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The possibility of measuring the amplitude and phase of the electromagnetic field by optical light homodyning

is shown. A new method for determining the relative phase of the field using the interference scheme of balanced

homodyne detection is proposed. The method is based on direct measurement of the average complex amplitude of

a quantum field mixed with a classical field using a passive symmetric beam splitter under conditions of a balanced

homodyne measurement scheme. A
”
direct“ measurement of the average field amplitude is a direct measurement

of the real and imaginary parts of the average quantum mechanical value of the complex field amplitude by

homodyning. By comparison with the quantum theory of the Hermitian phase operator of the electromagnetic

field, the accuracy of this measurement is estimated for various quantum states of the microscopic electromagnetic

field.

Keywords: Keywords: electromagnetic field amplitude and phase, trigonometric phase difference operators, beam

splitter interference operators, optical homodyning.

DOI: 10.61011/EOS.2023.03.56189.3653-22

1. Introduction

Classical theory uses the complex amplitude of the elec-

tromagnetic field as the basic and fundamental characteristic

of light. The electromagnetic (EM) field amplitude in polar

coordinates is written in the form E =
√

Ieiϕ, where I —

field intensity, ϕ — field phase. The description of the EM

field within quantum mechanical theory involves replacing

the c-numerical field parameters E, I,ϕ with their corre-

sponding â, n̂, ϕ̂ operators. The field creation (annihilation)

operators â+(â) are defined in quantum theory by replacing

E → â =
√

n̂ + 1e îϕ , E∗ → â+ = e−îϕ
√

n̂ + 1, taking into

account the commutation properties of the field operators.

Phase measurements of the ϕ field in classical theory

are made using interferometry circuits in which the field

to be measured is mixed with another EM field of a given

phase and the phase difference of the two fields is measured.

Thus, interferometric methods measure the relative phase of

the field (phase difference of two fields) [1–7]. In order

to measure the phase difference unambiguously, the values

of the trigonometric functions sine and cosine of the phase

difference shall be measured together.

The directly measurable quantities characterizing the EM

field under the conditions of measuring the field phase dif-

ference are the intensities of these fields I (or the quantum-

mechanical mean values of the photon numbers 〈n̂〉). Such
measurable values serve to determine (calculate) within the

framework of a theory the values of trigonometric functions

of the field phase difference or quantum mechanical mean

trigonometric operators of the phase difference of the

interfering fields present in the quantum theory of light.

2. Measuring the quantum mechanical
mean electromagnetic field

The EM field signal at the output of an optical interfer-

ometer is sensitive to the phase difference of the fields at its

inputs. The simplest example of an optical interferometer

is a passive beam splitter. Let us consider the quantum

theory of the passive beam splitter. The two inputs of the

beam splitter receive quantum fields characterized by the

creation (annihilation) operators â+
1 (â1) and â+

2 (â2), and

the photon number operators n̂ j = â+
j â j , j = 1, 2. We

denote the creation (annihilation) operators for the fields

emerging from the beam splitter as b̂+
1 (b̂1) and b̂+

2 (b̂2), and

the photon number operators: N̂ j = b̂+
j b̂ j , j = 1, 2. We

will assume that the incoming and outgoing field operators

satisfy the following commutative relations: [â i , â+
j ] = δi, j ,

[b̂i , b̂+
j ] = δi, j , i, j = 1, 2.

For the photon numbers (intensities) of the incoming and

outgoing fields of the beam splitter, the following relation is

fulfilled (photon number conservation): N̂1 + N̂2 = n̂1 + n̂2.

Outgoing photon numbers operators can be expressed using

incoming field operators using beam splitter transmittance τ

and reflectance ρ = 1− τ , as well as transmission and

reflection phase shifts if the switching conditions are

satisfied and the photon numbers are conserved. If the phase

shifts of φτ = φρ are equal, the photon number operators at

the output of the beam splitter can be written in quantum
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theory as

N̂1 = τ n̂1 + (1− τ )n̂2 +
√
τ (1− τ )(â+

1 â2 + â+
2 â1), (1a)

N̂2 = (1− τ )n̂1 + τ n̂2 −
√
τ (1− τ )(â+

1 â2 + â+
2 â1).

(1b)
If φτ = φρ + π/2, the operators of the numbers of

photons of transmitted and reflected light are

N̂′

1 = τ n̂1 + (1− τ )n̂2 − i
√
τ (1− τ )(â+

1 â2 − â+
2 â1),

(2a)

N̂′

2 = (1− τ )n̂1 + τ n̂2 + i
√
τ (1− τ )(â+

1 â2 − â+
2 â1).

(2b)
The φτ = φρ + π/2 condition for a symmetrical beam

splitter is effectively achieved by placing an λ/4 — plate

at the input of the local oscillator.

Let us further assume that the â2 field is a strong

classical field with a precisely defined complex amplitude

aLO : â2 → aLO , the field in the coherent state |αLO〉,
|αLO |2 ≫ 1 can be used as such a local oscillator (LO)
field. Under these conditions, we have 〈â+

1 â2〉 = αLO〈â+
1 〉,

αLO = |αLO |eiϕLO . Thus, we will consider the optical

homodyning scheme of a quantum field â1 while mixing

it with a classical signal αLO . We will hereafter assume that

the beam splitter is symmetrical: τ = ρ = 1/2. Adding

equations (1a) and (2a) and using the photon number

conservation condition N̂′
1 + N̂′

2 = n̂1 + n̂2 = N̂1 + N̂2, we

find for the average quantum-mechanical creation operator

for any quantum state of the measured field, the following

expression:

〈â+
1 〉 =

〈N̂−〉 + i〈N̂′
−〉

2αLO
, (3a)

where 〈N̂〉 ≡ 〈N̂1〉 − 〈N̂2〉, 〈N̂′〉 ≡ 〈N̂′

1〉 − 〈N̂′

2〉. Similarly,

using the difference of equations (1a) and (2a) and

substituting the ratio 〈n̂1〉 = 〈N̂′
1〉 − 〈N̂′

2〉, we find

〈â1〉 =
〈N̂−〉 − i〈N̂′

−〉
2α∗

LO

. (3b)

The â+
1 (â1) field creation/annihilation operators can be

written using the n̂1 ≡ â+
1 â1 photon number operators and

the eiϕ̂ phase operator exponent operator in the following

form:

â1 =
√

n̂1 + 1eiϕ̂1 = eiϕ̂1

√
n̂i ,

â+
1 = e−iϕ̂1

√
n̂1 + 1 =

√
n̂1e

−iϕ̂1 , (4)

Let us further assume that the quantum mechanical averages

of the field exponent operator satisfy the approximate

relation

〈â〉 ≈ 〈
√

n̂ + 1〉〈eiϕ̂〉, 〈â+〉 ≈ 〈
√

n̂ + 1〉〈e−iϕ̂〉, (5)

where the lower index in the creation/destruction operator

entry â+
1 /â1, n̂1 and ϕ̂1 is omitted, which we will

continue to do. Approximation (5) assumes that the eiϕ̂

and (n̂ + 1)1/2 operators are weakly correlated. We will

investigate the validity of this approximation for different

quantum field states.

Equation (3b) in approximation (5) means that the

exponent operator of the field phase operator is

eiϕ̂ ≈ 1

2a∗
LO

√
n̂ + 1

(N̂− − iN̂′

−),

and the relative field phase exponent operator ϕ̂ − ϕLO is

defined as

ei(ϕ̂−ϕLO ) ≈ 1

2
√

nLO(n̂ + 1)
(N̂− − iN̂′

−). (6)

It follows directly from (5) that the mean trigonometric

operators of the relative field phase in this approximation

satisfy the relations

〈cos(ϕ̂ − ϕLO)〉 ≈ 〈N̂−〉
2nLO〈(n̂ + 1)1/2〉 ,

〈sin(ϕ̂ − ϕLO)〉 ≈ − 〈N̂′
−〉

2nLO〈(n̂ + 1)1/2〉 . (7)

Our second assumption is that it is possible to replace

the (n̂ + 1)1/2 operator with (〈n̂〉 + 1)1/2 in expressions (6)
and (7). Within the framework of this approximation,

(n̂ + 1)1/2 ≈ (〈n̂〉 + 1)1/2, (8)

from which, we get the following:

〈cos(ϕ̂ − ϕLO)〉 ≈ 〈N̂−〉
2nLO(〈n̂〉 + 1)1/2

,

〈sin(ϕ̂ − ϕLO)〉 ≈ − 〈N̂′
−〉

2nLO〈(n̂〉 + 1)1/2
. (9)

3. Comparing measured averages
with the Hermite field phase operator
theory

According to the Hermite theory of the field phase

operator ϕ̂ [8–14], the quantum-mechanical mean values

of field operators for any quantum field state have the form

〈â〉x =

∞∑

n=0

√
n + 1〈x |n〉〈n + 1|x〉,

〈â+〉x =

∞∑

n=0

√
n + 1〈x |n + 1〉〈n|x〉. (10)

Using the Hermite theory of the Pegg-Barnett phase op-

erator [8–14] for the mean values of the eiϕ̂ and
√

n̂ + 1

operators for an arbitrary field state we find

〈eiϕ̂〉x =

∞∑

n=0

〈x |n〉〈n+1|x〉, 〈
√

n̂ + 1〉x =

∞∑

n=0

√
n+1|〈n|x〉|2.

(11)
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It follows from (10) and (11), that the trigonometric phase

operators are

〈eiϕ̂〉x = 〈cos ϕ̂〉x + i〈sin ϕ̂〉x ,

〈cos ϕ̂〉x = Re

∞∑

n=0

〈x |n〉〈n + 1|x〉,

〈sin ϕ̂〉x = Im

∞∑

n=0

〈x |n〉〈n + 1|x〉. (12)

Taking further the value ϕLO = 0 for the phase of the

local oscillator (classical field) and using formulas (7),
we will compare the results of the quantum Pegg-Barnett

(PB) theory with the results of the proposed scheme for

measuring the average values of trigonometric field phase

operators carried out by the balancing optical homodyning

method. To do this, consider a coherent state as the

quantum state of the field to be measured

|α〉 = e−nα/2
∞∑

n=0

αn

√
n!
|n〉, α =

√
nαeiϕα , nα ≡ |α|2.

Let us investigate the validity of the assumptions (5) and (8)
we have made, serving to determine the measured quantum

mean values of the trigonometric operators of the relative

phase (9), for the coherent field state |x〉 = |α〉. Fig. 1, a

shows the ratio of 〈
√

n̂ + 1〉α〈eiϕ̂〉α to 〈â〉α = 〈
√

n̂ + 1eiϕ̂〉α
as a function of the average number of coherent state pho-

tons: 0 ≤ nα ≤ 10 for any coherent phase angle value ϕα .

The Figure shows that the correlation 〈
√

n̂ + 1eiϕ̂〉α differs

markedly from the product of the average 〈
√

n̂ + 1〉α〈eiϕ̂〉α
only for small values nα near 2, and the difference between

the two values does not exceed 7%. At nα > 5, the weak

correlation for these operators is assumed almost exactly for

a coherent field state and the difference between the product

of averages and the correlation is less than 1%.

The
√
〈n̂〉α + 1/〈

√
n̂ + 1〉α relation for the same values

of the coherent field state parameters is given in Fig. 1, b.

As can be seen from the figure, the approximation (8) that

we use is highly accurate and the error does not exceed 3%

for all values of nα . The maximum error is observed at

nα ≈ 1.

Thus, our calculations have shown that the assump-

tions and approximations we have made are valid for

the case of a coherent measured field state with high

accuracy. This means that measurements of mean values

of trigonometric operators of relative field phases agree well

with the quantum theory of the Hermite phase operator

for microscopic coherent quantum fields. Fig. 1, c shows

the dependence of the ratio of the theoretical values of

the phase cosine operator to the measured mean values

of r(nα) ≡ 〈cos ϕ̂〉α,T /〈cos ϕ̂〉α,M on the mean number of

photons of the coherent field state. The difference between

the theoretical and measured values does not exceed 10%,

the maximum difference being achieved at nα ≈ 2.5.

Consider the case where the measured field is in the

Fock state |n〉. It is not difficult to see that for this
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Figure 1. (a) Dependence of the ratio

〈
√

n̂ + 1eiϕ̂〉α/〈
√

n̂ + 1〉α〈eiϕ̂〉α for fields in coherent states

on the average values of the number of photons nα for any value

of the phase angle ϕα of the coherent state |α〉. (b) The ratio of

mean values for 〈
√

n̂ + 1〉α/
√

〈n̂〉α + 1 field in coherent states

as a function of mean value of photon number nα for any value

of phase angle ϕα of coherent state |α〉. (c) The dependence

of the ratio of the average value of the phase difference cosine

operator of PB theory to the average value of the measured phase

operator r(nα) ≡ 〈cos ϕ̂〉α,T /〈cos ϕ̂〉α,M for the coherent field

state |α〉 on the average values of the photon number nα for any

value of the phase angle ϕα of the coherent state and ϕLO = 0.

The mean values of the measured trigonometric phase operators

according to (9) and (3) are 〈cos(ϕ̂ − ϕLO)〉α,M ≡ Re〈â〉α
(〈n̂〉α+1)1/2

,

〈sin(ϕ̂ − ϕLO)〉α,M ≡ Im〈â〉α
(〈n̂〉α+1)1/2

.

state, the average values of (10) are 〈â〉n,T = 〈â+〉n,T = 0.

It follows that the measured values of the mean trigono-
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metric operators of the relative phase (9) are also zero:

〈cos(ϕ̂ − ϕLO)〉n,M = 〈sin(ϕ̂ − ϕLO)〉n,M = 0, which corre-

sponds to a uniform distribution of random field phase

values from 0 to 2π.

On the other hand, the PB theory of the

phase operator, from which the expressions for the

trigonometric operator mean (12) follow, also indi-

cates equality 0 of these quantum-mechanical means:

〈cos(ϕ̂ − ϕLO)〉n,T = 〈sin(ϕ̂ − ϕLO)〉n,T = 0.

Under conditions where the measured field

is in the
”
states of the Schrödinger cat“ (SC)

|ψSC,±〉 = NSC,±(|α〉 ± | − α〉), it can be shown that

〈â〉SC± = 〈â+〉SC± = 0 and the measured values of

the average cosine and sine phase operators are zero:

〈cos(ϕ̂ − ϕLO)〉SC±,M = 〈sin(ϕ̂ − ϕLO)〉SC±,M = 0. The

results of PB quantum theory in the case under considera-

tion are in exact agreement with the theory of measurable

trigonometric operators, since it follows from formulae (12)
that 〈cos(ϕ̂ − ϕLO)〉SC±,T = 〈sin(ϕ̂ − ϕLO)〉SC±,T = 0.

Thus, it is shown that the measurement of mean values

of trigonometric phase operators carried out within the

light homodyning balancing scheme we consider is in

exact agreement with the theory of PB Hermitian phase

operator in the case of Fock states as well as
”
states of the

Schrödinger cat“ EM field.

4. Measuring field phase uncertainties

The measure of quantum phase uncertainty (dispersion of

the phase operator), proposed in [4] and used in [1–3,5,6]
to interpret experimental data, is of the form

〈(δϕ̂)2〉 = 1− |〈eiϕ̂〉|2 = 1− 〈cos ϕ̂〉2 − 〈sin ϕ̂〉2 (13)

takes a value equal to 1 in cases of total phase uncertainty in

the quantum field state in question and equal to 0 for quan-

tum field states with exactly defined phase or in the classical

limit of close to 0 fluctuations (dispersion) of the field phase.

It is not difficult to see, that the value 〈(δϕ̂)2〉 can serve to

estimate absolute phase uncertainty as well as relative phase

uncertainty, since it does not depend on the phase of the

local oscillator ϕLO : 〈(δ(ϕ̂ − ϕLO))2〉 = 〈(δϕ̂)2〉.
The results of the calculation of the field phase dispersion

for the coherent field state 〈(1ϕ̂)2〉, obtained within the

PB [8–10] theory, are compared by us with the phase

uncertainty measure 〈(δϕ̂)2〉 (13) obtained using formulas

for the average values of trigonometric phase operators

included in (13) and following from quantum PB and

Susskind-Glogover theories [11]. The comparison of 〈(δϕ̂)2〉
with the theoretical 〈(1ϕ̂)2〉 following from the above

theories is carried out by us, in turn, also using the

corresponding approximations for the average measured

operators of the form (7). Fig. 2 shows the dependences

of the field phase uncertainty measure 〈(δϕ̂)2〉α and the

variance of the PB phase operator 〈(1ϕ̂)2〉α for the EM

field in the coherent state on the average photon number nα
for any value of the phase angle ϕα of the coherent state |α〉
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Figure 2. Dependence of the field phase uncertainty measure

〈(δϕ̂)2〉α and the variance of the PB phase operator 〈(1ϕ̂)2〉α for

the EM field in the coherent state on the average photon number

nα for any value of the phase angle ϕα of the coherent state |α〉
and ϕLO = 0. Dashed curve —in formula (13), the average of

the measured sine and cosine operators (14) are used to calculate

〈(δϕ̂)2〉α ;Dashed curve — in formula (13) for calculating 〈(δϕ̂)2〉α ,
the average values of trigonometric operators of PB sine and cosine

theory (12) are used; solid curve — results of PB phase operator

variance calculation for field in coherent state |α〉.

and ϕLO = 0. The figure shows that the phase dispersion

in PB [15,16] theory is quantitatively different from the

uncertainty measure 〈(δϕ̂)2〉α [4] for small nα ∼ 1 for

both the mean trigonometric phase operators (12) included

in (11) and the mean measured trigonometric operators

〈cos ϕ̂〉α,M ≡ Re〈â〉α
(〈n̂〉α + 1)1/2

, 〈sin ϕ̂〉α,M ≡ Im〈â〉α
(〈n̂〉α + 1)1/2

.

(14)
Note that at nα ≫ 1, the fluctuations (dispersion) and the

phase uncertainty measure tend to 0. For EM field states
”
of

the Schrödinger cat“ the field phase uncertainty measure

〈(δϕ̂)2〉SC takes its maximum value (as in the case of a

Fokowski field state), equal to 1 (11), for any values of

the mean photon number. At the same time, as shown

in [15], the phase dispersion of the field in the
”
state of the

Schrödinger cat“ decreases with increasing average photon

number nα of the coherent state |α〉 and decreases markedly

from the value 〈(1ϕ̂)2〉SC = π2

3
at nα = 0 to 〈(1ϕ̂)2〉SC = π2

4

at nα ≫ 1. Thus, the uncertainty measure 〈(δϕ̂)2〉SC can

only serve as a qualitative estimate of the EM field phase

fluctuations found in quantum states
”
of the Schrödinger

cat“ |ψSC,±〉 = NSC,±(|α〉 ± | − α〉).

5. Conclusion

A procedure for measuring the mean value of the

complex amplitude of a quantum EM field is described. The

quantitative measurement of average quantum-mechanical

values of trigonometric field phase operators using a

balanced optical homodyning scheme, based on the mea-

surement of the average EM field amplitude, is shown to

Optics and Spectroscopy, 2023, Vol. 131, No. 3
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be possible in the approximations made. The applicability

limits of the proposed method for microscopic fields in

different quantum states are investigated. It is shown

that the quantum mechanical averages of the measured

trigonometric phase operators agree with high accuracy with

the theory of the Hermite field phase PB operator for a

coherent field state and exactly match the results of the

phase operator theory for Fock states and
”
states of the

Schrödinger cat“.
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