13.3;04.1;08.3 Воздействие плазмы N₂ на монослои дисульфида молибдена

© С.А. Хлебников^{1,2}, А.А. Соловых^{1,2}, Ю.А. Манкелевич¹, Е.Н. Воронина^{1,2}

¹ Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова, Москва, Россия ² Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: voroninaen@nsrd.sinp.msu.ru

Поступило в Редакцию 25 мая 2023 г. В окончательной редакции 13 июля 2023 г. Принято к публикации 13 июля 2023 г.

На основании динамического моделирования квантово-механическим методом DFT выявлены основные процессы взаимодействия тепловых атомов N с поверхностью бездефектного монослоя MoS_2 . Описаны возможные механизмы образования дефектов под действием ионов N_2^+ низкой энергии. Сделана оценка пороговой энергии ионов, необходимой для удаления серы.

Ключевые слова: дисульфид молибдена, монослой, плазма, радикалы, ионы, моделирование.

DOI: 10.21883/PJTF.2023.18.56169.19640

Благодаря уникальному сочетанию электронных, оптических, механических и тепловых свойств 2D-материалы рассматриваются в качестве наиболее перспективных материалов для создания элементов наноэлектроники. Среди них большой интерес вызывает квазидвумерный дисульфид молибдена (MoS₂), ширина запрещенной зоны которого зависит от числа слоев, приложенного механического напряжения, воздействующего электрического поля [1-3]. При производстве элементов электроники активно применяется низкотемпературная плазма, но частицы плазмы (ионы и радикалы) способны вызывать значительное повреждение подобных ультратонких материалов, что может приводить к нежелательным изменениям их свойств, в том числе вследствие поверхностной функционализации [1,4-7]. Экспериментальные данные, полученные при облучении ультратонких пленок MoS₂ плазмой N₂ [8], показали, что даже при весьма низкой (20-25 eV) энергии ионов N₂⁺ происходило заметное повреждение пленок MoS₂, приводящее к частичному разрушению нескольких верхних слоев MoS₂, хотя указанная энергия ионов представляется недостаточной для физического распыления этого материала. Воздействие тепловых атомов N (плазма N₂ вниз по потоку) приводит к модификации только верхнего слоя пленок за счет частичного удаления серы и ее замещения азотом [5,8]. Анализ рентгеновских фотоэлектронных спектров облученных образцов продемонстрировал, что в результате обработки значительно изменились пики молибдена Мо3d и Мо3p, но не основной пик серы S2p, что свидетельствует о появлении на поверхности связей Мо-N и низкой вероятности образования связей S-N. Следует отметить, что после облучения тепловыми атомами О (плазма О2 вниз по потоку) при аналогичных условиях повреждение образцов было более существенным и наблюдались изменения во всех указанных пиках (возникали как связи Мо-О, так и связи S-O) [6-8].

В настоящей работе выполнено моделирование квантово-механическим методом теории функционала плотности (density functional theory, DFT) взаимодействия тепловых атомов N и низкоэнергетических ионов N_2^+ с монослоем MoS₂ с целью выявления основных механизмов происходящих при этом элементарных физико-химических процессов. Статические и динамические DFT-расчеты выполнялись в рамках обобщенного градиентного приближения GGA с обменнокорреляционным функционалом PBE в базисе плоских волн с псевдопотенциалами PAW в программном пакете VASP [9] на суперкомпьютерном комплексе MГУ им. М.В. Ломоносова [10].

Как было показано ранее на основе DFT-моделирования [11], атом N может адсорбироваться в положении "top" над атомом S на поверхности бездефектного монослоя MoS₂. При этом образуется поверхностная группа Mo₃-SN со слабой связью S-N длиной d = 1.54 Å (рис. 1, *a*) и происходит некоторое перераспределение электронной плотности, что отражается в величинах частичных атомных зарядов *Q*, но практически не вызывает структурных изменений в монослое (см. таблицу). Однако статические DFT-расчеты, которые были

Рис. 1. Поверхностные группы $Mo_3-SN(a)$ и $Mo_3-NS(b)$, которые могут образовываться на поверхности монослоя MoS_2 в результате хемосорбции атома N. Атомы Mo, S и N показаны голубым, желтым и синим цветом соответственно. Цветной вариант рисунка представлен в электронной версии статьи.

Результат	Энергия связи	Межато	мное расстояние d , A	Частичный заряд Q, е		
адсорбции	E_{bind}, eV	Mo-S	S-N	Мо	S	Ν
Монослой без дефектов						
_	-	2.425	-	+0.22	-0.11	—
Группа Мо ₃ –SN	-1.6	2.451	1.539	+0.22	+0.03	-0.24
Физическая сорбция	-0.05	2.425	~ 3.0	+0.22	-0.11	-0.03
			(над поверхностью)			
Группа Мо ₃ –NS	-2.9	2.430	1.682	+0.26	-0.01	-0.25
Монослой с S-вакансией						
S-вакансия	-	2.396	_	+0.21	_	—
Группа Мо ₃ –N	-5.8	2.446	2.025, 2.023	+0.28	_	-0.32
Hermuclear distance, A 1 0 0 100	N0-S	a N0-Mo	uternuclear distance, A uternuclear distance,	0 Time, f	b	N-S N0-N N0-N 150

Параметры адсорбции атома N на монослое MoS2 без дефектов и с S-вакансией

Рис. 2. Временные зависимости расстояний между атомами N, S и Mo для различных процессов взаимодействия налетающего атома N (обозначен как N0) с энергией E_0 с поверхностью монослоя MoS₂. *a* — рассеяние на бездефектном монослое при $E_0 = 0.3 \text{ eV}$ (кривая, соответствующая расстоянию N0–S) и адсорбция в S-вакансии при $E_0 = 0.1 \text{ eV}$ (кривая для расстояния N0–Mo); *b* — рассеяние на поверхностной группе при $E_0 = 0.05 \text{ eV}$ (тонкие кривые для N0–N и N–S) и рекомбинация налетающего и адсорбированного атомов при $E_0 = 0.3 \text{ eV}$ (жирные кривые для N0–N и N–S).

выполнены нами при заданном значении магнитного момента системы, показали, что хемосорбция оказывается возможной для возбужденных состояний атомов N^{*} (метастабильных N(^{2}D), N(^{2}P)), в то время как для атома N в основном состоянии $N(^{4}S)$ преобладает физическая сорбция на расстоянии $\sim 3 \,\text{\AA}$ от верхнего уровня монослоя. Поэтому наиболее вероятным механизмом взаимодействия тепловых ($E_0 \approx 0.03 \, \mathrm{eV}$) атомов $N(^{4}S)$ в реальных условиях будет их рассеяние, как и при взаимодействии со многими молекулами и поверхностями (см., например, [12,13]). Сделанное предположение было подтверждено с помощью динамического DFT-моделирования: для рассчитанных траекторий атомы $N(^{4}S)$ с низкой (0.03-0.3 eV) начальной энергией испытывали рассеяние на бездефектной поверхности MoS₂, передавая ей 20-40% своей начальной энергии. Временная зависимость расстояния между налетающим атомом N0 и ближайшим к нему поверхностным атомом S (кривая N0-S на рис. 2, a) наглядно иллюстрирует процесс рассеяния.

Особо следует выделить два важных результата, полученных при моделировании воздействия одиночных атомов N. Первый из них связан с образованием поверхностной группы Mo₃-NS, в которой атом N оказался расположенным в узле кристаллической решетки, вытеснив вверх атом S (рис. 1, b). В статических расчетах такая конфигурация возникала при размещении атома N непосредственно вблизи поверхности (что возможно при достаточной дополнительной энергии атома), а в динамических — при начальной энергии налетающего атома N $\sim 10 \, \text{eV}$. Второй вывод заключается в том, что появление дефектов на поверхности монослоя приводит к значительному повышению вероятности хемосорбции: так, налетающий тепловой атом N и в основном, и в возбужденных состояниях легко адсорбируется в вакансии, возникшей за счет удаления атома S, с образованием значительно более прочных связей Mo-N (рис. 2, *a*).

Выполненные DFT-расчеты также показали, что наличие на поверхности адсорбированных атомов N не способствует повышению вероятности адсорбции сле-

Рис. 3. Временные зависимости расстояний между атомами N, S и Mo при взаимодействии налетающего иона N_2^+ (его атомы обозначены как N1 и N2) с поверхностью монослоя MoS₂. *a* — рассеяние на бездефектном монослое при $E_0 = 15 \text{ eV}$; *b* — образование поверхностной группы Mo₃-N и летучего радикала SN при $E_0 = 20 \text{ eV}$.

дующих атомов. Воздействующий тепловой атом N испытывает сильное притяжение к поверхностной группе Mo₃-SN, в результате чего может образовываться молекула N₂. В статических расчетах для модели размером 4 × 4 элементарных ячеек (с 16 атомами S в качестве возможных центров адсорбции) число адсорбированных атомов N не превысило 2, что соответствует максимальной степени покрытия азотом бездефектного монослоя ~ 10%. В динамических расчетах наблюдалась рекомбинация налетающего и адсорбированных атомов N с образованием молекул N2 в тех случаях, когда начальная кинетическая энергия воздействующего атома превышала $\sim 0.2 \,\text{eV}$ (рис. 2, b), причем с возрастанием угла падения вероятность рекомбинации возрастала (так, при угле 60° этот процесс происходил при 0.1 eV). Интересно, что практически вся энергия, выделяющаяся в результате рекомбинации, передавалась образующейся молекуле N₂, которая покидала поверхность в высоковозбужденном вращательно-колебательном состоянии. Хемосорбция на поверхности монослоя возможна для тепловых возбужденных атомов N*, поток которых в условиях эксперимента [8] значительно (на порядок и более) ниже потока атомов $N({}^{4}S)$. Кроме того, хемосорбированные атомы (как на бездефектной поверхности, так и в S-вакансиях) достаточно легко рекомбинируют с налетающими атомами, тем самым понижая концентрацию связей S-N на поверхности MoS₂, что хорошо согласуется с результатами анализа рентгеновских фотоэлектронных спектров [8].

С целью изучения механизмов разрушения монослоя при облучении плазмой N_2 аналогичные расчеты были выполнены для ионов N_2^+ с энергией 5–25 eV. Как показали результаты динамического DFT-моделирования, энергии $E_0 = 5-10$ eV налетающих ионов N_2^+ оказалось недостаточно для образования стабильных дефектов на поверхности MoS₂, причем взаимодействие иона с поверхностью происходило очень быстро (в течение $\sim 50-100$ fs). При начальной энергии $E_0 = 15$ eV картина взаимодействия изменялась, как показывает рис. 3, а: удар иона приводил к заметному удлинению связи N-N (кривая N1-N2) и смещению атомов S из положения равновесия (кривая S-Mo), однако в большинстве рассчитанных траекторий примерно через 150-200 fs смещенные атомы возвращались обратно и восстанавливалась молекула N2. Интересно отметить, что в рассмотренных случаях итоговая доля переданной монослою энергии в среднем составила $\sim 60-70\%$, а молекула N₂ после удара оказывалась в высоковозбужденном вращательном состоянии. Дальнейшее повышение энергии налетающего иона N₂⁺ до энергии 20-35 eV вызывало диссоциацию налетающей частицы при ударе и заметные структурные изменения в монослое: на поверхности появлялись поверхностные группы Mo₃-NS или Mo₃-N, что могло сопровождаться отрывом радикала SN (второй процесс иллюстрирует рис. 3, b). Следовательно, под действием ионов процесс образования дефектов и замещения серы азотом резко ускоряется. Более того, как было показано экспериментально [5], в образцах с высокой концентрацией внедренного азота возникает дополнительное механическое напряжение, что может приводить к появлению трещин и дальнейшему разрушению слоев материала.

Таким образом, на основании выполненного моделирования можно сделать вывод, что основными процессами, происходящими при взаимодействии тепловых атомов N в основном состоянии N(⁴S) с поверхностью бездефектного монослоя MoS₂, являются рассеяние и физическая сорбция на достаточном (~ 3 Å) удалении от поверхности, а атомы N* в возбужденном состоянии N(²D,²P) могут хемосорбироваться над атомами S, образуя поверхностные группы Mo₃–SN со слабыми связями S–N. Воздействие следующих атомов N как в основном, так и в возбужденных состояниях на монослой вблизи поверхностной группы Mo_3-SN способно приводить к образованию молекул N_2 , снижая концентрацию азота на поверхности. Тепловые атомы N легко встраиваются в вакансии, возникающие за счет удаления серы, но также способны рекомбинировать со следующими налетающими атомами. Воздействие ионов N_2^+ с энергией 20–35 eV вызывает интенсивное образование дефектов на поверхности монослоя и замещение серы азотом.

С практической точки зрения проведенное моделирование показывает затруднительность достижения значительной степени нитрирования MoS₂ (вплоть до полной замены верхнего слоя серы азотом) под действием плазмы N2 вниз по потоку. При облучении потоком тепловых атомов N необходимо дополнительное инициирование извлечения атомов S за счет электронновозбужденных (N*) и/или примесных частиц (например, атомов О, которые могут появляться в реакторе за счет натекания воздуха и диссоциации молекул О2; в этом случае в верхнем слое образцов будут присутствовать как азотные, так и кислородные компоненты), а также нагрева образцов. При плазменной обработке ультратонких пленок MoS₂ критически важным является прецизионный контроль за энергией ионов, поскольку их воздействие способно приводить к образованию вакансий и других дефектов, оказывающих существенное влияние как на свойства таких пленок, так и на процессы их взаимодействия с радикалами.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 22-22-00178 (https://rscf.ru/project/22-22-00178/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Z.M. Wang, *MoS*₂. *Materials, physics, and devices* (Springer, 2014). DOI: 10.1007/978-3-319-02850-7
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nature Nanotechnol., 6 (3), 147 (2011).
 DOI: 10.1038/nnano.2010.279
- [3] Л.А. Чернозатонский, А.А. Артюх, УФН, 188 (1), 3 (2018).
 DOI: 10.3367/UFNr.2017.02.038065 [L.A. Chernozatonskii, A.A. Artyukh, Phys. Usp., 61 (1), 2 (2018).
 DOI: 10.3367/UFNe.2017.02.038065].
- [4] J. Guo, B. Yang, Zh. Zheng, J. Jiang, Physica E, 87, 150 (2016). DOI: 10.1016/j.physe.2016.12.004
- [5] A. Azcatl, X. Qin, A. Prakash, Ch. Zhang, L. Cheng, Q. Wang, N. Lu, M.J. Kim, J. Kim, K. Cho, R. Addou, Ch.L. Hinkle, J. Appenzeller, R.M. Wallace, Nano Lett., 16 (9), 5437 (2016). DOI: 10.1021/acs.nanolett.6b01853

- [6] Q. Qian, Z. Zhang, M. Hua, G. Tang, J. Lei, F. Lan, Y. Xu, R. Yan, K.J. Chen, Nanotechnology, 28 (17), 175202 (2017). DOI: 10.1088/1361-6528/aa6756
- H. Zhu, X. Qin, L. Cheng, A. Azcatl, J. Kim, R.M. Wallace, ACS Appl. Mater. Interfaces, 8 (29), 19119 (2016).
 DOI: 10.1021/acsami.6b04719
- [8] Д.Е. Мележенко, Д.В. Лопаев, А.И. Зотович,
 Е.Н. Воронина, Письма в ЖТФ, 48 (22), 28 (2022).
 DOI: 10.21883/PJTF.2022.22.53803.19330 [D.E. Melezhenko,
 D.V. Lopaev, A.I. Zotovich, E.N. Voronina, Tech. Phys. Lett.,
 48 (11), 65 (2022). DOI: 10.21883/tpl.2022.11.54894.19330].
- [9] G. Kresse, D. Joubert, Phys. Rev. B, 59 (3), 1758 (1999).
 DOI: 10.1103/PhysRevB.59.1758
- [10] V.V. Voevodin, A.S. Antonov, D.A. Nikitenko, P.A. Shvets, S.I. Sobolev, I.Yu. Sidorov, K.S. Stefanov, V.V. Voevodin, S.A. Zhumatiy, Supercomput. Front. Innov., 6 (2), 4 (2019). DOI: 10.14529/jsfi1902
- [11] J. He, K. Wu, R. Sa, Q. Li, Y. Wei, Appl. Phys. Lett., 96 (8), 082504 (2010). DOI: 10.1063/1.3318254
- [12] N. Balucani, Chem. Soc. Rev., 41 (16), 5473 (2012).
 DOI: 10.1039/c2cs35113g
- [13] E.N. Voronina, Yu.A. Mankelevich, T.V. Rakhimova,
 D.V. Lopaev, J. Vac. Sci. Technol. A, 37 (6), 061304 (2019).
 DOI: 10.1116/1.5122655