 1.

Расчет сечений упругого рассеяния и комплексных сечений спинового обмена при столкновении атомов Na и Cs

В квазиклассическом приближении на основании выражений (8) и (9) и потенциалов взаимодействия из

Рис. 2. Зависимость от энергии столкновения действительной (1) и мнимой (2) частей комплексного сечения спинового обмена при столкновении атомов Na и Cs в основном состоянии.

Рис. 3. Зависимость сечений упругого рассеяния от энергии столкновения: I — сечение рассеяния на синглетном терме (**•**), 2 — сечение рассеяния на триплетном терме (**•**).

работы [14] проводился расчет фаз рассеяния в интервале энергий столкновения от 10^{-4} до 10^{-2} а.u. Возможность использования квазиклассического приближения обусловлена тем, что вклад в сечения дает большое число фаз рассеяния даже при минимальной энергии столкновения. На рис. 2 приведены зависимости действительной и мнимой частей комплексного сечения спинового обмена от энергии столкновения, полученные на основании соотношений (15) и (16). На рис. 3 приведены зависимости сечений упругого рассеяния на синглетном и триплетном термах от энергии столкновения, полученные на основании соотношений (17).

Для перехода к температурным зависимостям искомых сечений необходимо провести максвелловское

Рис. 4. Температурные зависимости сечений: 1 — действительная часть сечения спинового обмена, 2 — мнимая часть сечения спинового обмена, 3 — сечение рассеяния на синглетном терме, 4 — сечение рассеяния на триплетном терме, 5 — полное сечение рассеяния на синглетном и триплетном термах.

усреднение по скоростям в соответствии с выражением

$$\sigma^{AB}(T) = \frac{\langle q^{AB}(E)v_{AB} \rangle}{\langle v_{AB} \rangle}$$
$$= \frac{1}{(kT)^2} \int_0^\infty q^{AB}(E) E \exp\left(-\frac{E}{kT}\right) dE.$$
(19)

Здесь k — постоянная Больцмана, E — энергия столкновения, v_{AB} — относительная тепловая скорость сталкивающихся частиц. На рис. 4 приведены результаты максвелловского усреднения энергетических зависимостей сечений, представленных на рис. 2 и 3, в том числе и полное сечение упругого рассеяния, которое выражается через сечения упругого рассеяния на триплетном и синглетном термах в соответствии с выражением (18). Поскольку сечения упругого рассеяния на синглетном и триплетном термах близки (рис. 3), а в соответствии с (18) в величине полного сечения превалирует вклад от рассеяния на триплетном терме, то получается, что полное сечение и сечение рассеяния на триплетном терме слабо различаются, что и следует из рис. 4.

Действительно, как видно, например, из [19], при столкновении двух атомов лития в основном состоянии при максвелловском усреднении сечений в температурном интервале 1-100 К сечения рассеяния на синглетном и триплетном термах совпадают, а сечение спинового обмена (действительная часть) существенно их меньше. Основное различие сечений упругого рассеяния на синглетном и триплетном термах имеет место в области низких температур (менее 1 К).

Заключение

Как видно из рис. 4, действительная часть сечения спинового обмена (\bar{q}^{AB}) достаточно велика и лежит в пределах от $1.8 \cdot 10^{-14}$ до $1.6 \cdot 10^{-14}$ сm². В то же время мнимая часть сечения (\bar{q}^{AB}) , отвечающая за сдвиги частоты магнитного резонанса, во-первых, отрицательна во всем температурном диапазоне, во-вторых, изменяется от $-4 \cdot 10^{-15}$ до $-5 \cdot 10^{-15}$ сm². Величина и знак сечения являются существенными при расчете сдвига частоты магнитного резонанса при столкновении поляризованных атомов щелочных металлов в основном состоянии. От них, в частности, зависит поведение сдвига частоты с изменением температуры для двух сверхтонких состояний щелочных атомов.

Сечения спинового обмена позволяют описать процесс спинового обмена при столкновении двух атомов щелочных металлов в основном состоянии. Как уже отмечалось, процесс спинового обмена приводит как к передаче поляризации между сталкивающимися частицами, так и к уширению линии магнитного резонанса сталкивающихся атомов. Кроме того, наряду с передачей поляризации от одного партнера к другому происходит уширение и смещение линий магнитного резонанса сталкивающихся атомов при спин-обменных столкновениях. Эти процессы зависят, в частности, от комплексных сечений спинового обмена. Действительная часть сечения определяет так называемое "сечение спинового обмена", отвечающее за уширение линий магнитного резонанса, а мнимая часть "сечение сдвига" определяет сдвиг частоты магнитного резонанса. Спинобменное уширение линии магнитного резонанса влияет на точность таких устройств квантовой электроники, как квантовые стандарты частоты и магнитометры, которые построены с использованием оптической ориентации атомов.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- M.M. Hawamdeh, A.S. Sandouqa, B.R. Joudeh, O.T. Al-Obeidat, H.B. Ghassib. Eur. Phys. J. Plus, **137**, 1025 (2022). DOI: 10.1140/epjp/s13360-022-03244-y
- W.B. Cairncross, J.T. Zhang, L.R.B. Picard, Y. Yu, K. Wang,
 K.-K. Ni. Phys. Rev. Lett., **126**, 123402 (2021).
 DOI: 10.1103/PhysRevLett.126.123402 Medline
- [3] S.G.H. Brookes, J.M. Hutson. J. Phys. Chem. A, 126 (25), 3987 (2022). DOI: 10.1021/acs.jpca.2c01810
- [4] M.E. Limes, D. Sheng, M.V. Romalis. Phys. Rev. Lett., 120, 033401 (2018). DOI: 10.1103/PhysRevLett.120.033401
- [5] Z. Wang, S.X. Liu, R.G. Wang, L.L. Yuan, J. Huang, Y.Y. Zhai,
 S. Zou. IEEE/CAA J. Autom. Sinica, 9 (4), 699 (2022).
 DOI: 10.1109/JAS.2021.1004383

- [6] Y. Lu, Y. Zhai, Y. Zhang, W. Fan, L. Xing, W. Quan. Chin. Phys. B, 29 (4), 043204 (2020). DOI: 10.1088/1674-1056/ab75d3
- J. Liu, L. Jiang, Y. Liang, G. Li, Z. Cai, Z. Wu, W. Quan. Phys. Rev. Appl., 17, 014030 (2022).
 DOI: 10.1103/PhysRevApplied.17.014030
- [8] S.P. Dmitriev, N.A. Dovator, V.A. Kartoshkin, A.I. Okunevich. J. Phys.: Conf. Ser., **1400** (6), 066019 (2019).
 DOI: 10.1088/1742-6596/1400/6/066019
- M. Kelley, R.T. Brancaa. J. Appl. Phys. 129, 154901 (2021).
 DOI: 10.1063/5.0037440
- [10] А.К. Вершовский, С.П. Дмитриев, М.В. Петренко. Письма ЖТФ, 47 (8), 51 (2021).
 DOI: 10.21883/PJTF.2021.08.50856.18654
- [11] С.П. Дмитриев, Н.А. Доватор. ЖТФ, 77 (7), 120 (2007).
- [12] С. Суннакава. *Квантовая теория рассеяния* (Мир, М., 1979).
- [13] А.А. Радциг, Б.М. Смирнов. Справочник по атомной и молекулярной физике (Атомиздат, М., 1980).
- [14] O. Docenko, M. Tamanis, J. Zaharova, R. Ferber, A. Pashov,
 H. Knockeland, E. Tiemann. J. Phys. B, **39** (19), S929 (2006).
 DOI: 10.1088/0953-4075/39/19/S08
- [15] O. Docenko, M. Tamanis, R. Ferber, A. Pashov, H. Knöckel, E. Tiemann. Eur. Phys. J. D, **31**, 205 (2004). DOI: 10.1140/epjd/e2004-00156-5
- [16] A.L.M. Zanelatto, E.M.S. Ribeiro, R.d.J. Napolitano. J. Chem. Phys., **123**, 014311 (2005). DOI: 10.1063/1.1950668
- [17] M. Schwarzera, J.P. Toennies. J. Chem. Phys., 154, 154304 (2021). DOI: 10.1063/5.0046194
- [18] N.F. Mott, H.S.W. Massey. *The Theory of Atomic Collisions* (Oxford, Clarendon Press, 1965).
- [19] R.Côté, A. Dalgarno, M.J. Jamieson. Phys. Rev. A, 50 (1), 399 (1994). DOI: 10.1103/PHYSREVA.50.399.
- [20] В.А. Картошкин. Опт. и спектр., 119 (4), 594 (2015).
- [21] H.O. Dickinson, M.R. Rudge. J. Phys. B, 3, 1448 (1970).