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Heating of a metal layer by a scanning laser beam
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Introduction

An actively developing application of lasers is 3D -

printing based on the effects of laser radiation on metals,

plastics and other substances [1–8]. The substance (later,
metal is considered) is heated by a laser beam scanning over

the sample surface. The scanning mode largely determines

the quality of manufactured samples, and therefore, the

scanning influence and the choice of its strategy have been

widely studied in the literature (see, for example, [9–18]). It
should be noted that in practice, there is always some spatial

gap between scanning lines. It also affects the quality of the

fabricated sample, since the required temperature for metal

melting in this area is achieved through thermal conduction,

since this area may not be sufficiently illuminated by the

laser beam. The choice of the distance between the

scanning lines also depends on the scanning speed, with

an increase in which, the effective heating area of the

medium along the scanning direction is determined not

only by the beam radius, but also by the scanning speed.

This, in turn, affects the thermal conductivity both along

the scanning direction and perpendicular to it. Finally, the

metal heating for its subsequent melting is also determined

by the sample thickness and the heat exchange with the

environment and the substrate. As the latter in 3D -

printing systems, the
”
plate“ on which the product is shaped

can be used. Thus, trend identification and assessment

of the temperature profile parameters of the heated metal

depending on the factors listed above (scanning speed,

sample thickness (powder or plate) of the metal, beam

radius, optical radiation power) would allow to optimize

the heating and facilitate the scanning strategy choice. This

is the problem this paper is devoted to.

The paper is organized as follows. In the following

section, we introduce the model and formulate the basic

heat conduction equation for the temperature averaged

over the metal plate thickness. Next, the transition to

dimensionless parameters is made, and the asymptotics of

the temperature distribution away from the scanning laser

beam is determined. Then, the temperature setting time

is assessed for constant-speed scanning, and the important

role of the plate structure is revealed — whether it is a

solid metal or a layer of metal balls. The shift of the

temperature maximum relative to the maximum of the laser

beam intensity is also assessed, and the widths of the front

and back fronts of the temperature profile are estimated. The

heat conduction equations obtained by numerical solution,

the basic dependences of the steady-state temperature

profile characteristics on the task parameters are presented.

The main conclusions are summarized in the Conclusion.

Model and basic relations

The initial thermal conductivity equation describing the

metal plate heating has the form

CV
∂T
∂t

=
∂

∂x

(

κ(T )
∂T
∂x

)

+
∂

∂y

(

κ(T )
∂T
∂y

)

+
∂

∂z

(

κ(T )
∂T
∂z

)

+ wv . (1)

Here, T — temperature, t — time, CV — specific heat

capacity at constant volume, κ — thermal conductivity

coefficient and wv — heat release density due to absorption

of laser radiation falling on the plate approximately along

the normal. We assume that the temperature does not

exceed the metal melting point, so that no - hydrodynamic

effects occur in the metal. The plate thickness L is located

between the gas temperature Tg at z > 0 and the fixed

temperature Tsub substrate at z < −L (Fig. 1). The laser

radiation falls on the plate from the gas medium and

is reflected with a reflectance R, which depends on the
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Figure 1. Modelling details. 1 — the metal layer to be machined,

2 — the substrate.3 — laser beam moving 4 in the direction x (3)
with speed V .5 — the heat flux from the heated metal.

temperature T . On the faces of the plate z = 0 and z = L,
the heat fluxes are described by Newton’s law

κ
∂T
∂z

∣

∣

∣

∣

z=0

= αg(T − Tg),

κ
∂T
∂z

∣

∣

∣

∣

z=−L

= −αsub(T − Tsub). (2)

In (2), αg,sub — heat transfer coefficients on the corre-

sponding faces. Below, we will complete the heat transfer

description by taking into account the radiation heat transfer.

Under characteristic conditions, the temperature differ-

ence Tg and Tsub is small, and the plate is so thin (condition
L ≪ κ/αsub), that its temperature changes little in the

normal direction. Then, one can use the mean field approx-

imation, i.e., averaging the thermal conductivity equation

over z , as is performed in optical bistability problems with

a thermal nonlinearity mechanism [19,20]. In this case,

in addition to reducing the geometric dimension of the

problem, the boundary conditions (2) are taken into account

by the averaged equation itself. For a metal plate, the laser

radiation is completely absorbed at its thickness; then, the

average heat emission is 〈wv〉 = 1
L

L
∫

0

wvdz = BI in, where

B = 1
L (1− R). As a result, we obtain a closed reduced

heat equation describing the dynamics of the averaged

temperature 〈T 〉 = 1
L

L
∫

0

Tdz (we omit the averaging sign

below):

CV (T )
∂T
∂t

=
∂

∂x

(

κ(T )
∂T
∂x

)

+
∂

∂y

(

κ(T )
∂T
∂y

)

− 8(T ) + B(T )I in. (3)

In (3) x and y — transverse coordinates, I in — incident

laser beam intensity at z = 0 and

8(T ) =
1

L

[

αsub(T − Tsub) + αg(T − Tg) + αR(T 4 − T 4
g )

]

.

(4)

Here, αR — radiation heat transfer coefficient at the gas

boundary. The substrate is considered thick enough (ideally,
semi-infinite). If there is no substrate, its thermo-physical

characteristics are replaced in (4) by those of the surround-

ing gas. In the absence of laser heating or away from the

laser beam, the steady state (averaged over z ) temperature

of the plate T0 is determined by the condition 8(T0) = 0.

The dimensions of the thermo-physical parameters are as

follows: [CV ] = W · s ·m−3 ·K−1, [κ] = W · s ·m−3 ·K−1,

[αg ] = [αsub] = W ·m−2 ·K−1, [αR] = W ·m−2 · K−4.

Next, we consider the laser beam scanning mode along

the surface at constant speed V along the axis x , without

affecting the temperature dependence on another trans-

verse coordinate y ; for a small-sized metal beam in the

direction y , averaging is also realized along this direction.

Then, there is no ∂
∂y

(

κ(T ) ∂T
∂y

)

term in (3), and the

radiation intensity depends on only one combined variable:

I in = I in(x −Vt). Introducing X = x −Vt, in steady-state

mode, we get

d
dX

(

κ(T )
dT
dX

)

+ VCV (T )
dT
dX

− 8(T ) + B(T )I in(X) = 0.

(5)
This equation determines the steady-state temperature pro-

file. The unsteady equation also allows us to describe the

process of its establishment. Next, for certainty, we consider

V > 0.

The temperature dependences of the thermo-physical

characteristics and the reflectance are set by the metal

parameters. For copper, they are given in the Appendix

based on data [21–24].

Dimensionless variables
and dimensionless heat conduction
equation

The dimensionless form of the governing equa-

tions allows us to scale solutions and use the re-

sults of a single numerical calculation to obtain infor-

mation about many variants of the problem parame-

ters. For this purpose, we introduce the operating

temperature and dimensionless thermo-physical parameters,

highlighting their values at the operating temperature:

cv = CV (T )/CV,N , whereCV,N = CV (Twork), and similarly

3 = κ(T )/κN , βg = αg(T )/αg,N , βsub = αsub(T )/αsub,N , and

βR = αR(T )/αR,N . Then, we introduce the time scale

τ0 = (CV,N/αg,N)L (6)

and dimensionless time τ = t/τ0 . The time τ0(Twork)
serves as a natural estimate of the stationary mode

establishment time. The natural scale of the co-

ordinate is Lscale = (L · κN/αg,N)1/2, so the dimension-

less coordinate ξ = x/Lscale . It is convenient to

enter the dimensionless scanning speed by the ra-

tio vs = lV/Vscale, where Vscale = L/τ0 = αg,N/CV,N and
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l = L/Lscale = [L/(κN/αg,N)]1/2 . The dimensional temper-

ature T will be represented as T = T0 = 2Twork, where

2 = (T − T0)/Twork — deviation of the relative temper-

ature from the equilibrium value in the absence of

laser radiation. Finally, the dimensionless laser intensity

I0 = I in/(αg,N Twork). Although we are considering a one-

dimensional problem here, we will assume that the laser

beam — is an axisymmetric spot when calculating the real

laser power.

In dimensionless form, the heat conduction equation is

written as

CV (2)
∂2

∂τ
=

∂

∂τ

(

3
∂2

∂ξ

)

− ϕ(2) + [1− R(2)]I0, (7)

where

ϕ(2) = βg(2−2g) +
αsub,N

αg,N
βsub(2−2sub)

+
αr,N

αg,N
T 3
workβR

[

(

2 +
T0

Twork

)4

−

(

Tg

Twork

)4
]

(8)
and 2g = (Tg − T0)/Twork, 2sub = (Tsub − T0)/Twork.

The ratio 8(T0 = 0) changes to the condition ϕ(0) = 0.

In case of constant-speed laser beam scanning, the

intensity is I0 = I0(χ), where χ = ξ − vsτ . In the steady-

state mode 2 = 2(χ), so that the steady-state temperature

profile is defined by the ordinary differential equation

3(2)
d22

dχ2
+ K(2)

(

d2
dχ

)2

+ vs cv

d2
dχ

− ϕ(2)

+
[

1− R(2)
]

I0(χ) = 0, (9)

where K = d3/d2 , with boundary conditions

2χ→±∞ = 0.

At the beam periphery, the laser intensity is negligibly

low. There, the metal temperature differs little from the

equilibrium temperature, and its approach to the equilibrium

value has an exponential character, 2 ∼ exp(γχ). The

exponent index γ is determined from the equation (9)
linearized near the equilibrium temperature value:

30γ
2 + vs cv,0γ − ϕ′

0 = 0, (10)

where 30 = 3(0), cv,0 = cv(0), ϕ
′
0 = (dϕ/d2)θ=0.

The solution of the quadratic equation (10) under

characteristic conditions ( 3(0) > 0, cv,0 > 0, ϕ′
0 > 0 ) are

two real roots opposite in sign

γ± =
1

230

[

−vs cv,0 ±
√

(vs cv,0)2 + 430ϕ
′
0

]

. (11)

Accordingly, the front temperature profile has a charac-

teristic width of 1/|γ−|, and the width of the rear front

∼ 1/|γ+|. Naturally, the leading front width is less than that

of the rear. The difference in the widths of the fronts means

the temperature profile asymmetry when heated even by a

symmetrical (with color-shaped intensity distribution) laser

beam and leads to a temperature maximum shift relative

to the maximum intensity of the laser beam. Assessments

show that for small thicknesses of the metal layer, this shift

increases approximately linearly with the scanning speed.

The numerical calculation below gives more complete

information. Note also that a comparison with heating

with homogeneous laser radiation (the limit of infinitely

large beam width) gives a useful estimate from below of

the laser beam intensity needed to heat the metal to a

given temperature Tm. With this heating, the temperature

is also homogeneous, and the laser intensity is determined

by the ratio Ihom = ϕ(2m)/[1− R(2m)]. Naturally, for a

finite width beam, the maximum intensity shall exceed

the value Ihom . Next, using numerical calculations using

the thermo-physical parameters of the metal, we give

quantitative data on the temperature profile.

Assessments of the temperature profile
establishment time and ball model

The formula (6) for the time of establishing the tem-

perature profile testifies to its proportionality to the metal

layer thickness. For volumetric copper parameters (see

Appendix), we obtain very large values for the setting

time by (6): τ0 = 4.15 · 104 s = 11.5 hour for L = 0.1m
and τ0 = 4.15 s for L = 10µm. In reality, the metal in the

problem under consideration is not solid, but consists of

micron-sized balls. This leads to a reduction in density and

an increase in the effective surface area of the metal. Let the

density decrease to two times of - for the geometric factor,

and the specific heat capacity — proportional to the ratio of

the total surface balls area to its part concerning the other

balls (up to twenty times), so that further in determining

dimensional constants we can substitute CV → CV /cVeff,

still considering that CV — the heat capacity density of

bulk copper. In addition, the convection and radiation

cooling coefficients αg and αR increase in proportion to

the ratio of the total surface area of all balls in a plate

of thickness L to the surface area of a solid copper plate,

for example αg → cSphαg and cSph = 20. The indicated

substitutions affect only the normalization of the parameters:

setting time τ0, scaling of the scanning speed and the beam

intensity. Further, we assume that the reduction factor for

the cooling/heating time of the balls compared to a whole

plate is cτ eff = cVeffcSph = 400, so that the characteristic

setting time for copper balls τ0 ≈ 10−2 s for L = 10µ m.

Similarly, replacing the solid metal with balls increases the

heat transfer to the substrate; for the steel substrate, this

reduction is estimated to be up to 10 fold. Thus, the

temperature setting time can be small for a thin layer

of balls. Further results are given for already established

temperature profiles.
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Shift of the maximum temperature profile
relative to the laser intensity profile

We will assume that the laser beam intensity profile is

bell-shaped, with one maximum at χ = 0, and I0(0) = Im.

The maximum of the stationary temperature profile will

be shifted toward the rear front, so that the maximum

temperature 2 = 2max is reached at χ = χmax < 0. By

decomposing the temperature profile into a series of small

deviations from χmax up to the cubic terms, the following

inequalities can be obtained:

0 < I ′0(χmax) < vs
2max −2m

2m

cρ(2m)ϕ(2m)

1− R(2m)
. (12)

When the upper constraint (12) is converted into equality

in the limiting cases of
”
thin“ and

”
thick“ metal layer, we

obtain for shift χmaxwith respect to the dimensionless beam

width ρb

χm/ρb

≈

{

− 1
2
ρb(1− Ihom/Im)(V/Vscale)/l, (V/Vscale)l ≪ 1,

− ln1/2(Ihom/Im), (V/Vscale)l ≫ 1.

(13)
In Fig. 2, for a beam with a characteristic dimensionless

width (
”
radius“) ρb, the dependence χmax on Imax = I in(0),

such that the upper constraint (12) turns into an equality.

At the same time, as the intensity Imax changes, the beam

width ρb also changes so that the power is constant.

The figure is given for the case of a thin layer of balls

with thickness L = 10µm. The main difference between

the
”
thin“ layer and the

”
thick“ layer is that the relative

deviation decreases by about 100 fold, which is consistent

with the assessments (13).

Width assessments of the temperature
profile fronts for a layer of copper

Let us estimate the front widths based on relation (11)
for a thin copper layer at laser beam scanning speeds

V = 5 . . . 10 cm/s. In this case, it turns out that the

widths dependence on the velocity is practically absent,

the temperature profile asymmetry is not pronounced, the

widths of the leading and rear fronts are close to each other

and are determined by the dimensionless scale factor l :

r± ≈ 1/|γ±| = 27l cm. (14)

Thus, at a copper layer thickness L = 10µ m the width of

the fronts r± ≈ 0.27 cm.

In Fig. 3, we show the dependences of the lead-

ing (r− = 1/|γ−|) and rear (r+ = 1/|γ+|) fronts widths on

the substrate temperature and on the layer thickness for

the half-widths of the temperature profile for the case of

balls. The gas temperature does not change, Tg = 293K.

It can be seen that as the substrate temperature increases,

the stationary temperature profile does not catastrophically

expand when radiation cooling is taken into account.

Solving the boundary problem for
the steady temperature profile

The steady-state temperature profile is determined by

solving the dimensional equation (5) or the dimensionless

equation (9) with boundary conditions at the periphery.

For the model of a transversely unbounded metal layer,

the boundary condition is to approximate the temperature

to the equilibrium value T = T0 (2 = 0). More precise

boundary conditions follow from the asymptotics of such an

approximation given above, see formulas (10) and (11) for

the rate γ± of temperature approximation to the equilibrium

value.

Equations (5) and (9) are nonlinear second-order ordi-

nary differential equations. To solve them, it is convenient

to go to a system of two first-order differential equations,

introducing the logarithmic derivative of the relative tem-

perature deviation

γ(2) = 2−1(χ)d2/dχ (15)

and the equation for its change

3(2)22γ
dγ
d2

+
[

K(2)22 + 3(2)2
]

γ2 + vs cv2γ

+ [1− R(2)]I0(χ) = 0. (16)

Asymptotically at χ → ±∞, the logarithmic derivative γ(2)
approaches values γ± .

The dependence of the laser intensity profile can be

approximated by a series of steps, at each of which the

intensity is constant, I0 = const. Within such a step, equa-

tion (16) will allow to find γ(2), and by stitching together

solutions for different steps the complete dependence of

this quantity over the entire range of variation. After

determining γ(2), the coordinate relationship 2(χ) is found
from the following inverse relationship from equation (15)
χ =

∫

d2
2γ(2) . Practically, the numerical solution is carried

out by the shotgun method of starting with the asymptotic at

one edge of the temperature profile and selecting conditions

to ensure that the correct asymptotic is achieved at the other

profile edge.

This approach is the easiest to implement for very narrow

(delta-shaped) laser beams and for a beam with an intensity

profile in the form of a single step. In the first case, the

I0(χ) profile can be considered delta-shaped; the specific

intensity profile is not important, and there is only one cross-

linking boundary. In the second case, there are two cross-

linking boundaries; the first case can also be considered

a special case of the second, when simultaneously with

decreasing step width (width of the laser beam), the

maximum radiation intensity increases accordingly.

A comparison of the temperature profiles for laser beams

with a stepped intensity profile of different widths at

the same temperature at maximum is shown in Fig. 4.

Recall that the dimensionless coordinate χ in Fig. 4

− 10 — is the dimensional coordinate normalized by

Optics and Spectroscopy, 2023, Vol. 131, No. 3
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Figure 2. Dependence of the relative shift of the temperature profile maximum relative to the laser beam profile maximum on the

plate thickness (b) and on the maximum intensity Imax [kW/cm 2] for a given temperature at maximum Tmax = Tmelt/4 = 559K (a) and

Tmax = Tmelt = 1356K (c), equal to the copper melting temperature. Substrate temperature Tsub = Tg . The different curves, from top to

bottom, correspond to scanning speeds V = 2, 2.5, 3, 4, 5 cm/s. In the graphs, the beam width decreases with increasing Imax starting from

ρb = 1, rb = 0.1 cm at Imax = 2 [kW/cm 2] so that the power value Tmax = Tmelt/4 = 559K (a) or Imax = 6 [kW/cm2], at P in = 182W (c)
is constant. The thickness of the ball layer is L = 10 µ m. For thickness dependence (b) Imax = 20 [kW/cm 2]. Dotted curves — without

regard to radiation cooling. Calculation for the example case of balls, cτ eff = 400, cSph = 20 and for accelerated heat transfer to the

substrate, csubCu = 10.
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Figure 3. First and second row — dependences of the characteristic scale of the temperature profile decline at the leading and rear fronts,

r±, on the substrate temperature for different scanning speeds V = 2; 2.5; 3; 4 cm/s for curves r− top down and r+, r+/r− bottom up,
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thickness L at Tsub = Tg . Calculation — for the example case of balls, cτ eff = 400, cSph = 20, and for accelerated heat transfer to the

substrate, csubCu = 10. The dashed curves — are for the case without regard to radiation cooling, i.e., with αR = 0.
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Parameters are chosen for the typical case of balls, cτ eff = 400, cSph = 20 and for accelerated heat transfer to the substrate, csubCu = 10.
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Figure 5. Temperature dependence on relative coordinate for high scanning speed, V = cSph · 5 · l−1 cm/s (for ball layer cτ eff = 400).
(a) Dependence at power P in = cSph · 33 · l2 ·MW, when the temperature at maximum Tmax = 1356K is slightly less than the copper
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(L · κN/αg,N)1/2 — a value proportional to the square

root of the plate thickness L, and the dimensionless

parameter l = [L/(κN/αg,N)]1/2 is also proportional to the

root of L. It can be seen that the temperature max-

imum shift is greater, the smaller the beam intensity

and the greater its width. For a wide beam with a

maximum intensity close to Ihom, the bias increases sharply,

and the temperature profile becomes almost homoge-

neous.

Next, Fig. 5 −10 shows the results of calculating the

temperature profile of the boundary problem (16) in the

narrow beam limit. In this formulation, the correction

factor cτ eff enters only into the scaling of the scan rate

and cSph into the scaling of the beam power (hereafter
cSph = 20). Using the dimensionless parameter introduced

above allows scaling the results by varying the metal layer

thickness, laser beam power, etc. Figs. 5−10 are given

for a given dimensionless speed vs , and the temperature

profiles for the copper ball layer differ from the solid

copper layer only by increasing the scanning speed at

cτ eff = 400. Figs. 5 and 6 correspond to the scanning

speed for the solid plate at the lower limit of the selected

speed interval V = (5÷ 10) · l−1 cm/s, respectively, for the

ball layer, it is higher speed V = 2000 · l−1 cm/s, so that

the plate has almost no time to warm up during scanning.

On the contrary, the solid plate heats up almost to the

melting temperature, because the cooling rate in this case

is not high enough, and the profile establishing time is

very long. The incident beam power varies in these

figures in the range P in = (10 ÷ 50) · l2 ·MW. As a result,

the leading front of the profile is very sharp and the

rear very long. It should be noted, that the velocity

interval used for the demonstration here is increased a

hundredfold for l = 10−2, L = 10µm. If, however, we
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(a) Graph for power P in = 792 · l2 · kW, Tmax = 1396K. For (b) P in = 0.8 · l2 · kW, Tmax = 294K, which is not enough to heat a

plate thickness at this scan rate. The curve it 2 corresponds to the temperature profile for a stepped laser beam with a half-width of

ρb = 3at the same temperature at maximum. The beam boundaries and center are indicated by vertical dashed lines. Maximum offset

χm = −0.8. Intensity across the beam width Is = 4.9 kW/cm2, power is the same, P in = 792 · l2 · kW. Other parameters are the same, as

in Fig. 5.

choose an V = (5÷ 10) velocity interval of cm/s for such

micron-sized layers, the temperature profile asymmetry will

be significantly smaller, i.e., almost as in the following

Figs. 9 and 10.

Figs. 7 and 8 correspond to the scanning speed

V = 10 · l−1 cm/s for the ball layer. In this case, the balls

are heated significantly for P in ∼ 400 · l2 · KW powers, but

the length of the leading front of the temperature profile is

only 10 times shorter than the rear front. In Figs. 9 and

10, the scanning speed is very low, so that the temperature

profile is almost symmetrical. Both types of copper layers

heat up significantly when the laser irradiation power is

P in ∼ 400 · l2 ·KW.

Fig. 11, a shows the general trends of the maximum

temperature dependence on the scanning speed and beam

power (in [l2 · kW]). Naturally, the scanning speed increase

weakens the layer heating. Fig. 11, b shows the extent

to which the laser power should be increased or the

scanning speed decreased to achieve a particular maximum

temperature. In a slightly different form, the same trend is

shown in Fig. 11, c.

Conclusion

The analysis of the heating mode of the metal layer

by a scanning laser beam leads to the following main

conclusions.

Optics and Spectroscopy, 2023, Vol. 131, No. 3



Heating of a metal layer by a scanning laser beam 377

T
, 
K

400

600

800

1000

1200

1400

χ

T
, 
K

m
a
x

a b

400

600

800

1000

1200

1400

400 600200
2

P , l  · kWin

1

2

0–15 –10 –5 5–20–25–30 800

Figure 8. (a) Temperature dependence on relative coordinate for different beam powers, from P in = 0.8 · l2 · kW to P in = 792 · l2 · kW.

(b) Temperature dependence at maximum on beam power in [l2 · kW] for small scan rate, V = l−1 cm/s, curve 1. An additional curve 2

is given for the cooled substrate, Tsub = 178K.

0–15 –10 –5

T
, 
K

400

600

800

1000

1200

1400

χ

T
, 
K

293.0

293.2

293.4

293.6

293.8

294.0

χ

a b

5 10 15 0–15 –10 –5 5 10 15

Figure 9. Temperature dependence on relative coordinate χ for low scanning speed, V = 5 · l−1 µ m/s, for ball layer cτ eff = 400.

(a) Dependence at power P in = 719 · l2 · kW, Tmax = 1356K. (b) Dependence at P in = 0.61 · l2 · kW, Tmax = 294K, which is not enough

to heat a plate of thickness L = 10 cm. Other parameters are the same, as in Fig. 5. That is, the scanning speed in Figs. 7 and 8 almost

does not change the magnitude of the heating power, but affects only the beam symmetry, leading to a relatively long rear front of the

stationary profile.

T
, 
K

400

600

800

1000

1200

1400

χ

T
, 
K

m
a
x

a b

400

600

800

1000

1200

1400

400 600200
2

P , l  · kWin

1

2

10–15 –10 –5 15 8000 5

Figure 10. To the left — the temperature dependence on the relative coordinate for different beam powers, from P in = 0.61 · l2 · kW to

P in = 719 · l2 · kW. To the right — temperature dependence at maximum on beam power in [l2 · kW] for near-zero scan rate, V = 5 · l−1 µ

m/s, curve 1. An additional curve 2 is given for the cooled substrate, Tsub = 202K.

Optics and Spectroscopy, 2023, Vol. 131, No. 3



378 V. Trofimov, Pengcheng Lin, S.V. Fedorov, N.N. Rosanov, N.A. Veretenov , Yan Wang, Yongqiang Yang

2P , l  · kWin
–1V, l  · cm/s

400

400

400

600

600

600

800

800

800

1000

1000

1000

1200

200

1200

1400

0

1400

T
, 
K

m
a
x

T
, 
K

m
a
x

400 2 4600 3 6200 1 2800 4 81000 5 10

1

1

1

2 2

2

3

3
3

4

a b c

2
P

, 
l

 ·
k
W

in

0
–1V, l  · cm/s

Figure 11. (a) Maximum temperature dependence for different scanning speeds, V = 2; 2.5; 3; 4 · l−1 cm/s for top-down curves (from
blue to red), on laser power P [l2 · kW].(b) Dependence of the laser power required to reach the maximum temperature Tmax = 500, 750,

100K for the bottom-up curves (from blue to green), on the scanning speed V [l−1cm/s]. (c) Dependence of maximum temperature for

different incident beam powers: P in = 200, 500, 800 · l2 · kW for bottom-up curves (blue to green), from scan speed V [l−1cm/s].

The metal layer structure is extremely important. Taking

into account that the layer is not continuous (homogeneous),
but consists of metal balls, changes the main characteristics

of the mode by several orders of magnitude. In particularly,

the temperature profile at a constant scanning speed of the

laser beam is established in reasonable times practically only

in the ball layer model.

Since, under characteristic conditions, the temperature

profile width is noticeably greater than that of the laser

beam, the beam shape has no significant effect on the

heating characteristics. Sufficient information is given by

considering the case of very narrow (delta-shaped) laser

beams.

Taking into account the radiation heat transfer in the

conditions where the metal layer temperature is close

to the melting temperature, deterministically limits the

temperature profile blurring.

The temperature profile maximum is shifted relative to

the laser beam toward the rear front. The shift value

becomes small for thin metal layers, see (13). The

temperature profile asymmetry noticeably decreases with

increasing scanning speed.
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Appendix

Thermal-physical copper parameters

Here, we give values of parameters and coefficients in

the dependences of thermal physical characteristics on tem-

perature T , given in Kelvin, and their modification for the

relative temperature θ = T/Twork in two operating ranges,

Twork = 293K and Twork = 1300K < Tmelt = 1356.55K,

based on data [21–24]

Copper density: ρ0 = 8890 [kg ·m−3],
ρ1 = 0.362 [kg ·m−3K−1],
ρ(T ) = 8890−(8890 − 8680) × (T−Tn)/(600 − 20) for

Tn = 293K, ρ(T ) = ρ0 + ρ1(T−Tn) = ρ0[1 + ρ
(1)
θ (θ − θn)],

ρ
(1)
θ = 0.012(0.0529) for Twork = 293(1300)K.

Heat capacity: c p = 0.381 [kJ/(kg ·K)],

c(1)
v = 1.419 · 10−4 [kJ/(kg ·K2)],

cv(T ) = 0.374 + (0.414 − 0.374)(T − Tn)/(573 − 293),
cv = c p/1.02 = 0.374 [kJ/(kg ·K)],

cv(T ) = cv + c(1)
v (T − Tn) = cv [1 + c(1)

θ (θ − θn)],

c(1)
θ = 0.1115.

Thermal conductivity coefficient:

κ(T ) = k(θ) = κ0 − κ1 · T + κ2 · T 2 − κ3 · T 3,

k i = (−1)iκi T i
work, [k j ] = Wm−1K−1, κ0 = 427,

κ1 = 0.147, κ2 = 1.14 · 10−4, κ3 = 4.7 · 10−8,

[κ j ] = Wm−1K−( j+1). k(θ) = κ0(1 + k1θ + k2θ
2 + k3θ

3),
k1 = −0.101, k2 = 0.0229, k3 = −0.00276 for

Twork = 293K and k1 = −0.448, k2 = 0.4508,

k3 = −0.241 for Twork = 1300K.

Convective (Newtonian) heat transfer:

Heat transfer with gas,

αg(T ) = h0 − h1 · T + h2 · T 2 − h3 · T 3,

[cvρ0] = Jm−3K−1, h0 = 0, h1 = 0.003, h2 = 10−6,

h3 = 10−9, [h j ] = Wm−2K−( j+1), [CN ] = Wm−2K−1,

cN(T ) = 1 + c1 · θ + c2 · θ
2 + c3 · θ

3, c1 = −0.11,

c2 = 0.0107, c3 = −0.00314 for Twork = 293K,

and c1 = −0.488, c2 = 0.0475, c3 = −0.0139 for

Twork = 1300K. cN(Tamb = 293K) = 0.898.

Heat exchange with a steel substrate

αsub = csub CuCFe = const, CFe = 30 [Wm−2K−1].

Radiation heat transfer:

αR = 4.54 · 10−8 [Wm−2K−4], βR = 0.143.
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Absorption coefficient: 1− R(T ) = B0b(θ) = B0 +
+B1T + B2T 2, B0 = 0.028, B1 = 1.5 · 10−5, |B2| ≤ 10−8,

[B j ] = K− j , b(θ) = 1 + b1(θ) + b2(θ)
2, b1 = 0.157,

|b2| ≤ 0.031.
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