11.3

Лазер с высокой частотой следования на самоограниченных переходах иона кальция

© М.А. Лаврухин¹, П.А. Бохан¹, П.П. Гугин¹, Д.Э. Закревский^{1,2}

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия ² Новосибирский государственный технический университет, Новосибирск, Россия E-mail: lavrukhin@isp.nsc.ru

Поступило в Редакцию 15 июня 2023 г. В окончательной редакции 31 июля 2023 г. Принято к публикации 31 июля 2023 г.

Представлены результаты экспериментальных исследований генерационных характеристик лазера на самоограниченных переходах иона кальция с $\lambda_1 = 854.2$ nm и $\lambda_2 = 866.2$ nm при возбуждении импульсами с наносекундными фронтами. В режиме цуга импульсов получена средняя мощность 5.3 W при частоте следования импульсов 90 kHz с эффективностью генерации относительно энергии, запасенной в рабочей емкости, равной 0.076%. Продемонстрировано, что при больших частотах удельные энергетические характеристики лазера не уступают значениям для лазеров на самоограниченных переходах атома меди со сравнимым объемом активной среды.

Ключевые слова: лазер, кальций, самоограниченные переходы, лазерная генерация, частота следования импульсов.

DOI: 10.61011/PJTF.2023.19.56267.19654

Газоразрядные лазеры на самоограниченных переходах (переходы с резонансных на метастабильный уровни — RM-переходы), в первую очередь на атоме меди и молекуле азота, несмотря на долгую историю изучения и применения, по-прежнему привлекают внимание исследователей ввиду ряда уникальных характеристик (высокий коэффициент усиления активной среды, малая ширина линии генерации, высокое качество лазерного пучка, большая импульсная мощность и др.). Одним из перспективных направлений является их использование в системах усиления яркости, которые позволяют проводить удаленный мониторинг быстропротекающих процессов в условиях высокой фоновой засветки [1]. Визуализация изображений в режиме реального времени предъявляет ряд требований к активным средам, одним из которых является возможность функционирования лазерных источников и усилителей мощности (яркости) в импульсном режиме с как можно более высокой частотой следования импульсов f. Чаще всего для этих целей применяется лазер на парах меди (или его солей), для которого получена мощность в единицы ватт на частотах следования импульсов до сотни килогерц [2-5].

Достижение высоких частот следования в лазере на парах меди сталкивается с рядом фундаментальных ограничений: в первую очередь это усиление паразитных каналов заселения нижних метастабильных состояний [6] и скин-эффект [7]. Оба эти явления ослабляются при уменьшении диаметра d рабочих газоразрядных трубок (ГРТ) и удельной энергии накачки, что и приводит к падению средней мощности генерации P_{av} .

Значительного увеличения мощности генерации P_{av} при сохранении диаметра ГРТ d = 1-2 ст можно до-

биться путем сокращения переднего фронта импульса накачки [8]. Использование коммутаторов с фронтом переключения в единицы наносекунд позволяет генерировать высоковольтные импульсы с наносекундными фронтами и применять их для возбуждения лазеров на самоограниченных переходах. Это не только делает возможным улучшение частотно-энергетических параметров лазеров, но и позволяет на новом уровне решить проблему создания лазеров на ионных самоограниченных переходах благодаря возможности работать при более высоких концентрациях ионов. Лазеры на RMпереходах ионов, несмотря на обширный список перспективных сред [9], не получили должного развития в отличие от лазеров на RM-переходах в атомах и молекулах, свойства которых описаны в многочисленных статьях и ряде монографий. В [10] в экспериментах по исследованию самоограниченного лазера на ионе бария Ва II (переход $6p^2P_{3/2}-5d^2D_{5/2}$, $\lambda = 614.2$ nm) продемонстрировано значительное увеличение средней мощности генерации лазера ($f \approx 60-70 \, \text{kHz}$) при его возбуждении высоковольтными импульсами с фронтом 2-3 ns, формируемыми с помощью коммутатора нового типа — эптрона [11]. Данное устройство, работающее на самопробое разряда в капилляре с плазменным катодом, характеризуется временем коммутации вплоть до $\tau_s < 1$ ns и компрессией импульсов на уровне $S = \tau_d / \tau_s = 10^3$ при частотах следования импульсов, по крайней мере, до $f \approx 100 \,\mathrm{kHz}$ (τ_d — время задержки развития разряда).

Целью настоящей работы является исследование генерационных характеристик лазера на самоограниченных переходах иона кальция $4p^2P_{3/2}-3d^2D_{5/2}$ с

 $\lambda_1 = 854.2$ nm и $4p^2 P_{1/2} - 3d^2 D_{3/2}$ с $\lambda_2 = 866.2$ nm при высоких (до $f \approx 100 \,\mathrm{kHz}$) частотах следования импульсов. Ранее в этом лазере получены наибольшие значения средней мощности Раv и эффективности генерации среди всего класса RM-лазеров на переходах в ионном спектре. В работе [12] максимальная мощность составила $P_{av} \approx 0.74 \, \mathrm{W}$ с удельной энергией генерации $w_{sp} \approx 0.62 \,\mu \text{J/cm}^3$ при эффективности 0.05% при f = 6.85 kHz. В [13] при экстремальном характере частотно-энергетической зависимости $P_{av}(f)$ с максимумом при $f \approx 17.8 \,\mathrm{kHz}$ достигнуты $P_{av} \approx 0.3 \,\mathrm{W}$ и $w_{sp} \approx 0.28 \,\mu \mathrm{J/cm^3}.$

В наших экспериментах использовалась газоразрядная трубка из окиси бериллия, подробно описанная в работе [10]. Рабочий диаметр канала ГРТ $d = 1.5 \,\mathrm{cm}$, длина разрядного промежутка 55 cm, объем 97 cm³. Давление буферного газа (гелия) p = 10-40 Torr. Регулировка температуры ГРТ и соответственно давления паров кальция осуществлялась с помощью резистивного нагревателя. Возбуждение среды проводилось при прямом разряде оптимизированной рабочей емкости C = 330 pF через эптрон и ГРТ цугами импульсов с частотой следования 0.5 Hz, содержащими 200 импульсов (частота заполнения цуга $f = 10 - 100 \, \text{kHz}$). Оптический резонатор лазера состоял из глухого сферического зеркала радиусом 5 m на область длин волн лазерной генерации и кварцевой плоскопараллельной пластинки (коэффициент отражения 99.5 и 8% соответственно). Измерения энергии и мощности генерации проводились вакуумным фотодиодом ФК 32 с временным разрешением лучше 1 ns и калибровались измерителем мощности Thorlabs S401.

На рис. 1, а показана энергия излучения w в зависимости от номера импульса в цуге N при частотах следования импульсов f = 20, 40, 60 и 80 kHz. Видно, что к 40-му импульсу энергия излучения стабилизируется и сохраняется практически на постоянном уровне до конца цуга, что позволяет говорить об установлении квазистационарного режима. В условиях, когда достигалась максимальная мощность генерации, соотношение энергий излучения w_1 и w_2 на $\lambda_1 = 854.2\,\mathrm{nm}$ и $\lambda_2 = 866.2 \,\mathrm{nm}$ соответственно составляло $w_1/w_2 \approx 1.7.$ Осциллограммы импульсов напряжения на ГРТ U, тока I через нее и импульса генерации в установившемся режиме для 41-го импульса при $f = 60 \, \text{kHz}$ показаны на рис. 1, b. Типичное время нарастания напряжения на ГРТ составляет $\tau_U \approx 1.5$ ns. Осциллограмма тока состоит из двух компонент. Первый пик с шириной на полувысоте $\sim 3-5$ ns соответствует зарядке собственной емкости ГРТ. Лазерная генерация развивается всегда вблизи максимума второго пика тока с $\tau_l \sim 20-25\,\mathrm{ns}$ и в установившемся режиме длится $au_{las} \sim 10{-}12\,\mathrm{ns}$ (на полувысоте). Оптимальная температура ГРТ в зависимости от условий (частота следования импульсов в цуге f, исходное напряжение U_a на рабочей емкости C) при давлении гелия $p = 20 \pm 5$ Torr составляет $T = 700 \pm 5^{\circ}$ C. Примеры зависимостей средней мощности генерации

50 а 40 30 $w, \mu J$ 20 10 10 20 30 40 50 60 N b 10 0.2 P_{las} 5 0.1 0 0 -0.1 ¥ -5 -0.2 ~ -10-15 -0.3 -20-0.4-25 -0.5 0 10 20 30 40 50 60

Рис. 1. a — энергии импульсов генерации w в течение цуга (N — номер импульса) при частотах следования импульсов f = 20 (1), 40(2), 60 (3) и 80 kHz (4). b — осциллограммы импульсов напряжения на ГРТ U, тока через ГРТ I, а также мощности лазерной генерации Plas в установившемся режиме при f = 60 kHz. $U_a = 22.5$ kV, p = 10 Torr, $T = 700^{\circ}$ C.

от амплитуды рабочего напряжения $P_{av}(U_a)$ на частоте $f = 90 \,\mathrm{kHz}$ при температуре $T = 700^{\circ}\mathrm{C}$ и значениях давления гелия p = 10, 20 и 40 Torr показаны на рис. 2, a. Видно, что оптимальное давление, соответствующее максимуму средней мощности генерации $P_{av} > 5 \,\mathrm{W}$, при используемых напряжениях $U_a = 22 - 25 \, \text{kV}$ не превышает p = 20 Torr. На рис. 2, b приведены примеры зависимости эффективности генерации (отношение энергии лазерной генерации к энергии, запасаемой в рабочей емкости) от амплитуды напряжения $\eta(U_a)$ при f = 50 и 90 kHz, давлении гелия p = 10 и 20 Torr для различных температур ГРТ. Максимальное значение эффективности генерации, вычисленной относительно энергии, запасенной в рабочей емкости С, составило $\eta \approx 0.076\%$ и соответствует $U_a = 19-21$ kV, f = 90 kHz,

Рис. 2. *а* — зависимости средней лазерной мощности P_{av} от амплитудного напряжения на рабочей емкости U_a при различных значениях давления буферного газа (гелия): p = 10 (*I*), 20 (2) и 40 Torr (3). f = 90 kHz, $T = 700^{\circ}$ C. b — зависимости эффективности лазерного излучения η от амплитудного напряжения на рабочей емкости U_a . I - f = 50 kHz, p = 10 Torr, $T = 680^{\circ}$ C; 2 - f = 50 kHz, p = 10 Torr, $T = 700^{\circ}$ C; 3 - f = 90 kHz, p = 20 Torr, $T = 700^{\circ}$ C.

p = 20 Torr, $T = 700^{\circ}$ C. При этом из осциллограмм импульсов напряжения и тока следует, что в ГРТ вкладывается лишь около половины энергии, запасаемой в *C*.

На рис. З показаны примеры зависимостей удельной средней мощности генерации от частоты следования импульсов $P_{sp}(f)$ при p = 10 Тогг и различных значениях амплитуды U_a и температуры T (кривые 1 и 2). Для сравнения показаны аналогичные зависимости для CuBr-лазеров с объемами активной среды 157 и 404 сm³ (кривые 3 и 4, данные работ [14] и [5] соответственно). Из рисунка видно, что удельная мощность самоогра-

Рис. 3. Зависимости удельной средней лазерной мощности P_{sp} Ca⁺-лазера при p = 10 Torr $(I - U_a = 17.5 \text{ kV}, T = 680^{\circ}\text{C}; 2 - U_a = 22.5 \text{ kV}, T = 700^{\circ}\text{C})$ и лазеров на парах бромида меди [14] (3) и [5] (4) от частоты следования импульсов f.

ниченной генерации лазера на ионе кальция линейно растет с увеличением частоты следования импульсов и по крайней мере до $f = 100 \,\text{kHz}$ (предельной частоты функционирования генератора возбуждения) не испытывает насыщения, при этом начиная с $f > 50-60 \,\text{kHz}$ она превосходит удельную мощность генерации лазеров на парах бромида меди.

Таким образом, экспериментально продемонстрировано, что возбуждение ионных лазеров на самоограниченных переходах ионов (на примере лазера на ионе кальция) высоковольтными импульсами с наносекундными фронтами приводит к увеличению частотного диапазона функционирования (в наших экспериментах максимальная частота следования импульсов f = 100 kHz была ограничена параметрами генератора) и увеличению мощности генерации, при этом удельные энергетические характеристики лазера превосходят значения для лазера на самоограниченных переходах атома меди при высоких частотах следования импульсов.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского научного фонда № 19-19-00069 (https://rscf.ru/project/19-19-00069/) и в рамках государственного задания FWGW-2021-0012.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Г.С. Евтушенко, М.А. Казарян, С.Н. Торгаев, М.В. Тригуб, Д.В. Шиянов, Скоростные усилители яркости на индуцированных переходах в парах металлов (Изд-во STT, 2016).
- [2] М.А. Алаев, А.И. Баранов, Н.М. Верещагин, И.Н. Гнедин, Ю.П. Жеребцов, В.Ф. Москаленко, Ю.М. Цуканов, Квантовая электроника, **3**, 1134 (1976). [М.А. Аlaev, А.I. Baranov, N.M. Vereshchagin, I.N. Gnedin, Yu.P. Zherebtsov, V.F. Moskalenko, Yu.M. Tsukanov, Sov. J. Quantum Electron., **6**, 610 (1976). DOI: 10.1070/QE1976v006n05ABEH011398].
- [3] A.M. Boichenko, G.S. Evtushenko, V.O. Nekhoroshev, D.V. Shiyanov, S.N. Torgaev, Phys. Wave Phenom., 23, 1 (2015). DOI: 10.3103/S1541308X1501001X
- [4] Г.С. Евтушенко, Д.В. Шиянов, Ф.А. Губарев, Лазеры на парах металлов с высокими частотами следования импульсов (Изд-во Томск. политехн. ун-та, 2010).
- [5] Д.В. Шиянов, Г.С. Евтушенко, В.Б. Суханов, В.Ф. Федоров, Квантовая электроника, **32**, 680 (2002). [D.V. Shiyanov, G.S. Evtushenko, V.B. Sukhanov, V.F. Fedorov, Quantum Electron., **32**, 680 (2002). DOI: 10.1070/qe2002v032n08abeh002270].
- [6] П.А. Бохан, Д.Э. Закревский, Квантовая электроника,
 32, 602 (2002). [Р.А. Вокhan, D.E. Zakrevskii, Quantum Electron., 32, 602 (2002).
 DOI: 10.1070/QE2002v032n07ABEH002254].
- [7] M.J. Kushner, B.E. Warner, J. Appl. Phys., 54, 2970 (1983).
 DOI: 10.1063/1.332499
- [8] П.А. Бохан, П.П. Гугин, Дм.Э. Закревский, М.А. Лаврухин, Квантовая электроника, 49, 749 (2019). [Р.А. Bokhan, P.P. Gugin, Dm.E. Zakrevskii, М.А. Lavrukhin, Quantum Electron., 49, 749 (2019). DOI: 10.1070/QEL16987].
- [9] Γ.Γ. Πετραπ, УΦΗ, 105, 645 (1971).
 DOI: 10.3367/UFNr.0105.197112b.0645 [G.G. Petrash, Sov. Phys. Usp., 14, 747 (1972).
 DOI: 10.1070/PU1972v014n06ABEH004769].
- M.A. Lavrukhin, P.A. Bokhan, P.P. Gugin, D.E. Zakrevsky, Opt. Laser Technol., 149, 107625 (2022).
 DOI: 10.1016/j.optlastec.2021.107625
- [11] P.A. Bokhan, E.V. Belskaya, P.P. Gugin, M.A. Lavrukhin, D.E. Zakrevsky, I.V. Schweigert, Plasma Sources Sci. Technol., 29, 084001 (2020). DOI: 10.1088/1361-6595/ab9d91
- [12] T. Karras, Lasers, 81, 871 (1982).
- [13] B. Pan, G. Chen, Z. Yao, B. Fang, Acta Phys. Sinica, 50, 1290 (2001).
- [14] С.Н. Торгаев, А.М. Бойченко, Г.С. Евтушенко, Д.В. Шиянов, Изв. вузов. Физика, 55 (9), 54 (2012). [S.N. Torgaev, A.M. Boichenko, G.S. Evtushenko, D.V. Shiyanov, Russ. Phys. J., 55, 1039 (2013). DOI: 10.1007/s11182-013-9919-5].