04,05

Воздействие слабого импульсного магнитного поля на ионную проводимость суперионного проводника Pb_{0.67}Cd_{0.33}F₂

© Н.И. Сорокин, В.М. Каневский

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

Поступила в Редакцию 27 апреля 2023 г. В окончательной редакции 7 июля 2023 г. Принята к публикации 21 июля 2023 г.

Обнаружен магнитокондуктометрический эффект при импульсном магнитном воздействии (B = 0.1-1 T) на монокристалл суперионного проводника $Pb_{0.67}Cd_{0.33}F_2$ (кубическая симметрия, пространственная группа Fm $\bar{3}m$, параметр элементарной ячейки a = 5.7575 Å). Статическую электропроводность σ_{dc} определяли из спектров импеданса в диапазоне частот $5-5 \cdot 10^5 \text{ Hz}$. При отсутствии магнитного воздействия (B = 0) ионная проводимость суперионного кристалла равна $\sigma_{dc} = 1.4 \cdot 10^{-4} \text{ S/cm}$. При наложении магнитного поля (B = (0.1-1) T) она возрастает, достигая $\sigma_{dc} = 9.5 \cdot 10^{-4} \text{ S/cm}$ и $\sigma_{dc}(0) = 6.8$ при B = 1 Т. Обсуждается природа магнитокондуктометрического эффекта в суперионике $Pb_{0.67}Cd_{0.33}F_2$ в связи с особенностями его атомного строения.

Ключевые слова: суперионная проводимость, магнитокондуктометрический эффект, фториды, структура флюорита.

DOI: 10.21883/FTT.2023.09.56249.72

1. Введение

Суперионные проводники, обладающие аномально высокой проводимостью в твердом состоянии, являются функциональными материалами, представляющими большой интерес в физике твердого тела и электрохимии. Они активно применяются в качестве твердых электролитов в перспективных разработках химических источников тока, газовых и жидкостных сенсорах.

Эффективным способом управления свойствами ионных кристаллов является перестройка их реальной структуры в условиях различных внешних воздействий, в том числе при наложении магнитного поля. Известно [1–4], что слабые (B < 1 T) импульсные магнитные поля (ИМП) могут оказывать влияние на дефектную структуру и физические свойства немагнитных ионных кристаллов, изменяя их энергетическое состояние. Представляется важным изучить влияние ИМП на электропроводность суперионных проводников.

В качестве модельного кристалла выбран низкотемпературный суперионный проводник $Pb_{0.67}Cd_{0.33}F_2$, обладающий высокой униполярной фтор-ионной проводимостью [5–7]. Его электронной проводимостью можно пренебречь (не превышает 0.01% от общей электропроводности) [5,8]. Он представляет собой изовалентный твердый раствор со структурой флюорита (тип CaF₂, пространственная группа Fm $\bar{3}m$), состав которого соответствует минимуму на линии ликвидуса в системе PbF₂–CdF₂. Координаты минимума равны $t = 745 \pm 5^{\circ}$ C, $67 \pm 2 \text{ mol.}\%$ PbF₂ и $33 \pm 2 \text{ mol.}\%$ CdF₂ [7]. Конгруэнтный характер плавления твердого раствора Pb_{0.67}Cd_{0.33}F₂ открывает возможность выращивания из расплава однородных по составу кристаллов [7,9,10].

Ионная проводимость монокристаллов $Pb_{0.67}Cd_{0.33}F_2$ исследовалась в [6,7,11,12], ее величина при комнатной температуре равна $\sigma_{dc}\approx 10^{-4}$ S/cm. Анионная проводимость $Pb_{0.67}Cd_{0.33}F_2$ обусловлена структурными антифренкелевскими дефектами при изоморфных замещениях катионов Pb^{2+} на Cd^{2+} [12–14]. Высокая ионная проводимость в сочетании с низкой температурой плавления позволяют рассматривать флюоритовый твердый раствор $Pb_{0.67}Cd_{0.33}F_2$ как перспективную исходную матрицу для создания новых фторидных твердых электролитов для химических источников тока, работающих при комнатной температуре [15,16].

Целью настоящей работы являлось изучение влияния импульсного магнитного поля на величину электропроводности суперионика Pb_{0.67}Cd_{0.33}F₂.

Эксперимент и обсуждение результатов

Монокристаллы твердого раствора $Pb_{1-x}Cd_xF_2$ с x = 0.33 получены из расплава методом вертикальной направленной кристаллизации Бриджмена во фторирующей атмосфере (продукты пиролиза политетрафторэтилена). Методика роста кристаллов подробно описана в [7,10]. Структура выращенного кристалла относится к кубической сингонии (пр. гр. Fm $\bar{3}m$, число формульных единиц в элементарной ячейке Q = 4). Параметр элементарной ячейки равен a = 5.7575 Å(порошковый дифрактометр Rigaku MiniFlex 600, излучение CuK_α).

Рис. 1. Годографы импеданса $Z^*(\omega) = Z' + iZ''$ системы Ag|Pb_{0.67}Cd_{0.33}F₂|Ag: *a*) в отсутствие магнитного воздействия и *b*) при включенном магнитном воздействии (B = 0.4 T, t = 60 min). Рассчитанные значения R_b и θ_{el} приведены в таблице. Цифры — частота электрического поля в kHz. Окружности *S* проведены предположительно.

Исследуемый образец изготовлен в виде цилиндра диаметром 8 mm и толщиной 1.2 mm. Кристаллографическая ориентация образца не проводилась, поскольку структура кристалла Pb_{0.67}Cd_{0.33}F₂ относится к кубической симметрии и в нем отсутствует анизотропия электропроводности.

Статическая электропроводность σ_{dc} на постоянном токе кристалла измерялась методом импедансной спектроскопии [17,18]. В качестве проводящих контактов использовалась серебряная паста Leitsilber, которую наносили на рабочие (торцевые) поверхности цилиндрического образца. Измерения комплексного импеданса $Z^*(\omega)$ $(Z^*=Z'+iZ'')$, действительная часть $Z' = |Z| \cos \varphi$, мнимая часть $Z'' = |Z| \sin \varphi$, |Z| — модуль импеданса, ϕ — угол сдвига фаз между напряжением и током, ω — круговая частота) электрохимической системы Ag|Pb_{0.67}Cd_{0.33}F₂|Ag выполняли в диапазонах частот $5-5 \cdot 10^5$ Hz и сопротивлений $(1-10^7) \Omega$ (импедансметр Tesla BM-507), в вакууме 1 Ра. Относительная погрешность измерений $Z^*(\omega)$ составляла 5%. Методика импедансных измерений подробно описана в [19-21]. Параметры спектров импеданса определяли методом нелинейных квадратов, используя пакет программ FIRDAC [22].

Воздействие ИМП на кристалл осуществлялось периодическим разрядом конденсатора через соленоид. Частота следования, длительность и амплитуда импульсов в индукторе составляли 12 Hz, 12 ms и B = (0.1-1) T соответственно. Вектор магнитной индукции был параллелен рабочим поверхностям образца.

На рис. 1 и 2 показаны годографы импеданса в комплексной плоскости $Z^* = Z' + iZ''$ (диаграммы Найк-

виста), частотные зависимости модуля импеданса |Z| и угла сдвига фаз φ для монокристалла $Pb_{0.67}Cd_{0.33}F_2$ с серебряными электродами в отсутствие и, в качестве примера, в одном из состояний при включенном магнитном воздействии.

Можно видеть, что диаграммы Найквиста имеют одинаковый вид. Полный импеданс системы $Z^*(\omega)$ состоит из двух частей: объемной $Z_b^*(\omega)$ при высоких частотах и электродной $Z_{el}^*(\omega)$ при низких частотах. В рабочем диапазоне частот годографы импеданса, в основном, содержат его электродную часть $Z_{el}^*(\omega)$ в виде отклоненной от вертикального положения прямой, пересекающей ось активных сопротивлений Z' в точке R_b (при угле сдвига фаз между напряжением и током $\varphi = 0^\circ$).

Участки объемного импеданса $Z_b^*(\omega)$ очень незначительны. С понижением температуры величина сопротивления будет возрастать, поэтому ветвь годографа импеданса $Z_b^*(\omega)$, ответственная за диэлектрические свойства кристалла, будет проявляться в большей степени. Можно предположить, что участки объемного импеданса $Z_b^*(\omega)$, наблюдаемые на рис. 1, по-видимому, представляют собой небольшую часть полуокружностей, экстраполированные в начало координат, центр которых лежит ниже оси Z' активных сопротивлений. Ранее такие полуокружности наблюдали в годографах объемного импеданса $Z_b^*(\omega)$ для монокристаллов суперионных фторидных проводников $M_{1-x}R_xF_{2+x}$ и Na_{0.5-x} R_xF_{2+x} (M =Ca, Sr, Ba, Pb; R — редкоземельный элемент) со структурой флюорита [23–26].

Годографы комплексного импеданса для монокристалла $Pb_{0.67}Cd_{0.33}F_2$ и других суперионных фторидов [23–26] с инертными электродами соответствуют

Puc. 2. Сравнение частотных зависимостей a) модуля импеданса |Z| и b) угла сдвига фаз φ между напряжением и током для системы Ag|Pb_{0.67}Cd_{0.33}F₂|Ag в отсутствие магнитного воздействия (кривая I) и при включенном магнитном воздействии (B = 0.4 T, t = 60 min) (кривая 2).

Рис. 3. Эквивалентная электрическая схема, моделирующая импеданс системы Ag|Pb_{0.67}Cd_{0.33}F₂|Ag. Обозначение элементов схемы приводится в тексте.

эквивалентной цепи переменного тока, показанной на рис. 3. Здесь резистор R_b определяет объемное сопротивление кристалла, непосредственно связанного с ионной электропроводностью, а частотно-зависимые элементы с постоянным фазовым углом $P_{b}(\omega)$ и $P_{el}(\omega)$ (constant phase elements, СР-элементы [17,18]) моделируют поляризационные процессы в объеме кристалла и границе электрод/кристалл. Адмиттанс СР-элемента $P(\omega)$ равен $Y_{
m P}^{*}=1/Z_{
m P}^{*}=Y_{0}(i\omega)^{n}, \ 0\leq n\leq 1.$ В электрических процессах при n = 1 СР-элементы $P_{b}(\omega)$ и $P_{el}(\omega)$ превращаются в геометрическую емкость C_g и емкость двойного слоя $C_{\rm dl}$ соответственно ($Z_C^* = 1/i\omega C$). Использование емкостей C_g и C_{dl} в эквивалентной схеме свидетельствует об однородности электрических процессов, тогда как СР-элементы $P_{b}(\omega)$ и $P_{el}(\omega)$, имеющие емкостной характер (0.7 < n < 1), соответствуют неоднородным процессам с распределением характеристических частот (или времен).

При низких частотах ($f < 10^3$ Hz, рис. 2) можно пренебречь влиянием СР-элемента $P_{\rm b}(\omega)$ (его импеданс является очень большим по сравнению с сопротивле-

нием $R_{\rm b}$), поэтому для электродного импеданса $Z_{\rm el}^*(\omega)$ получим более простую эквивалентную схему, состоящую из последовательно соединенных сопротивления $R_{\rm b}$ и частотно-зависимого элемента $P_{\rm el}(\omega)$.

В этом случае электродный адмиттанс $Y^*_{\rm el}(\omega)$ может быть записан в виде

$$Y_{\rm el}^* = G_{\rm b} / [1 + (i\omega/\omega_{\rm el})^{n_{\rm el}}], \qquad (1)$$

где $G_{\rm b} = 1/R_{\rm b}$. Здесь частота $\omega_{\rm b}$ соответствует максимуму функции $Y_{\rm el}^{''}(\omega)$:

$$dY_{\rm el}^{''}/d\omega = 0$$
 при $\omega_{\rm el} = [G_{\rm b}/Y_{0,\rm el}]^{1/n_{\rm el}}.$ (2)

В таблице даны рассчитанные методом наименыших квадратов (МНК) параметры электродного импеданса и значения угла депрессии $\theta_{\rm el}$ ($\theta_{\rm el} = \pi (1 - n_{\rm el})/2$) при отсутствующем и включенном магнитном воздействии.

Как можно видеть из таблицы, под воздействием магнитного поля характеристики СР-элемента $P_{\rm el}(\omega)$ практически не изменяются, тогда как величина объемного сопротивления $R_{\rm b}$ уменьшилась в 2.2 раза.

Для экспериментальных значений *n*_{el}, в пренебрежении отклонением от поведения идеальной емкости

Параметры электродного импеданса системы $Ag|Pb_{0.67}Cd_{0.33}F_2|Ag,$ рассчитанные методом МНК

Характеристики	В отсутствие магнитного воздействия	При включенном магнитном воздействии $(B = 0.4 \text{ T}, t = 60 \text{ min})$
$R_{\rm b}, \Omega$ $Y_{0,\rm el}, S(\rm Hz)_{\rm el}^{-n}$ $n_{\rm el}$ $\theta_{\rm el}, \rm deg$	$\begin{array}{c} (1.7\pm0.1)\cdot10^4 \\ (2.0\pm0.1)\cdot10^{-7} \\ 0.87\pm0.01 \\ 12\pm1 \end{array}$	$\begin{array}{c} (7.7\pm0.4)\cdot10^3\\ (2.0\pm0.1)\cdot10^{-7}\\ 0.89\pm0.01\\ 10\pm1 \end{array}$

1541

 $(n_{\rm dl} = 1)$, значения $Y_{0,\rm el}$ представляют емкостные данные. Тогда емкость межфазной границы Ag|Pb_{0.67}Cd_{0.33}F₂ равна

$$C_{\rm dl} = Y_{0,\rm el}/S = 4 \cdot 10^{-7} \,\mathrm{F/cm}^2.$$
 (3)

Полученное значение C_{dl} для кристалла Pb_{0.67}Cd_{0.33}F₂ хорошо совпадает с аналогичными характеристиками кристаллических (Ca_{1-x} R_x F_{2+x}, Na_{0.5-x} $R_{0.5+x}$ F_{2+2x}) и аморфных (40GaF₃-40BaF₂-20YbF₃) фтор-ионных проводников с инертными (блокирующими) электродами [26–28].

Емкостной характер электродного элемента $P_{\rm el}(\omega)$ $(n_{\rm el} \approx 0.9)$ свидетельствует о ионной природе электропереноса в исследуемом кристалле. В суперионном проводнике ${\rm Pb}_{0.67}{\rm Cd}_{0.33}{\rm F}_2$ ионный перенос обусловлен подвижными ионами фтора F⁻. На это прямо указывают результаты исследования методом ядерно-магнитного резонанса ¹⁹F [14,29], в которых обнаружена высокая диффузия ионов F⁻ в твердом растворе ${\rm Pb}_{0.67}{\rm Cd}_{0.33}{\rm F}_2$. Теоретические расчеты методами молекулярной динамики и квантовой химии [13,30] подтверждают фторионный механизм электропроводности в этом кристалле.

Объемный импеданс $Z_b^*(\omega)$, наблюдаемый при высоких частотах ($f > 10^5$ Hz, рис. 2), с учетом импедансных данных для суперионных фторидных кристаллов со структурой флюорита [23–26], по-видимому, является небольшой частью полуокружности, экстраполированной в начало координат. Однако для точного определения параметров объемного импеданса $Z_b^*(\omega)$ необходимо увеличить объемное сопротивление R_b кристалла, понизив температуру.

В результате, при наложении магнитного поля импедансные измерения позволяют надежно определять объемное сопротивление R_b монокристалла, непосредственно связанного с трансляционным переносом ионов фтора в кристаллической решетке, и исследовать воздействие магнитного поля на ионную электропроводность суперионного проводника.

На рис. 4 показано изменение величины объемного сопротивления суперионного кристалла R_b в четырех режимах при последовательном включении и выключении ИМП с амплитудой B = 1 Т. Видно, что на участках с наложением ИМП (режимы 1 и 3) величина сопротивления R_b уменьшается, а при выключении магнитного воздействия (режимы 2 и 4) она релаксирует к исходному значению.

Значения удельной электропроводности $\sigma_{\rm dc}$ рассчитывали по формуле

$$\sigma_{\rm dc} = h/(SR_{\rm b}),\tag{4}$$

где геометрический фактор $h/S = 2.38 \text{ cm}^{-1}$, h — толщина кристалла и S — площадь электрода. В отсутствие магнитного воздействия (B = 0) ионная проводимость суперионного кристалла равна $\sigma_{dc} = 1.4 \cdot 10^{-4} \text{ S/cm}$. При наложении магнитного поля значения σ_{dc} возрастают, достигая $9.5 \cdot 10^{-4} \text{ S/cm}$ при B = 1 T, при этом увеличение проводимости составляет $\sigma_{dc}(B)/\sigma_{dc}(0) = 6.8$ раз.

Рис. 4. Кинетика объемного сопротивления $R_b(t)$ ($R_b \propto \sigma_{dc}^{-1}$) для суперионика $Pb_{0.67}Cd_{0.33}F_2$ в четырех режимах включения—выключения ИМП: I — режим 1 при B = 1 Т, II — режим 2 при B = 0, III — режим 3 при B = 1 Т и IV режим 4 при B = 0. На вставке на миллиметровой бумаге показана средняя часть выращенной кристаллической були диаметром 8 mm оптического качества, из которой изготовлен образец.

Рис. 5. Зависимость отношения $\sigma_{dc}(B)/\sigma_{dc}(0)$ от амплитуды магнитного воздействия *В* для суперионика Pb_{0.67}Cd_{0.33}F₂ (*R* — коэффициент корреляции).

После воздействия ИМП происходит уменьшение ионной проводимости кристалла до первоначального значения.

Таким образом, на примере высокопроводящего кристалла $Pb_{0.67}Cd_{0.33}F_2$ обнаружено, что воздействие магнитного поля приводит к релаксационным изменениям ионной проводимости суперионных проводников или к магнитокондуктометрическому эффекту.

Для случаев B = 0.1, 0.4 и 0.7 Т кинетика ионной проводимости при включении ($B \neq 0$) и выключении (B = 0) магнитного поля протекает аналогичным образом, но эффект проявляется в более слабой степени. На рис. 5 показаны магнитостимулированные изменения ионной проводимости монокристалла Pb_{0.67}Cd_{0.33}F₂ в зависимости от амплитуды ИМП. С уменьшением магнит-

ного воздействия *В* эффект возрастания проводимости снижается, и в первом приближении его можно описать квадратичной зависимостью.

Природа магнитокондуктометрического эффекта в суперионике $Pb_{0.67}Cd_{0.33}F_2$ связана с особенностями его атомного строения. Постоянно-токовая электропроводность σ_{dc} кристаллов является макроскопической физической величиной, объединяющей микроскопические характеристики носителей заряда. В суперионных проводниках она зависит от подвижности μ_{mob} и концентрации n_{mob} ионов проводимости ($\sigma_{dc} \propto n_{mob}\mu_{mob}$). Подвижность ионных носителей заряда характеризует микроскопическое движение ионов проводимости в кристаллической решетке по отношению к воздействию внешнего электрического поля.

Флюоритовый кристалл Pb_{0.67}Cd_{0.33}F₂ обладает жесткой катионной (Pb²⁺, Cd²⁺) и подвижной анионной (F⁻) подрешетками. Магнитное поле влияет на энергетическое состояние подвижной фтор-ионной подрешетки, при этом характер кулоновского взаимодействия анионных носителей заряда с катионной решеткой изменяется. Результатом воздействия ИМП на суперионный проводник является возрастание подвижности анионных дефектов, что проявляется в увеличении анионной проводимости σ_{dc} .

Можно предположить, что изменение энергетического состояния подвижной фтор-ионной подрешетки может быть связано с магнитопластическим эффектом [3,31], который ранее наблюдался в ионных кристаллах (LiF, NaCl) в сверхнизких магнитных полях. Согласно [3,31] магнитопластический эффект в немагнитных кристаллах обусловлен деформационным разупрочнением структуры вследствие перемещений дислокаций в кристаллах в процессе их выдержки в магнитном поле (при отсутствии механической нагрузки). Разупрочняющее действие магнитного поля на ионные кристаллы проявляется в снижении микротвердости, скорости деформационного упрочнения и предела текучести. В [32] обнаружено, что он также воздействует на фотопроводность полупроводников, вязкость аморфных сплавов, скорость химических реакций. Однако изучение механизма магнитокондуктометрического эффекта в суперионных кристаллах требует дальнейших исследований.

3. Заключение

На примере суперионного проводника $Pb_{0.67}Cd_{0.33}F_2$ обнаружен магнитокондуктометрический эффект — отклик ионной проводимости немагнитного кристалла на внешнее магнитное поле. Исследована кинетика ионной проводимости в суперионном кристалле $Pb_{0.67}Cd_{0.33}F_2$ в процессе и после воздействия ИМП с амплитудой B = (0.1-1) Т. Обнаружено, что при наложении магнитного поля ионная проводимость увеличивается, достигая $\sigma_{dc}(B)/\sigma_{dc}(0) = 6.8$ при B = 1 Т, а при его выключении она релаксирует до исходного значения. Природа магнитокондуктометрического эффекта связана с особенностями атомного строения суперионика $Pb_{0.67}Cd_{0.33}F_2$, имеющего разупорядоченную подрешетку подвижных ионов фтора. В магнитном поле фтор-ионная проводимость σ_{dc} увеличивается в результате возрастания подвижности анионных дефектов.

Благодарности

Авторы благодарят И.И. Бучинскую за предоставленный для исследований кристалл.

Финансирование работы

Работа выполнена в рамках Государственного задания ФНИЦ "Кристаллография и фотоника" РАН.

Список литературы

- Г.И. Дистлер, В.М. Каневский, В.В. Москвин, С.Н. Постников, Л.А. Рябинин, В.П. Сидоров, Г.Д. Шнырев. ДАН СССР 268, 3, 591 (1983).
- [2] И.С. Волчков, В.М. Каневский, М.Д. Павлюк. Письма в ЖЭТФ 107, 4, 276 (2018). [I.S. Volchkov, V.M. Kanevskii, M.D. Pavlyuk. JETP Lett. 107, 4, 269 (2018)].
- [3] В.И. Альшиц, Е.В. Даринская, Т.М. Перекалина, А.А. Урусовская. ФТТ 29, 2, 467 (1987).
- [4] М.Н. Левин, В.В. Постников, М.Ю. Палагин, А.М. Косцов. ФТТ 45, 3, 513 (2003). [М.N. Levin, V.V. Postnikov, М.Yu. Palagin, А.М. Kostsov. Phys. Solid State 45, 3, 542 (2003)].
- [5] И.В. Мурин, С.В. Чернов. Изв. АН СССР. Неорган. материалы **18**, *1*, 168 (1982).
- [6] Н.И. Сорокин. ФТТ 57, 7, 1325 (2015). [N.I. Sorokin. Phys. Solid State 57, 7, 1352 (2015)].
- [7] Н.И. Сорокин, И.И. Бучинская, Б.П. Соболев. Журн. неорган. химии 37, 12, 2653 (1992).
- [8] I. Kosacki. Appl. Phys. A 49, 4, 413 (1989).
- [9] П.П. Федоров, И.И. Бучинская, Е.В. Чернова. Кристаллография 61, 2, 482 (2016). [Р.Р. Fedorov, I.I. Buchinskaya, E.V. Chernova. Crystallogr. Reps 61, 3, 512 (2016)].
- [10] I. Kosacki, E. Dynowska. J. Cryst. Growth 50, 2, 575 (1980).
- [11] Н.И. Сорокин, И.И. Бучинская. Кристаллография 67, 6, 971 (2022). [N.I. Sorokin, I.I. Buchinskaya. Crystallogr. Reps 67, 6, 958 (2022)].
- [12] V. Trnovcová, P.P. Fedorov, M. Ozvoldova, I.I. Buchinskaya, E.A. Zhurova. J. Optoelectron. Adv. Mater. 5, 3, 627 (2003).
- [13] И.Ю. Готлиб, И.В. Мурин, Е.М. Пиотровская, Е.Н. Бродская. Неорган. материалы **39**, *3*, 358 (2003). [I.Yu. Gotlib, I.V. Murin, E.M. Piotrovskaya, E.N. Brodskaya. Inorg. Mater. **39**, *3*, 291 (2003)].
- [14] В.М. Бузник, А.А. Суховской, В.А. Вопилов, В.М. Мастихин, П.П. Федоров, И.И. Бучинская, Б.П. Соболев. Журн. неорган. химии **42**, *12*, 2092 (1997).
- [15] G. Karkera, M. Anji Reddy, M. Fichtner. J. Power Sources 481, 228877 (2021).
- [16] M. Anji Reddy, M. Fichtner. J. Mater. Chem. 21, 43, 17059 (2011).
- [17] А.К. Иванов-Шиц, И.В. Мурин. Ионика твердого тела. Изд-во СПб ун-та, СПб (2000). Т. 1. 616 с.

- [18] E. Barsoukov, J.R. Macdonald. Impedance Spectroscopy: Theory, Experiment and Applications. Wiley, N.Y. (2005). 606 p.
- [19] Н.И. Сорокин, Ю.В. Писаревский, В.В. Гребенев, В.А. Ломонов. ФТТ **62**, *3*, 386 (2020). [N.I. Sorokin, Yu.V. Pisarevskii, V.V. Grebenev, V.A. Lomonov. Phys. Solid State **62**, *3*, 436 (2020).]
- [20] I.I. Buchinskaya, D.N. Karimov, N.I. Sorokin. Crystals 11, 6, 629 (2021).
- [21] Н.И. Сорокин, Д.Н. Каримов, И.И. Бучинская. Электрохимия 57, 8, 465 (2021). [N.I. Sorokin, D.N. Karimov, I.I. Buchinskaya. Russ. J. Electrochem. 57, 8, 833 (2021)].
- [22] J.P. Dygas. PhD Thesis. Northwestern University, Evanston (1986).
- [23] Н.И. Сорокин, Б.П. Соболев. Электрохимия 45, 11, 1398 (2009).
 [N.I. Sorokin, В.Р. Sobolev. Russ. J. Electrochem. 45, 11, 1296 (2009)].
- [24] Н.И. Сорокин. Электрохимия 41, 8, 1005 (2005).
 [N.I. Sorokin. Russ. J. Electrochem. 41, 8, 896 (2005)].
- [25] Н.И. Сорокин, М.В. Фоминых, Е.А. Кривандина, З.И. Жмурова, Б.П. Соболев. Кристаллография 41, 2, 310 (1996).
 [N.I. Sorokin, M.V. Fominykh, E.A. Krivandina, Z.I. Zhmurova, B.P. Sobolev. Crystallogr. Reps 41, 2, 292 (1996)].
- [26] A.K. Ivanov-Shits, N.I. Sorokin. Solid State Ionics 36, 1–2, 7 (1989).
- [27] Н.И. Сорокин, А.К. Иванов-Шиц, Л.Л. Вистинь, Б.П. Соболев. Кристаллография **37**, *2*, 421 (1992).
- [28] Н.И. Сорокин, П.П. Федоров, Б.П. Соболев. Кристаллография **39**, *1*, 119 (1994).
- [29] А.И. Мацулев, Ю.Н. Иванов, А.И. Лившиц, В.М. Бузник, П.П. Федоров, И.И. Бучинская, Б.П. Соболев. Журн. неорган. химии 45, 2, 296 (2000).
- [30] А.В. Петров, М.С. Саламатов, А.К. Иванов-Шиц, И.В. Мурин. Кристаллография 64, 6, 925 (2019). [А.V. Petrov, M.S. Salamatov, A.K. Ivanov-Schitz, I.V. Murin. Crystallogr. Reps 64, 6, 932 (2019)].
- [31] В.И. Алышиц, Е.В. Даринская, М.В. Калдаева, Е.А. Петржик. Кристаллография 48, 5, 826 (2003). [V.I. Alshits, E.V. Darinskaya, M.V. Koldaeva, E.A. Petrzhik. Crystallogr. Reps 48, 5, 768 (2003)].
- [32] Ю.И. Головин. ФТТ 46, 5, 769 (2004). [Yu.I. Golovin. Phys. Solid State 46, 5, 789 (2004)].

Редактор Е.В. Толстякова