03,04,19

Высокотемпературная теплоемкость Li, Sc-германата LiScGeO₄ и Li, Sc-силиката LiScSiO₄

© Л.А. Иртюго, Л.Т. Денисова[¶], Г.В. Васильев, В.М. Денисов

Сибирский федеральный университет, Красноярск, Россия [¶] E-mail: Idenisova@sfu-kras.ru

Поступила в Редакцию 15 июля 2023 г. В окончательной редакции 15 июля 2023 г. Принята к публикации 16 июля 2023 г.

> Твердофазным синтезом из Li₂CO₃, Sc₂O₃, GeO₂ (SiO₂) получены соединения LiScGeO₄ и LiScSiO₄. С использованием рентгеновской дифракции уточнена их кристаллическая структура. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость (320–1050 K) полученных германата и силиката литий-скандия. На основании экспериментальных данных по теплоемкости рассчитаны их термодинамические свойства.

> Ключевые слова: дифференциальная сканирующая калориметрия, твердофазный синтез, термодинамические свойства.

DOI: 10.21883/FTT.2023.09.56246.152

1. Введение

В течение длительного времени наблюдается устойчивый интерес к сложным оксидным соединениям на основе германия и кремния LiScGeO₄ и LiScSiO₄. Это связано с возможностями их использования в качестве люминесцентных [1,2] и лазерных материалов [3,4]. Поэтому основное внимание было сосредоточено на исследования их структуры и оптических свойств [5–9]. Сведений о теплофизических свойствах этих соединений в литературе не найдено. В то же время сведения о теплоемкости и других термодинамических свойствах дают возможность проводить термодинамическое моделирование для уточнения фазовых равновесий и оптимизации условий проведения твердофазного синтеза. К настоящему времени для LiScGeO₄ и LiScSiO₄ данных о высокотемпературной теплоемкости нет.

Цель настоящей работы — экспериментальное определение высокотемпературной теплоемкости LiScGeO₄ и LiScSiO₄ в области 320–1050 К и расчет, на основании этих результатов, их основных термодинамических функций.

2. Эксперимент

Германат LiScGeO₄ и силикат LiScSiO₄ получены твердофазным синтезом из исходных реагентов Li₂CO₃ (химически чистый, XЧ), Sc₂O₃ (XЧ), GeO₂ — 99.99%, SiO₂ — 99.99%. При получении LiScGeO₄ перетирание стехиометрической смеси проводили в агатовой ступке с последующим прессованием без связующего. Обжиг проводили в муфельной печи ML100 в тиглях с крышкой при температуре 1373 К в течение 20 h. После этого таблетку перетирали, снова прессовали и обжигали при T = 1423 К в течение 20 h. Отметим, что при синтезе

LiScSiO₄ таким способом получить целевой продукт не удалось. Поэтому в случае LiScSiO₄ исходные реагенты перетирали в планетарной мельнице РМ 100 (Retsch), используя стакан и шары из оксида циркония. Гомогенизацию проводили в спирте (скорость вращения 260 rpm, время — 24 h). Полученную смесь прокаливали в сушильном шкафу для удаления спирта. Высушенный порошок прессовали в таблетку и обжигали на воздухе при 1373 и 1423 К по 20 h. Фазовый состав полученных образцов контролировали с использованием дифрактометра D8 ADVANCE фирмы Bruker (линейный детектор VANTEC, Cu K_{α} -излучение). Уточнение Ритвельда реализовано при помощи программы TOPAS 4.2 [10]. Если синтезированный LiScGeO4 не содержал примесей, то в полученном LiScSiO₄ суммарное содержание непрореагировавших реагентов и силикатов других составов составляло 0.8%.

В табл. 1 и 2 приведены полученные нами значения параметров элементарных ячеек LiScGeO₄ и LiScSiO₄, а также данные других авторов. Видно, что они удовлетворительно согласуются между собой.

Теплоемкость LiScGeO₄ и LiScSiO₄ измеряли методом дифференциальной сканирующей калориметрии с помощью термоанализатора STA 449 С Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной нами ранее [13,14]. Погрешность измерения не превышала 2%.

3. Результаты и их обсуждение

На рисунке показано влияние температуры на молярную теплоемкость LiScSiO₄ и LiScGeO₄ соответственно. Из них следует, что с увеличением температуры от 320 до 1050 К значения теплоемкости закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет различного

Параметр	LiScGeO ₄			
a, Å	10.67816(5)	10.673(2)	10.6780	10.6738
b, A c, Å	5.99434(4) 4.97007(4)	5.9926(11) 4.9667(5)	5.9942 4.9700	5.9913 4.9689
$V, Å^3$	318.127(5)	317.67(2)	318.11	317.7608
Пространственная группа Литературная ссылка	<i>Рпта</i> Наст. раб.	Pnma [9]	<i>Pnma</i> [11]	Pnma [12]

Таблица 1. Параметры элементарной ячейки LiScGeO₄

Габлица	a 2.	Парамет	ры элеме	нтарной	ячейки	LiScSiO ₄
---------	------	---------	----------	---------	--------	----------------------

Параметр	LiScSiO ₄				
<i>a</i> , Å	4.81939(6)	4.8168	4.8168(9)	4.82200(4)	4.8214(7)
b, Å	10.43893(4)	10.4317	10.4317(8)	10.4392(8)	10.444(1)
<i>c</i> , Å	5.970541(6)	5.9650	5.9650(9)	5.9720(4)	5.9729(8)
$V, Å^3$	300.37(5)		299.72(8)	300.76(6)	
Пространственная группа	Pbnm			Pbnm	Pbnm
Литературная ссылка	Наст.раб.	[5]	[6]	[7]	[8]

Таблица 3. Сравнение экспериментальных значений теплоемкости LiScGeO₄ и LiScSiO₄ с рассчитанными величинами по различным моделям $(J \cdot K^{-1} \cdot mol^{-1})$. В скобках — отклонение, %

Оксид	<i>C</i> _{<i>p</i>,298} , эксп.	НК	ИМК	Кел
LiScGeO4 LiScSiO4	132.53 118.13	$\begin{array}{c} 125.37 \ (-5.4) \\ 118.54 \ (0.34) \end{array}$	$131.7 (-0.63) \\ 120.9 (2.34)$	134.5 (1.48) 126.5 (7.1)

Температурные зависимости молярной теплоемкости *a*) LiScSiO₄, *b*) LiScGeO₄. *1* — расчет методом Неймана–Коппа, 2 — эксперимент.

рода экстремумов. Это позволяет считать, что у этих оксидных соединений в этом интервале температур нет полиморфных превращений.

Полученные экспериментальные результаты по теплоемкости хорошо описываются классическим уравнением Майера-Келли [15]:

$$C_p = a + bT - cT^{-2},$$
 (1)

которое для LiScGeO₄ и LiScSiO₄ имеет, соответственно, следующий вид:

$$C_p = (150.40 \pm 0.56) + (26.84 \pm 0.60) \cdot 10^{-3}T - (23.00 \pm 0.57) \cdot 10^5 T^{-2},$$
(2)

$$C_p = (160.40 \pm 0.43) + (11.17 \pm 0.50) \cdot 10^{-3}T$$
$$- (40.50 \pm 0.44) \cdot 10^5 T^{-2}, \qquad (3)$$

Т, К	$C_p, \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$	$H^{\circ}(T) - H^{\circ}(320 \mathrm{K}), \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	$S^{\circ}(T) - S^{\circ}(320 \mathrm{K}), \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$	$-\Delta G/T^*$, J · K ⁻¹ · mol ⁻¹			
LiScGeO ₄							
320	136.6	_	_	_			
350	141.1	4.16	12.44	0.538			
400	146.8	11.37	31.67	3.25			
450	151.2	18.82	49.22	7.80			
500	154.7	26.47	65.34	12.40			
550	157.6	34.28	80.22	17.89			
600	160.1	42.22	94.04	23.67			
650	162.4	50.29	106.9	29.58			
700	164.5	58.46	119.1	35.55			
750	166.5	66.74	130.5	41.50			
800	168.3	75.11	141.3	47.40			
850	170.1	83.57	151.5	53.23			
900	171.7	92.12	161.3	58.97			
950	173.4	100.7	170.6	64.60			
1000	175.0	109.4	179.6	70.13			
1050	176.5	118.2	188.2	75.54			
LiScSiO ₄							
320	124.4	_	_	_			
350	131.3	3.84	11.46	0.49			
400	139.6	10.62	29.57	3.01			
450	145.4	17.76	46.36	6.91			
500	149.8	25.14	61.92	11.64			
550	153.2	32.72	76.37	16.88			
600	155.9	40.45	89.81	22.40			
650	158.1	48.30	102.4	28.07			
700	160.0	56.25	114.2	33.81			
750	161.6	64.29	125.3	39.54			
800	163.0	72.41	135.7	45.23			
850	164.3	80.59	145.6	50.84			
900	165.5	88.83	155.1	56.38			
950	166.5	97.14	164.1	61.81			
1000	167.5	105.5	172.6	67.14			
1050	168.5	113.9	180.8	72.36			

Таблица 4. Термодинамические свойства LiScGeO4 и LiScSiO4

Примечание. * — $(\Delta G/T) = (H(T) - H(320 \text{ K}))/T - (S(T) - S(320 \text{ K})).$

Коэффициенты корреляции для уравнений (2) и (3) равны 0.9990 и 0.0098, а максимальные отклонения от сглаживающих кривых — 0.68 и 0.53%.

Сравнить полученные нами результаты по теплоемкости LiScGeO₄ и LiScSiO₄ с данными других авторов не представлялось возможным вследствие их отсутствия. Поэтому был проведен расчет $C_p = f(T)$ для исследованных оксидов методом Неймана-Коппа [16,17]. Эти результаты приведены на рисунке. Можно отметить совпадение экспериментальных и рассчитанных значений C_p при низких температурах. При T > 600 К наблюдается их различие, которое увеличивается с ростом температуры. По данным [18], наблюдаются как положительные, так и отрицательные отклонения от аддитивного правила Неймана-Коппа, которые связаны с изменениями в частотах колебаний атомов в сложном оксидном соединении по сравнению с простыми оксидами. Необходимые для расчетов методом Неймана-Коппа значения $C_p = f(T)$ исходных оксидов брали из литературы: Li₂O — [19], Sc₂O₃ — [20], GeO₂ — [21], SiO₂ — [22]. Кроме того, можно сопоставить значения $C_{p,298}$ с рассчитанными значениями по различным модельным представлениям: аддитивным методом Неймана-Коппа (НК) [16,17], инкрементным методом Кумока (ИМК) [23], методом Келлога (Кел) [16,24,25]. Эти результаты приведены в табл. 3. Из нее следует, что лучшее согласие с экспериментом для LiScGeO₄ дает метод Кумока, а для LiScSiO₄ — метод Неймана-Коппа.

Используя соотношения (2) и (3), по известным термодинамическим уравнениям рассчитаны основные термодинамические свойства исследованных оксидных соединений. Полученные данные приведены в табл. 4. Из нее следует, что значения C_p для LiScGeO₄ при всех исследованных температурах (для LiScSiO₄ —

до 1000 K) не превышают предел Дюлонга-Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице соответствующего оксида.

4. Заключение

Исследовано влияние температуры на молярную теплоемкость полученных твердофазным методом LiScGeO₄ и LiScSiO₄. Установлено, что зависимости $C_p = f(T)$ в области температур 320–1050 К хорошо описываются уравнением Майера–Келли. Рассчитаны термодинамические свойства полученных соединений.

Финансирование работы

Работа выполнена в рамках Программы стратегического академического лидерства "Приоритет-2030" для Сибирского федерального университета при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет", номер проекта FSRZ-2020-0013.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] T. Lyu, P. Dorenbos. Chem. Eng. J. 400, 124776 (2020).
- [2] Z. Zhou, P. Xiong, H. Liu, M. Peng. Inorg. Chem. 59, 17, 12920 (2020).
- [3] M. Sharonov, C. Petricevic, A. Bykov, R.R. Alfano. Opt. Lett. 30, 8, 851 (2005).
- [4] M. Sharonov, A.B. Bykov, P. Rojas, V. Petricevic, R.R. Alfano. Phys. Rev. B 72, 11, 115111 (2005).
- [5] X. Sun, R. Tripathi, G. Ponov, M. Balasubramanian, L.F. Nazar. Inorg. Chem. 56, 16, 9931 (2017).
- [6] R.M. Hasen, R.T. Downs, L.W. Finger. Am. Mineralogist. 81, 2, 327 (1996).
- [7] J. Ito. Am. Mineralogist. 62, 3-4, 356 (1977).
- [8] I. Steele, J. Pluth, J. Itô. Zt. Kristallogr. 147, 1-2, 119 (1978).
- [9] Е.А. Генкина, В.А. Тимофеева, А.Б. Быков. ЖСХ **27**, *3*, 167 (1986).
- [10] Bruker AXS TOPAS V4: General profile and structure analysis sowtwere for powder diffraction data. — User's Manual Bruker AXS. Karlsruhe, Germany (2008).
- Z. Ye, Z. Wang, Q. Wu, X. Huo, H. Yang, Y. Qang, D. Wang, J. Zhao, H. Suo, P. Li. Dalton Trans. 50, 29, 10092 (2021).
- [12] S. Miao, Y. Liang, Y. Zhang, D. Chen, X.-J. Wang. ACS Appl. Mater. Interfaces. 13, 30, 36011 (2021).
- [13] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010). [V.M. Denisov, L.T. Denisova, L.A. Irtyugo, V.S. Biront. Phys. Solid State 52, 7, 1362 (2010).]
- [14] Л.Т. Денисова, Л.А. Иртюго, Ю.Ф. Каргин, В.В. Белецкий, В.М. Денисов. Неорган. материалы 53, *1*, 71 (2017).
- [15] C.G. Maier, K.K. Kelley. J. Am. Chem. Soc. 54, 8, 3243 (1932).
- [16] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman. Thermochim. Acta. 395, 1–2, 27 (2003).

- [17] J. Leitner, P. Voňka, D. Sedmidubský, P. Svoboda. Thermochim. Acta. 497, 1–2, 7 (2010).
- [18] А.А. Резницкий. Калориметрия твердого тела (структурные, магнитные, электронные превращения). Изд-во МГУ, М. (1981). 184 с.
- [19] T. Tanifuji, K. Shiozawa, S. Nasa. J. Nucl. Mater. 78, 2, 422 (1978).
- [20] M. Zinkevich. Progress. Mater. Sci. 52, 4, 597 (2007).
- [21] P. Richet, D. de Ligny, E.F. Westrum Jr. J. Non-Cryst. Solids 315, 1–2, 20 (2003).
- [22] P. Gillet, A. Le Cléach, M. Madon. J. Geophys. Res. 95, B13, 21635 (1990).
- [23] В.Н. Кумок. Прямые и обратные задачи химической термодинамики. Наука, Новосибирск (1987). С. 108.
- [24] О. Кубашевский, С.Б. Олкокк. Металлургическая термохимия. Металлургия, М. (1982).
- [25] P.J. Spencer. Thermochim. Acta. 314, 1-2, 1 (1998).
- Редактор Е.В. Толстякова