12 октября

06.1

Квантовая эффективность фотокаталитического разложения воды фрактальными наноструктурами Ag-Agl

© П.А. Безруков¹, А.В. Нащекин², А.И. Сидоров³

¹ Университет ИТМО, Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

³ Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия E-mail: sidorov@oi.ifmo.ru

Поступило в Редакцию 14 июня 2023 г. В окончательной редакции 29 июля 2023 г. Принято к публикации 31 июля 2023 г.

> Исследована квантовая эффективность фотокаталитического разложения воды фрактальными наноструктурами Ag-AgI. Показано, что слои наноструктур, полученные методом химической реакции замещения и последующим частичным иодированием, состоят из фрактальных дендритов. Установлено, что квантовая эффективность разложения воды нелинейно зависит от толщины Ag-слоя наноструктуры и увеличивается при увеличении толщины полупроводникового слоя AgI.

Ключевые слова: фотокатализ, разложение воды, иодид серебра, квантовая эффективность.

DOI: 10.61011/PJTF.2023.19.56266.19653

Энергетические и экологические проблемы приобретают в последние десятилетия все большее значение из-за глобального изменения климата, вызванного использованием ископаемого топлива [1]. Для практического использования солнечную энергию необходимо преобразовать в химическое топливо [2,3]. Водород считается идеальным топливом [4]. Фотокаталитическое разложение воды является многообещающим методом использования и преобразования солнечной энергии. В настоящее время разработаны материалы для эффективного получения кислорода и водорода из воды, кислотных и щелочных растворов [5-11]. Реакция фотокаталитического расщепления воды включает следующие этапы: 1) поглощение фотонов с образованием электроннодырочных пар; 2) разделение зарядов и их перемещение к местам захвата на поверхности катализатора, что приводит к увеличению фототока; 3) разложение воды с выделением H₂ и O₂ [12–14].

Применение материалов на основе AgI в качестве катализаторов привлекает большое внимание в области фотокатализа [15–17]. Нанокомпозиты Ag–AgI показывают стойкость к фотокоррозии и стабильные фотокаталитические характеристики [16]. Целью настоящей работы является изучение квантовой эффективности разложения воды гибридным фотокатализатором на основе фрактальных наноструктур Ag–AgI под действием облучения в УФ- и видимой области спектра.

Нанопористые пленки Ag были синтезированы методом реакции замещения из водного раствора AgNO₃ на медных подложках [18]:

$$Cu + 2AgNO_3 \rightarrow 2Ag \downarrow + Cu(NO_3)_2.$$

Продолжительность синтеза наноструктур была равна 5, 10 и 30 s. Иодирование наноструктур проводилось в течение 5, 10 и 20 min в парах иода при комнатной температуре. Морфология образцов изучалась с помощью сканирующего электронного микроскопа (СЭМ) JSM 7001F (Jeol).

Для изучения фотоэлектрохимического катализа образцы помещались в водный раствор NaNO₃ (8.71 mass%) и облучались волоконным источником Exfo Novacure 2100 (Artisan) с излучением в УФ- и видимом диапазонах спектра с приложением к фотокаталитической ячейке напряжения 0.5–5 V через балластный резистор 1 kΩ. Квантовая эффективность определялась по формуле [19]:

$$\eta = \frac{N_e}{N_{ph}} = \frac{I_{ph}\hbar\omega}{P_{Abs}e}$$

где N_e — количество фотоэлектронов, N_{ph} — количество поглощенных фотонов, I_{ph} — фототок, P_{Abs} — поглощенная мощность излучения, ω — частота излучения.

Исследования показали, что синтезированные нанопористые пленки состоят из дендритов с длиной "ствола" до 6μ m, "ветвей" длиной до 1μ m (рис. 1, *a*) и гексагональных пластинчатых кристаллов размером до 900 nm. На концах "ветвей" расположены наноиглы длиной до 50 nm и толщиной 10–15 nm. На рис. 2 показана EDX-карта СЭМ-изображения части подложки из меди после проведения реакции замещения. Она подтверждает, что синтезированные микро- и наноструктуры состоят из серебра.

После реакции замещения продолжительностью 5 s средняя толщина слоя дендритов составляет 3.5 µm. После иодирования толщина слоя изменяется незначительно. Как было показано нами ранее [20], в процессе иодирования дендриты из серебра частично или

Рис. 1. СЭМ-изображения дендритов из серебра на медной подложке после реакции замещения (*a*) и иодирования (*b*). Продолжительность реакции замещения 5 s, продолжительность иодирования 5 min.

Рис. 2. EDX-карта СЭМ-изображения части подложки из меди после реакции замещения продолжительностью 5 s.

полностью трансформируются в иодид серебра, имеющий кристаллическую гексагональную фазу β -AgI. При иодировании цвет образцов изменяется от серого до светло-желтого. Толщина ветвей дендритов при этом увеличивается (рис. 1, *b*) из-за меньшей плотности AgI по сравнению с плотностью Ag. Резкое увеличение тока фотокаталитической ячейки совпадает с моментом начала облучения.

Увеличение приложенного напряжения приводит к увеличению квантовой эффективности разложения воды (рис. 3). Увеличение продолжительности реакции замещения также приводит к увеличению квантовой эффективности. При этом при длительности реакции замещения более 5 s характер зависимости квантовой эффективности от напряжения резко меняется, и для напряжения 5 V квантовая эффективность достигает 1% (рис. 3, a). Увеличение продолжительности иодирования слабо влияет на величину квантовой эффективности (рис. 3, b), при этом увеличивается квантовая эффективность разложения воды по сравнению с наблюдаемой для образцов без иодирования.

При увеличении толщины нанопористого Ад-слоя микродендриты собираются в агломераты большего размера. При этом площадь поверхности фотокатода по сравнению с площадью подложки увеличивается в 42 · 10³ раз. Это приводит к увеличению количества центров образования горячих электронов на поверхности фотокатализатора. С увеличением времени иодирования слоев серебра увеличивается толщина полупроводникового слоя AgI, что оказывает сильное влияние на запрещенную зону материала. В более "толстых" слоях AgI увеличивается расстояние прохождения носителей заряда от места фотогенерации до места захвата, а следовательно, увеличивается рекомбинация зарядов. Это наблюдение хорошо согласуется с теоретическими расчетами гетеропереходной солнечной ячейки, в которых объясняется увеличение рекомбинации из-за появления эффекта пространственных зарядов.

Свободно двигающиеся в электролите электроны, которые с определенной вероятностью покинули границу раздела электрод—электролит, восстанавливают ионы H⁺ в растворе. Следовательно, энергия, необходимая для этого процесса, соответствует энергетическим барьерам, определенным для фотоэмиссии в других системах металл/полупроводник—электролит. При увеличении приложенного к фотокаталитической ячейке напряжения уменьшается высота потенциального барьера. Следовательно, увеличивается количество фотовозбужденных электронов, участвующих в восстановлении протонов, и увеличивается квантовая эффективность разложения воды.

Рис. 3. Зависимости квантовой эффективности от приложенного напряжения при изменении времени получения нанопористого Ag-слоя (*a*) и времени иодирования (*b*). *a* — время иодирования 10 min, реакция замещения: 1 - 5 s, 2 - 10 s, 3 - 30 s; b -реакция замещения 5 s, время иодирования: 1 - 5 min, 2 - 10 min, 3 - 20 min.

Таким образом, фрактальные наноструктуры Ag-AgI, полученные методом реакции замещения, могут использоваться как фотокатализаторы для разложения воды. При увеличении длительности реакции замещения квантовая эффективность разложения воды увеличивается. Квантовая эффективность разложения воды составляет около 1% при приложении напряжения 5 V. При увеличении времени иодирования нанопористых слоев изменение фототока происходит равномерно при увеличении приложенного напряжения для разных толщин слоя AgI.

Финансирование работы

Работа выполнена при поддержке программой "Приоритет 2030".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y. Wang, A. Vogel, M. Sachs, R.S. Sprick, L. Wilbraham, S.J.A. Moniz, R. Godin, M.A. Zwijnenburg, J.R. Durrant, A.I. Cooper, J. Tang, Nat. Energy, 4, 746 (2019). DOI: 10.1038/s41560-019-0456-5
- [2] Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Nano Lett., 11, 1111 (2011). DOI: 10.1021/nl104005n
- [3] S. Kan, B. Chen, G. Chen, Appl. Energy, 250, 1235 (2019).
 DOI: 10.1016/J.APENERGY.2019.05.104

- [4] K. Maeda, J. Photochem. Photobiol. C, 12, 237 (2011).
 DOI: 10.1016/j.jphotochemrev.2011.07.001
- [5] N. Serpone, E. Pelizzetti, *Photocatalysis: fundamentals and applications* (Wiley, N.Y., 1989).
- [6] M. Rafique, R. Mubashar, M. Irshad, S.S.A. Gillani, M.B. Tahir, N.R. Khalid, A. Yasmin, M.A. Shehzad, J. Inorg. Organomet. Polym. Mater., **30**, 3837 (2020). DOI: 10.1007/s10904-020-01611-9
- [7] A. Kubacka, I. Barba-Nieto, U. Caudillo-Flores, M. Fernández-García, Current Opin. Chem. Eng., 33, 100712 (2021). DOI: 10.1016/j.coche.2021.100712
- [8] Y. Nosaka, A.Y. Nosaka, Chem. Rev., 117, 11302 (2017). DOI: 10.1021/acs.chemrev.7b00161
- [9] H. Saito, Y. Nosaka, J. Phys. Chem. C, 118, 15656 (2014).
 DOI: 10.1021/jp502440f
- [10] P. Edalati, Y. Itagoe, H. Ishihara, T. Ishihara, H. Emami, M. Arita, M. Fuji, K. Edalati, J. Photochem. Photobiol. A, 443, 114167 (2022). DOI: 10.1016/j.jphotochem.2022.114167
- X. Xu, X. Yang, Y. Tao, W. Zhu, X. Ding, J. Zhu, H. Chen, Int. J. Mol. Sci., 23, 15221 (2022). DOI: 10.3390/ijms232315221
- Y. Li, S.C.E. Tsang, Mater. Today Sustain., 9, 100032 (2020).
 DOI: 10.1016/j.mtsust.2020.100032
- [13] W. Choi, J.Y. Choi, H. Song, APL Mater., 7, 100702 (2019).
 DOI: 10.1063/1.5099666
- [14] M. Buscema, J.O. Island, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. van der Zant, A. Castellanos-Gomez, Chem. Soc. Rev., 44, 3691 (2015). DOI: 10.1039/c5cs00106d
- [15] X.-J. Wen, C.-H. Shen, Z.-H. Fei, D. Fang, Z.-T. Liu, J.-T. Dai, C.-G. Niu, Chem. Eng. J., 383, 123083 (2020). DOI: 10.1016/j.cej.2019.123083
- [16] H. Yu, L. Liu, X. Wang, P. Wang, J. Yub, Y. Wang, Dalton Transact., 41, 10405 (2012). DOI: 10.1039/C2DT30864A
- [17] H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Langmuir, 26, 6618 (2010). DOI: 10.1021/la903943s

- [18] А.И. Сидоров, П.А. Безруков, А.В. Нащекин,
 Н.В. Никоноров, ЖТФ, 92 (9), 1377 (2022).
 DOI: 10.21883/JTF.2022.09.52929.91-22 [A.I. Sidorov,
 P.A. Bezrukov, A.V. Nashchekin, N.V. Nikonorov, Tech. Phys.,
 67 (9), 1186 (2022). DOI: 10.21883/TP.2022.09.54682.91-22].
- [19] Y. Jiao, M. Chen, Y. Ren, H. Ma, Opt. Mater. Express, 7, 1557 (2017). DOI: 10.1364/OME.7.001557
- [20] A.I. Sidorov, A.V. Nashchekin, R.A. Castro, I.N. Anfimova, T.V. Antropova, Physica B, 603, 412764 (2021).
 DOI: 10.1016/j.physb.2020.412764