12,05

Исследования магнитных наночастиц $Mn_x Fe_{3-x}O_4@OA$ ($0 \le x \le 1.0$) функционализированных олеиновой кислотой (OA) для биомедицинских применений

© А.С. Камзин¹, N. Dogan^{2,3}, О.М. Dogan², В.Г. Семенов⁴

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Department of Physics, Gebze Technical University, 41400 Kocaeli, Turkey
 ³ Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Istanbul, Turkey
 ⁴ Санкт-Петербургский государственный университет, Санкт Петербург, Россия
 E-mail: ASKam@mail.ioffe.ru

Поступила в Редакцию 28 июня 2023 г. В окончательной редакции 28 июня 2023 г. Принята к публикации 30 июня 2023 г.

Функционализация (или покрытие) МНЧ представляет собой уникальный инструмент для создания частиц с требуемыми для биомедицинских применений свойствами. Поэтому, изучение магнитных свойств МНЧ с покрытием является важнейшей задачей современности. В работе исследовано влияние изменения концентрации ионов Mn, на свойства наночастиц $Mn_xFe_{3-x}O_4$, покрытых олеиновой кислотой (OA) $Mn_xFe_{3-x}O_4$ @OA (где x = 0, 0.25, 0.5, 0.75 и 1.0), для создания стабилизированных магнитных жидкостей различного применения. Синтез МНЧ $Mn_xFe_{3-x}O_4$ @OA проведен методом термического разложения с использованием марганец-олеата и олеата железа. Свойства и фазовые состояния полученных МНЧ изучены методами дифракции рентгеновских лучей (XRD) и мёссбауэровской спектроскопии. Для понимания поведения МНЧ в небольших магнитных полях при гипертермическом лечении, проведены мёссбауэровские исследования частиц $Mn_xFe_{3-x}O_4$ @OA при наложении магнитного поля напряженностью 1.7 kOe. Установлено, что метод термического разложения позволяет получить однофазные суперпарамагнитные частицы, перспективные для биомедицинских применений.

Ключевые слова: магнитные частицы Mn_xFe_{3-x}O₄@OA, функционализация олеиновой кислотой, магнитные свойства, структура, мёссбауэровская спектроскопия.

DOI: 10.21883/FTT.2023.08.56165.127

1. Введение

Магнитные наночастицы (МНЧ) диапазона от 1 до 100 nm), обладают свойствами, значительно отличающимися от свойств макроскопических кристаллов, а именно, суперпарамагнетизмом, повышенной анизотропией поверхностного слоя, значительным увеличением коэрцитивной силы, высокой термической стабильностью, каталитической активностью и др. Поэтому, в настоящее время одним из основных вопросов фундаментальной физики магнетизма является изучение такого многообразия свойств МНЧ. С практической стороны, вариации технологических приемов позволяют создавать магнитные наночастицы с требуемыми параметрами для разнообразных применений, важнешим из которых является биомедицина: разделение клеток, генная инженерия и терапия, усиление контраста при магнитнорезонансной томографии, магнитно-диагностические системы молекулярной визуализации, биосенсоры, магнитопорошковая и магнитно-резонансная томография, целевая доставка лекарств и магнитная гипертермия для лечения раковых заболеваний [1-3]. Однако, прямое ведение МНЧ в организм невозможно, так как они могут идентифицироваться иммунной системой как инородные токсичные для человеческого организма частицы и уничтожаться [4,5]. Для биомедицинских применений МНЧ инкапсулируют в нетоксичный немагнитный материал. Так, частицы гексагонального феррита бария (BaFe₁₂O₁₉), обладающего высокими, по сравнению с магнетитом или маггемитом, магнитными характеристиками [4], использованные для локального гипертермического лечения раковых опухолей (см. [5] и ссылки там), были инкапсулированы в биологически совместимый гидроксиапатит [4]. В гипертермическом лечении раковых опухолей МНЧ доставляется в ткани опухоли и подвергается воздействию переменного радиочастотного магнитного поля, преобразование энергии которого в тепловую происходит из-за релаксационных механизмов. Это приводит к нагреванию МНЧ и, соответственно, тканей опухоли где расположены МНЧ и при температурах 44-45°С происходит некроз злокачественных клеток, более чувствительных к темперартуре, чем здоровые ткани [1].

Разнообразные применения МНЧ, в том числе и в биомедицине, возможны при использовании феррожидкостей (ФЖ) или жидкостей с наночастицами, впервые полученные в 1960-х годах (см. [6] и ссылки там). Феррожидкости — это высокостабильные коллоидные магнитоуправляемые суспензии, состоящие из МНЧ, диспергированных в соответствующих жидкостях-носителях и находящихся в ней во взвешенном состоянии [7–9], фактически являются достижением науки о коллоидах. ФЖ должны быть устойчивы и не расслаиваться при наложении магнитного поля, а после его отключения ФЖ должны восстанавить свои изначальные характеристики, что позволяет манипулировать и контролировать ФЖ. Основным компонентом ФЖ являются магнитные наночастицы, весовое содержание которых может достигать 25%. Устойчивость МНЧ достигается обработкой поверхностно-активными веществами (ПАВ), химическими соединениями, адсорбирущимися поверхностным слоем МНЧ и вызывающее снижение поверхностного натяжения [10-15]. Стабилизация частиц упрощает функционализацию, то-есть "прикрепление" к ним терапевтических (лекарственных) препаратов. Обширные исследования в последнее десятилетие непосредственно связаны с созданием МНЧ для конкретных применений и направлены на: а) разработку методов синтеза однофазных однородных частиц заданной формы, размеров и распределением по размерам, определяющих магнитные свойства МНЧ [3]; б) создание безопасных МНЧ с высокой коллоидной стабильностью в биологических средах [16,17]; в) создание многофункциональных структур для тераностических приложений [16]. Лечение злокачественных опухолей с использованием ФЖ привлекает большое внимание исследователей изза таких преимуществ, как возможность направляемой и локализованной терапии и др., [18].

Требованием к используемым МНЧ в биомедицине стало стабилизация частиц и функционализация их поверхности с использованием таких ПАВ, как лимонная или олеиновая кислоты (ОА), полимеры (полиэтиленгликоль), полимолочная-со-гликолевая, полиакриловая и другие кислоты, природные диспергаторы (хитозан, декстран, желатин, крахмал, альбумин, липосомы и т.д.) [10–17,19–22].

Выбор магнитных материалов достаточно широк, но для создания коллоидных суспензий с необходимой стабильностью важным фактором является хорошая совместимость наночастиц с поверхностно-активным веществом и жидкостью-носителем, что значительно сокращает этот выбор. Биологически совместимыми и широко используемыми в биомедицине являются магнетит (Fe₃O₄) и маггемит (γ -Fe₂O₃) [18,21–23], магнитные параметры которых в настоящее время не удовлетворяют требованиям бимедицины. Высокими магнитными характеристиками, причем без потери биосовместимости, присущей оксидам железа, об-

ладают ферриты-шпинели типа MFe₂O₄, [1-3,15,21,23] и $M_x^{2+}Fe_{3-x}^{3+}O_4^{2-}$ [17,18,22–30] и где $M = Mn^{2+}$, Zn^{2+} , Co^{2+} , Mg^{2+} , Ni^{2+} и др. Меньшая токсичность, низкие значения намагниченности насыщения, высокая коррозионная стойкость, магнитокристаллическая анизотропия и магнитная восприимчивость, незначительная коэрцитивность, а также высокая стабильность и коллоидная диспергируемость в физиологических жидкостях, делают такие МНЧ перспективными для биомедицины [12,13].

Размеры и структура частиц $M_x^{2+}Fe_{3-x}^{3+}O_4^{2-}$ существенно зависят от метода синтеза и химического состава. Для синтеза МНЧ используются такие методы, как пиролиз, механическое сплавление, гидротермальный метод, механохимический синтез, плазменный синтез, термическое разложение, со-осаждение, механическое измельчение, сонохимический метод и др. [7-8,12-14,25], из которых методы синтеза термического разложения и со-осаждения являются наиболее простыми, надежными и позволяют получить более стабильные частицы [12–14,30,31]. Источником формирования магнитных свойств частиц $M_x^{2+}Fe_{3-x}^{3+}O_4^{2-}$ являются суперобменные взаимодействия катионов тетраэдрических (А) и октаэдрических [B] позиций через ионы кислорода. Следовательно, контролируя распределение катионов по (A)и [В] положениям, подбирая химический состав и тип катионов можно получать частицы $M_x^{2+}Fe_{3-x}^{3+}O_4^{2-}$ с требуемыми электрическими, оптическими и магнитными свойствами, как намагниченность, анизотропия, коэрцитивные и сверхтонкие поля.

Для допирования (замещения ионов Fe^{2+}) привлекательными в Fe_3O_4 , являются ио-Мп [12,17,22,26,28,29–32], особенность которых ны заключается в отличии механизмов замещения ионов железа в неэквивалентных подрешетках в структуре Fe₃O₄. Магнитные свойства МНЧ, в том числе величина Ms, существенно зависят от типа легируемых ионов, от размеров частиц, от распределения катионов по подрешеткам, что позволяет технологиями синтеза управлять намагниченностью насыщения (Ms) и коэрцитивной силой частиц и получать суперпарамагнитные частицы Mn_xFe_{3-x}O₄ [12,17,28,30-32], обладающие наибольшей скоростью нагревания магнитным полем [13]. Следовательно, материал и толщина покрытия являются определяющими факторами в объяснении различий, возникающих при функционализации МНЧ, и это требует систематических исследований функционализированных МНЧ. В настоящей работе представлены результаты исследований свойств синтезированных метолом термического наночастиц магнетита, разложения допированных ионами Mn (Mn_xFe_{3-x}O₄ при x = 0, 0.25, 0.5, 0.75, 1.0) покрытых олеиновой кислотой (OA) $(Mn_xFe_{3-x}O_4@OA)$. Магнитная структура частицы определяет магнитные характеристики наночастиц, поэтому проведен анализ формирования магнитной структуры МНЧ Mn_xFe_{3-x}O₄@OA. С целью понимания механизмов влияния магнитной гипертермии на

свойства частиц проведены мёссбауэровские исследования МНЧ Mn_xFe_{3-x}O₄@OA при наложении слабых магнитных полей, используемых в гипертермии.

2. Экспериментальная часть

Для синтеа МНЧ $Mn_x Fe_{3-x}O_4$ выбран метод термического разложения являющийся наиболее перспективным из-за его простоты, производительности и контроля ряда факторов, таких как размер, морфология, состав и степень агломерации, путем изменения условий эксперимента (температуры, времени, реагентов и скорости перемешивания) [12–14,30,31].

Зарождение частиц в методе термического разложения происходит при добавлении прекурсора металла в нагретый раствор в присутствии ПАВ. Повышение температуры реакции приводит к росту частиц, причем состав и размер формирующихся частиц зависят от времени реакции, температуры. В случае частиц оксида железа термическое разложение прекурсора вначале приводит к образованию МНЧ железа с последующим их окислением на воздухе. Неизбежность окисления в нормальных условиях требует контроля пути реакции и, тем самым управлять свойствами получаемых МНЧ. В этом методе стадии зародышеобразования и роста частиц разделены, так как проходят при разных температурах, что является преимуществом по сравнению с другими способами.

В качестве стабилизирующего агента из семейства амфифильных поверхностно-активные веществ была выбрана олеиновая кислота (OA) из-за ее электростатических и биосовместимых свойств и низкой стоимости [10,12–15,19–21]. Более того, OA позволяет контролировать рост кристаллитов, поскольку останавливает процесс созревания, обеспечивает стерическую стабилизацию МНЧ и предотвращает их агломерацию. Присутствие олеиновой кислоты влияет на магнитные свойства МНЧ, изменяя расстояни между частицами и, таким образом, их взаимодействием. Важно, что OA не только безвредна для живого организма, а существенно полезна, так как без OA невозможны правильный метаболизм, борьба с холестерином, укрепление иммунитета.

2.1. Синтез наночастиц $Mn_x Fe_{3-x}O_4@OA$ (x = 0, 0.25, 0.5, 0.75, 1.0)

Синтез МНЧ магнетита (Fe₃O₄), легированного марганцем $Mn_xFe_{3-x}O_4$, методом термического разложения в отличии от традиционного способа получения МНЧ оксидов железа покрытых кислотами проводился в два этапа [12]. На первом этапе были приготовлены Fe-олеат и Mn-олеатный комплексы (прекурсоры). Для получения олеата железа 10 mmol гексагидрата хлорида, 30 mmol олеиновой кислоты и метанол смешивали в магнитной мешалке до растворения друг в друге. Смесь метанола и 30 mmol гидроксида натрия помещали в бюретку и капали в раствор при магнитном перемешивании. По завершении реакции красно-коричневый порошок Fe-олеата отделяли, промывали раствор несколько раз метанолом и затем прогревали в течение 30 минут в печи при 55°С. Полученный олеат железа смешивали с растворителем, используемым в реакции. Это смешивание проводилось в магнитной мешалке при 70°С, контролируя добавление растворителя в смесь, и этот процесс продолжался до получения однородного раствора. По окончании реакции красно-коричневую структуру Fe-олеата отделяли, несколько раз промывая раствор. Аналогично, реакцию Mn-олеата проводили при перемешивании магнитной мешалкой при 70°С в течение 30 min.

На втором этапе синтеза два родственных олеатных комплекса разлагали с использованием высококипящих растворителей (1-октадецен) в присутствии олеиновой кислоты. При синтезе составов с различным соделжанием Мп время реакции составляло один час, количество ОА сохраняли неизменным, а температура реакции устанавливалась примерно 310° С. Все составы синтезированлись при одинаковых условиях и одной и той же скоростью перемешивания. Полученные частицы отделяли от раствора с помощью постоянного магнита и дважды промывали этанолом и гексаном, затем сушили в сушильном шкафу при 55°С в течение 30 min и оставляли остывать при комнатной температуре. В результате были получены МНЧ $Mn_x Fe_{3-x}O_4$ @OA (где x = 0, 0.25, 0.5, 0.75, 1.0).

2.2. Методики исследований МНЧ Mn_xFe_{3-x}O₄@OA (x = 0, 0.25, 0.5, 0.75, 1.0)

Структура и морфология синтезированных частиц $Mn_x Fe_{3-x}O_4$ @ОА изучены с помощью рентгеновской дифракции, и мёссбауэровской спектроскопии. Измерения магнитной восприимчивости в переменном магнитом поле проводились с помощью магнитометра с вибрирующим образцом (VSM). Определение атомной и кристаллической структуры синтезированных МНЧ $Mn_x Fe_{3-x}O_4$ @ОА при комнатной температуре проводилось с помощью Рентгеновского дифрактометра (РД) со сканированием от 20 до 90 градусов (2 θ) с использованием излучения Cu K_{α} ($\lambda = 0.154$ nm). Магнитные измерения в постоянном магнитном поле проводились с использованием коммерческого сверхпроводящего квантового интерференционного устройства (СКВИД) Quantum Design.

Для изучения фазового состава и магнитного состояния синтезированных МНЧ использована мёссбауэровская спектроскопия. Мёссбауэровские спектры (MC) образцов $Mn_xFe_{3-x}O_4$ @ОА регистрировались с помощью спектрометра, работающего в режиме постоянного ускорения с треугольной формой изменения скорости источника относительно поглотителя. Измерения проводились в геометрии пропускания через исследуемый образец гамма-квантов от источника γ -излучения Со-57 в матрице Rh. Шкала скоростей была откалибрована с использованием поглотителя из металлической фольги α-Fe. Математическая обработка экспериментальных MC проводилась с помощью программы, использующей метод наименьших квадратов и лоренцевой формы спектральных линий, а также метод декодирования мёссбауэроских спектров путем восстановления распределений параметров сверхтонкого взаимодействия (СТВ) [33]. Информация о фазовом составе и магнитной структуре MHЧ была получена из анализа параметров сверхтонких взаимодействий (СТВ) и вероятностей распределения эффективных магнитных полей, рассчитанных из экспериментальных MC.

3. Результаты и обсуждение

3.1. Рентгено-дифракционный анализ МНЧ Mn_x Fe_{3-x}O₄@OA

Рентгеновские дифрактограммы (РД) синтезированных образцов Mn_xFe_{3-x}O₄@OA показаны на рис. 1, на котором обозначены характерные пики 20 для всех синтезированных образцов (30.0° (220), 35.65° (311), 43.24° (400), 53.64° (422), 62.59° (440) и 74.56° (533). Линии на РД хорошо согласуются с данными для марганцевого феррита, указанными в стандартной карточке JCPDS № 74-2399. Отсутствие на РД дополнительных линий, что свидетельствует о хорошей кристаллизации частиц однофазной кубической структуры шпинели. С использованием величин максимальной ширины дифракционной линии (311) по уравнению Шерера [13], были рассчитаны размеры кристаллитов, представленные в табл. 1 вместе с параметрами кристаллической решетки. Большая ширина дифракционных пиков указывают на нанокристаллическую природу синтезированных

Рис. 1. Рентгеновские дифрактограммы (РД) МНЧ $Mn_x Fe_{3-x} O_4 @OA$. Цифрой *1* обозначена РД при x = 0; 2 - при x = 0.25; 3 - при x = 0.5; 4 - при x = 0.75; и 5 - при x = 1.

Рис. 2. Намагниченности насыщения МНЧ $M_x Fe_{3-x} O_4 @OA$ в зависимости от величины допирования ионами Mn^{2+} . Цифрой l обозначена кривая Ms при x = 0; 2 — при x = 0.25; 3 — при x = 0.5; 4 — при x = 0.75 и 5 — при x = 1.

частиц. Пик (311) при $2\theta = 35^{\circ}$ является характерным для ферритов-шпинелей.

Для МНЧ Fe₃O₄ параметр элементарной ячейки составил 8.296 (2) Å. Это ниже, чем у объемных кристаллов магнетита (8.38–8.42 Å), но согласуется близко к величине 8.35 Å для МНЧ Fe₃O₄ [34]. С повышением количества Mn наблюдается расширение элементарной ячейки до 8.391 Å и возможное обяснение этому заключается в том, что радиус вводимых ионыов Mn²⁺ составляет 0.91 Å, что больше радиусов замещаюемых ионов Fe²⁺ (0.80 Å) и/или Fe³⁺ (0.63 Å) [35].

3.2. Магнитные характеристики наночастиц Mn_x Fe_{3-x}O₄@OA

Исследованиям таких важных магнитных характеристик как намагниченность насыщения (Ms) и коорцитивность (Hc) в зависимости от размеров частиц, от количества ионов Mn в частицах $Mn_xFe_{3-x}O_4$, от толщины и гидрофобности покрытия посвящено ряд работ [17,22,29,30,32]. Так было установлено, что с увеличением количества ионов Mn значение Ms в частицах $Mn_xFe_{3-x}O_4$ повышается [29], тогда как в [30] обнаружено понижение Ms. При повышении количества ионов Mn в функционализированных частицах $Mn_xFe_{3-x}O_4$ @PEG увеличение количества Mn приводит к понижению Ms до 31.33 emu/g [36], в $Mn_xFe_{3-x}O_4$ @PVP значение Ms понижается до 31.86 emu/g [32]. Увеличение толщины покрытия от 0 до 50% в Fe_3O_4 @PEG понижает величину Ms от 77.16 до 37.15 emu g⁻¹ [37].

Зависимости Ms от концентрации ионов Mn в синезированных МНЧ $Mn_x Fe_{3-x}O_4$ (OA, полученные с использованием системы измерения физических свойств (PPMS) в магнитных полях до 2 T, показаны на рис. 2. Диаметры (Dm) магнитных наночастиц $Mn_x Fe_{3-x}O_4$ (OA) рассчитанные из зависимо-

Sample x	D _{RD} (nm)	$lpha_{ m RD}$ (Å)	Dm (nm)	Ms (emu/g)	Mr (emu/g)	Hc (Oe)	$lpha_m$ (Å)
0.0	11.11	8.296	13.18	2.56	0.38	16.21	0.829
0.25	11.50	8.351	11.19	2.67	0.44	19.6	0.839
0.5	9.10	8.340	13.11	1.58	0.23	11.69	0.838
0.75	17.39	8.39	11.19	5.09	0.43	10.9	0.839
1.0	10.08	8.41	13.03	1.42	0.32	4.9	0.838

Таблица 1. Характеристики МНЧ $Mn_xFe_{3-x}O_4@OA$ при 300 К. Величины D_{RD} и α_{RD} получены из рентгеновских дифрактограм, остальные параметры из магнитных измерений

стей Ms (рис. 2), приведены в таблице 1, в которой также показаны значения Ms в зависимости от количества ионов Mn^{2+} . Все кривые намагничивания (рис. 2) имеют *S*-образную форму, а образцы демонстрируют типичное суперпарамагнитное поведение. Уровень Ms ситезированных наночастиц $Mn_xFe_{3-x}O_4@OA$ достаточен для использования в биомедицине.

Экспериментальные мёссбауэровские спектры МНЧ Mn_xFe_{3-x}O₄@OA и их анализ

Мёссбауэровская спектроскопия (МСп) — уникальный метод, основанный на безотдаточном резонансном поглощении у-излучения, является зондом как для структуры, так и для магнетизма на локальном уровне [13,14,19,24,38]. Высокая селективность МСп к ионам Fe²⁺ и Fe³⁺, к окружению атомов Fe, позволяет извлекать информацию о структуре, валентном состоянии, стехиометрии, типах координации и магнитного упорядочения, фазовых переходах и фазовых компонентах как в качественном, так и в количественном отношении даже если фазы присутствуют в небольшом количестве. МСп однозначно идентифицирует оксилы железа (гематит, магнетит, маггемит и др.), что недоступно другим известными методикам. Короткое время измерения (10⁻⁸ s) делает МСп чувствительной к релаксационным эффектам [39,40].

Мёссбауэровские спектры (MC)МНЧ $(0 \le x \le 1),$ $Mn_xFe_{3-x}O_4@OA$ полученные при комнатной температуре без внешнего магнитного поля и в магнитном поле представлены на рис. 3, а и 4, a соответственно. Как видно на рис. 3, a и 4, a, MC МНЧ Mn_xFe_{3-x}O₄@OA обладают широкими линиями зеемановских секстиплетов (ЗС), что усложняет анализ спектров. Поэтому для обработки экспериментальных МС МНЧ Mn_xFe_{3-x}O₄@OA использовалась сложная процедура подгонки и восстановления из МС функций вероятностей распределения параметров СТВ [33]. В процесс подгонки включаются: (1) множество секстиплетов с временами релаксации больше предела временного окна эксперимента $(10^{-8} s)$, и, следовательно, выявляют заблокированные частицы, (2) квадрупольные дублеты, формирующийся от суперпарамагнитных частиц, времена релаксации которых меньше значения временного окна $(10^{-8} s)$, и (3) ЗС с широкими линиями, времена релаксации которых являются промежуточными. Анализ кривых $P(H_{\text{eff}})$ позволяет установить компоненты секстиплетов (и дублетов) и делать выводы о принадлежности этих компонентов соответствующим оксидам железа и положениям ионов Fe в кристаллической решетке [13,14,19,24,38]. Величина отклонения (χ2) используемых для описания экспериментальных МС модельных компонентов, определяет точность подгонки, которая в наших случаях находилась в пределах от 1.1 до 1.2, что свидетельствует о хорошем совпадении используемых моделей с экспериментальными данным и, следовательно, о надежности такой обработки.

4.1. Мёссбауэровские измерения при комнатной температуре без внешнего магнитного поля

Мёссбауэровские спектры (MC) $Mn_x Fe_{3-x}O_4@OA$, $(0 \le x \le 1)$ МНЧ, полученные при комнатной температуре без наложения магнитного поля, представлены на рис. 3, *а*. Следует отметить, что полученные МС (рис. 3, *a*) аналогичны экспериментальным MC, представленным в [19,21,24,30,41–52]. Экспериментальные значения показаны на рис. 3, *a* точками, а модельные компоненты, полученные при математической обработке экспериментальных спектров с помощью программы [33], показаны сплошными линиями.

МС МНЧ $Mn_x Fe_{3-x}O_4@OA$ (рис. 3, *a*), при x = 0 существенно шире, чем у стехиометрических объемных кристаллов Fe_3O_4 при температурах 300 К [53,56] и сильно меняются с увеличением количества ионов Mn от 0 до 1.0. На фоне широких линий 3C на MC частиц $Mn_x Fe_{3-x}O_4@OA$ при x = 0 и 0.25 наблюдается дублет, интенсивность которого повышается с увеличением концентрации ионов Mn, тогда как интенсивности и величины эффективных полей секстиплетов уменьшаются.

Математическая обработка экспериментальных МС $Mn_x Fe_{3-x}O_4 @OA$ (при x = 0; 0.25) проводилась по программе [33] с учетом следующих обстоятельств. В магнетите (Fe₃O₄) ионы Fe²⁺ занимают две неэквивалентные кристаллографические позиции: тетраэдрические — (*A*) и октаэдрические — [*B*], причем ионы Fe²⁺ занимают половину [*B*] узлов, а ионы Fe³⁺ равномерно распределены по [*B*] и (*A*) положениям. Следовательно, МС магнетита при комнатной температуре должен состоять из трех зеемановских секстиплетов принадлежащих ионам железа в (*A*) и [*B*] позициях [38,54]. При температурах выше точки Verwey [54] равной 119 К ионы железа Fe³⁺ и Fe²⁺ [B] позиций находятся в состоянии электронного обмена, и о них можно говорить как о катионах Fe^{2.5+}, что соответствует одному парциальному 3С, а другой

Рис. 3. a — мёссбауэровские спектры $Mn_x Fe_{3-x} O_4 @ OA$ полученные при комнатной температуре и их модельные представления, полученные с помощью программы [33]. Над каждым спектром показана разница между экспериментальными и модельными значениями. Секстиплеты, обозначенные как A, относятся к ионам Fe в (A), B — к ионам Fe [B] подрешетки, D — ионы Fe частиц в парамагнитной фазе. S — зеемановские секстиплеты ионов Fe в поверхностном слое частиц. S = R — линии поглощения, формируемые поверхностным слоем частицы и релаксационными эффектами, b — функции $P(H_{\text{eff}})$ восстановленные из экспериментальных мессбауэровских спектров МНЧ $Mn_x Fe_{3-x} O_4 @ OF$ с использованием программы [33].

секстиплет принадлежит ионам Fe³⁺ в (A) позициях [38,54]. Значение Tv понижается при допировании даже небольшим количеством ионов металла [56], что позволяет обрабатывать МС МНЧ Mn_xFe_{3-x}O₄@OA (при x = 0; 0.25) с использованием модели, состоящей из двух ЗС и дублета. Однако, такая модель не согласовывалась с экспериментальными МС и в анализ спектров был включен третий зеемановский секстиплет. В результате, с использовнием модели трех зеемановских секстиплетов и одного дублета получено хорошее соответствие экспериментальными Значениями разницы между модельными и экспериментальными значениями ями, указанными над каждым спектром (см. рис. 4, *a*), а также величинами $\chi 2$, находящимися в пределах от 1.1 до 1.2. Спектры МНЧ $Mn_x Fe_{3-x}O_4$ ОА при x = 0.5; 0.75 и 1.0 были обработаны с помощью модели, состоящей из одного 3С и одного дублета.

Используя положения спектральных линий в МС МНЧ $Mn_xFe_{3-x}O_4$ @ОА были рассчитаны параметры СТВ: изомерные сдвиги (IS), квадрупольные расщепления (QS), эффективные поля (H_{eff}), представленные в табл. 2. По относительным интенсивностям линий секстиплетов и дублета в MS MNP, определены относительные количества ионов железа в подрешетках в МНЧ $Mn_xFe_{3-x}O_4$ @ОА, приведенные в табл. 2. Ионы Fe^{3+} и Fe^{2+} однозначно идентифицируются в МС по их химическим сдвигам, составляющим ~ 0.2 \div 0.5 mm/s и ~ 0.9 \div 1.1 mm/s соответственно [13,14]. Из табл. 2 видно, что величины IS находятся

в пределах $0.2 \div 0.4$ mm/s, указывая на присутствие в исследуемых МНЧ $Mn_xFe_{3-x}O_4@OA$ только высокоспиновых ионов Fe^{3+} .

Наблюдаемое уширение линий ЗС в МС макрокристаллов ферритов шпинелей впервые были объяснены случайными распределением катионов по (А) узлам [53], приводящим к формированию нескольких различающихся по заселенностям октаэдрических [B] позиций. Значения эффективных полей ионов Fe в (А) узлах ФШ, имеющих двенадцать ближайших соседей в [В] позициях, зависят от количества магнитных катионов в [B] подрешетке и, следовательно, меньше зависящих от случайного распределения катионов по [В] положениям. Ближайшими соседями ионов Fe в [B] позициях являются только шесть катионов в (А) узлах, поэтому случайное распределение магнитных катионов по (А) узлам значительно больше влияет на эффективные поля ионов Fe [B] подрешетки [53]. Исходя из вышеизложенного, 3С в МНЧ $Mn_x Fe_{3-x}O_4$ (рис. 3, *a*) с наибольшим эффективным полем был отнесен к ионам железа, занимающим в кристаллической решетке ФШ (А) положения, а секстиплеты с меньшими велиичичнами $H_{\rm eff}$ — к ионам Fe в [*B*] позициях.

Кроме секстиплетов ионов Fe (A) и [B] ионов на MC $Mn_x Fe_{3-x}O_4$ (@OA (рис. 3, a) присутствует секстиплет S с шириной линии в два раза больше (табл. 2), чем линии (A) и [B] положений, и с существенно меньшей величиной H_{eff} . Аналогичные MC наблюдались в [19,21,24,30,41,41–52], однако происхождение такого секстиплета обяснялось по-разному. Формирование такого 3C в [48] отнесли к небольшим скоплениям ионов Fe в процессе измельчения, однако на РД признаков такого скопления не наблюдали. Появление секстиплета типа S поясняют эффектами релаксации в [39,40,42,47,50] или распределением ионов Fe и Mn по подрешеткам [30].

В наночастицах значительно повышается количество, а, следовательно, роль ионов железа, расположенных в поверхностном слое. В частицах диаметром 1 μ m, 6 nm и 1.6 nm на поверхности находятся примерно 0.15%, 20% и 60% атомов состава соответственно [57]. В случае мёссбауэровской спектроскопии ионами Fe поверхностного слоя значительно увеличивается безотдаточное поглощение гамма-квантов, а, следовательно, интснсивность мёссбауэровских линий, по сравнению с расположенными в объеме частицы. Это является причиной наблюдения существенных различий MC больших и малых частиц [19,21,49] и, как предположили в [49,52,58], может может формировать спин-стекольную или "магнитомертвую" фазы.

Мёссбауэровской спектроскопией МНЧ в сильных внешних магнитных полях впервые было показано существование в наночастицах скошенной структуры магнитных спинов [59], тогда в объеме моменты расположены коллинеарно (структура типа Нееля). Полученные в [59] результаты получили подтверждение (см. [38,60] и ссылки там).

Следует отметить, что исследования сруктуры и свойств поверхностного слоя макрокристаллов и наночастиц привлекли внимание в 1970 годы (см. [61] и ссылки там). Для изучения свойств тонкого поверхностного слоя и объема макроскопических кристаллов одноврнеменно была разработана методика "Одновоременной гамма, рентгеновской и электронной мёссбауэровской спектроскопии" (ОГРЭМС) [62,63]. Позже метод ОГР-ЭМС был назван в зарубежной литературе "Simultaneous Triple Radiation Mossbauer Spectroscopy" (STRMS) [64]). С использованиме метода ОГРЭМС впервые прямыми экспериментальными данными было доказано существование на поверхности ферромагнитных кристаллов Fe₃BO₆ тонкого переходного слоя, в котором магнитные моменты плавно меняют ориентацию от направления в объеме, до направления на поверхности [61]. Исследования методом ОГРЭМС ферримагнитных высокоанизотропных кристаллов гексаферрита BaM (BaFe₁₂O₁₉) показали, что такой переходный слой может существовать в поверхностном слое толщиной не более 10 nm [65]. Это существенно меньше точности эксперимента, составляющей ~ 10 nm, но совпадает со значением, полученным из теоретических расчетов Неелем [66]. Введение в структуру гексаферритов BaM и SrM диамагнитных ионов Sc и Al соответственно, приводит к дополнительному понижению суперобменных взаимодействий на поверхности, вследствие чего в макрокристаллах BaScM и SrAlM наблюдается поверхностный слой, в котором ориентция моментов отличается от ориентации в объеме [67-71]. Можно предположить, что аналогичная картина изменения ориентации моментов имеет место и на поверхности наночастиц Mn_xFe_{3-x}O₄@OA, названная скошенной магнитной структурой и наблюдаемая при наложении сильных магнитных полей [59,60].

Таким образом, отклонение ориентации моментов, наблюдаемое в поверхностном слое макрокристаллов [61,67–71], должно сохраняться при уменьшении размеров кристаллов до наночастиц, Из табл. 2 видно, что при x = 0 и 0,25 разница величин H_{eff} [B] подрешетки и секстиплета S существенно больше, чем при замещении в ближайшем окружении [B] ионов одного иона Fe на диамагнитный [53]. Большие ширины линий секстиплета S и большая разница эффективных полей S и [B] секстиплетов позволяют утверждать, что секстиплет S принадлежит ионам Fe в поверхностном слое, магнитные моменты которых находяися в скошенном состоянии.

Дополнительнй вклад в секстиплет S могут давать ионы Fe суперпарамагнитного состояния (СП), возникающего из-за коллективных флуктуаций намагниченности [39,40]. Время измерений (τ) в мёссбауэровской методике составляет $\sim 10^{-7}$ s, что позволяет позволяет фиксировать релаксационные явления более мелких частиц с более короткими временами релаксации. МС частиц ФШ с временами релаксации $\tau > \tau L$ (здесь τL — время Ларморовской прецессии ядра) состоит из секстиплетов с широкими линиями, а при $\tau < \tau L$

x	Component	G1(mm/s)	IS(mm/s)	QS(mm/s)	$H_{\rm eff}({ m T})$	$S_{p}(\%)$
0	Α	0.711 + / - 0.004	0.384 + / - 0.015	0.007 + / - 0.022	47.67 + / - 0.11	19
	В	0.822 + / - 0.143	0.405 + / - 0.010	0.105 + / - 0.020	43.46 + / - 0.09	16
	S	2.364 + / - 0.427	0.327 + / - 0.033	0.066 + / - 0.056	30.53 + / - 0.60	42
	D	0.873 + / - 0.044	0.369 + / - 0.005	0.634 + / - 0.016	_	23
0.25	Α	0.711 + / - 0.004	0.365 + / - 0.021	0.024 + / - 0.042	45.58 + / - 0.17	15
	В	0.983 + / - 0.000	0.399 + / - 0.000	0.031 + / - 0.000	39.87 + / - 0.00	16
	S	1.877 + / -0.000	0.384 + / - 0.000	0.042 + / - 0.000	25.16 + / - 0.00	60
	D	0.659 + / - 0.000	0.365 + / - 0.000	0.780 + / - 0.000	_	9
0.5	S = R	2.091 + / - 0.004	0.443 + / - 0.055	-0.213 + / - 0.100	24.37 + / - 0.84	87
	D	0.590 + / - 0.120	0.365 + / - 0.020	0.520 + / - 0.043	_	13
0.75	S = R	2.091 + / - 0.004	0.361 + / - 0.024	0.039 + / - 0.045	23.59 + / - 0.35	79
	D	0.605 + / - 0.031	0.372 + / - 0.005	0.493 + / - 0.011	_	21
1.0	S = R	2.091 + / - 0.004	0.389 + / - 0.020	-0.002 + / -0.038	21.25 + / - 0.31	71
	D	0.671 + / - 0.024	0.369 + / - 0.003	0.517 + / - 0.008	_	29

Таблица 2. Параметры СТВ для МНЧ $Mn_x Fe_{3-x}O_4@OA$, полученные из мёссбауэровских спектров, снятых в отсутствии внешнего магнитного поля: зеемановских секстиплетов, обозначенных как *A*, *B* и *S*, дублетов — *D* и релаксационных компонентов — *R*. Ширины первой и шестой линий (*G*1) зеемановского расщепления, изомерные сдвиги (IS), квадрупольные расщепления (QS), эффективные магнитные поля (H_{eff}) и площади подспектров (S_p), рассчитанные из МС МНЧ $Mn_x Fe_{3-x}O_4@OA$

наблюдается коллапс секстиплетов в суперпарамагнитный дублет. Отсутствие части суперобменных взаимодействий в поверхностном слое приводит к тому, что релаксационные явления в МНЧ в первую очередь должны возникать в поверхностном слое.

Эволюцию MC MHЧ Mn_xFe_{3-x}O₄@OA при изменении количества ионов Mn от 0 до 1 можно объяснить следующим образом. У ионов железа, расположенных на поверхности частиц, отсутствуют часть магнитных соседей, что приводит к понижению суперобменных взаимодействий поверхностных ионов и формированию 3C, обозначенного как S, принадлежащего к ионам Fe поверхностного слоя и указывающего на существование скошенной спиновой структуры на поверхности МНЧ. Наблюдаемые дублеты на МС (рис. 3, a) при x = 0 и 0.25 является результатом релаксационных эффектов. При *x* = 0.25 интенсивность дублета понижается вследствие усиления релаксационных процессов и формирования релаксационного "секстиплета", возможно являющийся вкладом в линии S. Дальнейшее увеличение концентрации ионов Mn (x > 0.5) дополнительно разрушает суперобменные связи и усиливает релаксационные эффекты в поверхностном слое МНЧ. При этом на МС частиц Mn_xFe_{3-x}O₄@OA (рис. 3, *a*) вместе парамагнитным дублетом наблюдаются линии секстиплета S, вероятно с вкладом от релаксационных явлений, обозначенные на рис. 3, а как S + R. Это означает что вместе со скошенной структурой магнитных моментов в

поверхностном слое частиц формируется суперпарамагнитное состояние. Толщина такого поверхностного слоя увеличивается с повышением количества ионов Mn, на что указывает повышение интенсивности линии R + Sна рис. 3, b. Следовательно, МНЧ $Mn_xFe_{3-x}O_4@OA$ представляют собой частицы типа ядро/оболочка, в которой поверхностный слой (оболочка) обладает скошенной магнитной структурой, относительно ферримагниного (неелевского) упорядочения объема (ядра) кристаллитов.

Следует отметить, что состояние с разными магнитными структурами объема и поверхностного слоя однофазных МНЧ ферритов-шпинелей невозможно выявить другими известными методами, например, методами электронной микроскопии или другими, кроме как методом мёссбауэровской спектроскопии. Объясняется тем, что МНЧ ферритов-шпинелей являются однофазными, хорошо кристаллизованными в виде частиц из одного материала. Последнее отличает частицы ФШ от МНЧ типа ядро/оболочка, в которых ядро и оболочка состоят из разных магнетиков, например, магнетита и магтемита [72].

4.2. Анализ функций распределения *H*_{eff} МНЧ Mn_xFe_{3-x}O₄@OA

Следует отметить, что локальная неоднородность распределения катионов в МНЧ замещенных ФШ зна-

чительно усложняет расшифровку МС. Поэтому, изза отсутствия разрешения секстиплетов, обработка МС линиями Лоренца, для получения функций распределения эффективного магнитного поля $P(H_{\text{eff}})$ не является эффективной. В таких случаях наиболее надежным является метод анализа МС с использованием функции Voigt в качестве спектральной линии [73,74], поэтому из экспериментальных МС МНЧ $\text{Mn}_x \text{Fe}_{3-x} O_4$ с использованием функции Voigt в качестве спектральной линии [33] были восстановлены функции $P(H_{\text{eff}})$ (рис. 3, b). Полученные функции $P(H_{\text{eff}})$, отличаются от кривой $P(H_{\text{eff}})$ макрокристаллов магнетита, на которых наблюдаются два максимума, принадлежащие ионам железа в двух неэквивалентных подрешетках.

Анализ функций $P(H_{\text{eff}})$, полученных из МС МНЧ $Mn_xFe_{3-x}O_4@OA$ (рис. 3, *a*) показал, что при $x \le 0.25$ можно выделить три пика в области полей от 20 до 55 T, обозначенными как A, B и S. Область от 0 до 5 T соответствует на МС линиям дублета, относящимся к доли частиц в парамагнитном состоянии и вероятность присутствия которых, как видно на рис. 3, b, понижается при x = 0.25 (связанное, по-видимому, с усилением релаксационных процессов), а затем возрастает по мере повышения количества ионов Mn. Пики, обозначенные на $P(H_{\text{eff}})$ как A и B (рис. 4, b), относятся к линиям 3С, принадлежащим ионами Fe в (A) и [B] положениях соответственно. Природа линии S и S + R обсуждалась выше. Увеличение количества ионов Мп приводит к смещению положений пиков А и В в сторону меньших *H*_{eff} и понижению вероятности присутствия этих линий (рис. 3, b), указывая, что доля магнитоупорядоченного состояния частиц уменьшается. При этом вероятность линии S + R повышается, что означает увеличение доли поверхности со скошенной магнитной структурой и релаксационных эффектов. Повышение вероятности линии Р указывает на увеличение количества частиц в парамагнитном состоянии.

Особенности функций $P(H_{\rm eff})$ отражают сложную магнитную структуру МНЧ ${\rm Mn}_x {\rm Fe}_{3-x} {\rm O}_4 @{\rm OA}$, которую нельзя объяснить только изменением распределения ионов по неэквивалентным положениям при введении ионов Mn, а необходимо учитывать значительное влияние поверхности.

4.3. Мёссбауэровские исследования МНЧ Mn_xFe_{3-x}O₄@OA во внешнем магнитном поле напряженностью 1.7 kOe

Использование сильных (напряженностью десятки kOe) внешних магнитных полей в мёссбауэровских исследованиях позволило получить прямыое доказательство существования в поверхностном слое МНЧ скошенной структуры магнитных моментов ионов Fe [59]. Сильные внешние магнитные поля применяются в мёссбауэровской спектроскопии также для получения информации о распределении ионов по подрешеткам ФШ [38,60].

В настоящее время актуальны начатые в конце 60-х годов [75] мёссбауэровские исследования влияния слабых магнитных полей (порядка единиц 1 kOe или меньше) на свойства МНЧ [76]. Это вызвано требованием понимания влияния слабых магнитных полей на свойства МНЧ, связанные с их применением для гипертермической терапии злокачественных опухолей [18,57]. Из МС, полученных при наложении слабых магнитных полей (напряженностью в сотни Ое), можно извлекать информацию о динамических эффектах, связанных с процессами флуктуации магнитного момента и перехода в парамагнитное состояние [76]. Поэтому, были проведены мёссбауэровские измерения МНЧ Mn_xFe_{3-x}O₄@OA комнатной температуры при наложении магнитного поля напряженностью 1.7 kOe параллельно пучку гаммаизлучения. Полученные экспериментальные МС представлены на рис. 4, а. С помощью процедуры [33] МС были разложены на парциальные секстиплеты и дублеты, показанные на рис. 4, а сплошными линиями. Восстановленные из МС (рис. 4, *a*) функции $P(H_{\text{eff}})$ и рассчитанные параметры СТВ представлены рис. 4, b и в табл. 3 соответственно.

спектральных MC МНЧ Разрешение линий $Mn_xFe_{3-x}O_4$ (рис. 4, *a*) лучше чем линий MC без внешнего поля (рис. 3, a), потому, что интенсивности вторых и пятых линий ЗС (рис. 4, а) существенно понизились вследствие параллельности магнитного поля пучку гамма-излучения. При повышении количества Mn интенсивности линий ЗС понижаются, величины расщепления ЗС уменьшаются и секстиплеты постепенно "схлопываются", но не исчезают полностью. При этом интенсивности линий в области нуля скоростей повышаются. Все это означает, что в исследуемых частицах наложение магнитного поля напряженностью 1.7 kOe приводит к стабилизации, но не к полному подавлению суперпарамагнитного поведения в исследуемых образцах.

Анализ МС (рис. 4, *a*) с помощью программы [33] показал, что полученные спектры можно моделировать с использованием трех зеемановских секстиплетов. Секстиплеты A и B относятся к ионам железа (A) и [B] положений. Ширины линий S и S + R достаточно велики, чтобы их можно было бы обяснить вкладом [B] ионов железа, у которых отсутствует одна обменная связь. Разница в величинах эффективных полей B и S секстиплетов больше, чем отличия в $H_{\rm eff}$, возникающих при утрате [B] иона одного обменного взаимодействия. Можно утверждать, что ЗС принадлежит ионам Fe, занимающим положения в поверхностном слое, как это было описано выше. Однако, нельзя исключить вклад в этот секстиплет релаксационных эффектов.

Функции $P(H_{\text{eff}})$, полученные из МС МНЧ $\text{Mn}_x \text{Fe}_{3-x} \text{O}_4$ в магнитном поле, можно описать тремя пиками, обозначенными на рис. 4, *a* стрелками *A*, *B* и *S* и *S* + *R*. При x = 0 и 0.25 в области от 0 до 10 T, наблюдается линия (*P*), принадлежащая парамагнитной фазе. Повышение концентрации ионов Mn (x > 0.25)

Рис. 4. *а* — экспериментальные мёссбауэровские спектры МНЧ $Mn_x Fe_{3-x}O_4@OA$ (при x = 0; 0.25; 0.5; 0.75 и 1.0), полученные при комнатной температуре во внешнем магнитном поле напряженностью 1.7 kOe. Разница между экспериментальными и модельными значениями показана над каждым спектром. Полученные с помощью программы [33] модельные зеемановские секстиплеты обозначены *A*, *B*, *S*. *b* — функции распределения эффективных магнитных полей $P(H_{\text{eff}})$, полученные из экспериментальных спектров $Mn_x Fe_{3-x}O_4@OA$ с использованием программы [33].

приводит к исчезновению парамагнитного пика. Объяснить это можно тем, что при величинах замещения x < 0.25 в образцах присутствуют частицы меньших размеров, находящиеся в парамагнитном состоянии. При x > 0.25 величина внешнего магнитного поля достатсочна для стабилизации магнитного состояния более мелких частиц и вклад в МС от таких частиц совпадает с релаксационным в 3С, обозначенным как S + R.

Таким образом, мёссбауэровские исследования в магнитных полях также указывают на то, что МНЧ $Mn_xFe_{3-x}O_4@OA$ обладают структурой типа ядро/облочка, описанной выше. Мёссбауэровские данные исследуемых МНЧ $Mn_xFe_{3-x}O_4@OA$ показали, что во они находятся в суперпарамагнитном состоянии, что и требуется для гипертермического лечения злокачественных опухолей

5. Оценка размеров МНЧ Mn_xFe_{3-x}O₄@OA

Чувствительность мёссбауэровской спектроскопии позволяет установить размеры магнитных наночастиц. Так, на MC наночастиц Fe₃O₄ размерами 36 nm [77], размерами 25 nm [78] наблюдаются хорошо разрешенные линии 3C неэквивалентных подрешеток, тогда как в полученных MC для MHЧ Fe₃O₄ размерами 9 nm [77] и 12 nm [45] секстиплеты неэквивалентных положений ионов Fe не разрешаются. MC Fe₃O₄ размерами 7 nm состоит из 3C с широкими неразрешенными линиями (A) и [B] положений ионов Fe [78]. На MC MHЧ Fe₃O₄ размерами 3 nm [79], размерами от 5.3 до 10.6 nm [80], а также размерами 5.0 nm наблюдаются дублеты [81], указывающие на парамагнитное состояние частиц. MC,

x	Component	G1 (mm/s)	IS (mm/s)	QS (mm/s)	$H_{\mathrm{eff}}\left(T ight)$	S _p (%)
0	Α	0.526 + / - 0.036	0.338 + / - 0.008	0.051 + / - 0.016	47.50 + / - 0.06	21
	В	0.882 + / - 0.084	0.399 + / - 0.013	0.040 + / - 0.025	43.09 + / - 0.09	31
	S	1.144 + / - 0.187	0.409 + / - 0.012	0.076 + / - 0.024	33.97 + / - 0.04	42
	D	1.354 + / - 0.299	0.383 + / - 2.974	0.983 + / - 0.263	_	6
0.25	Α	0.621 + / - 0.084	0.369 + / - 0.015	0.162 + / - 0.029	45.78 + / - 0.15	31
	В	0.882 + / - 0.084	0.319 + / - 0.023	0.043 + / - 0.046	41.87 + / - 0.19	33
	S	1.144 + / - 0.187	0.335 + / - 0.047	0.122 + / - 0.087	31.97 + / - 0.04	21
	D	2.252 + / - 0.384	0.383 + / - 2.974	0.983 + / - 0.263	-	15
0.5	Α	0.987 + / - 0.099	0.367 + / - 0.015	0.016 + / - 0.031	42.50 + / - 0.10	22
	В	1.666 + / - 0.375	0.409 + / - 0.034	0.144 + / - 0.060	36.56 + / - 0.30	25
	S	1.814 + / - 0.276	0.352 + / - 0.016	0.024 + / - 0.031	27.08 + / - 0.47	53
0.75	Α	0.987 + / - 0.099	0.303 + / - 0.019	0.138 + / - 0.037	42.85 + / - 0.12	20
	В	1.666 + / - 0.375	0.545 + / - 0.021	0.259 + / - 0.038	35.05 + / - 0.19	35
	S	1.399 + / - 0.758	0.384 + / - 0.019	0.138 + / - 0.035	25.05 + / - 0.22	46
1.0	Α	0.987 + / - 0.099	0.201 + / - 0.041	0.154 + / - 0.076	41.44 + / - 0.30	17
	В	1.666 + / - 0.375	0.514 + / - 0.035	0.323 + / - 0.065	31.85 + / - 0.33	43
	S	1.399 + / - 0.758	0.075 + / - 0.079	0.555 + / - 0.156	18.25 + / -0.55	40

Таблица 3. Параметры СТВ для МНЧ $Mn_x Fe_{3-x}O_4@OA$, снятых во внешнем магнитном поле напряженностью 1,7 kOe, рассчитанные из зеемановских расщеплений, обозначенных как *A*, *B*, *S* и *S* = *R*, а также дублетов — *D*. Ширины первой и шестой линий (*G*1) зеемановского расщепления, изомерные сдвиги (IS), квадрупольные расщепления (QS), эффективные магнитные поля (H_{eff}) и площади подспектров (S_p)

полученный при размере частиц Fe₃O₄@OA 11 nm с олеанитовым покрытием (4 mmol) [24], аналогичен показанному на рис. 3, *а* для x = 0. Увеличение олеанита до 16 mmol приводит к формированию MC макроскопического магнетита [24].

Дублеты или парамагнитное состояние наблюдается также в частицах MnFe₂O₄ размерами 4.7 nm [82] и 7.8 nm [50]. Если МС частиц Мп_{0.5}Fe_{2.5}O₄ размером 9.3 nm состоит из дублета и малоинтенсивныого секстиплета линий, то интенсивности линий секстиплета на МС МНЧ Мп_{0.25}Fe_{2.75}O₄ размером 9.5 nm увеличились [83]. МС со слабым разрешением линий неэквивалентных положений ионов Fe получили для частиц Мп_xFe_{3-x}O₄@OA размерами 6.8 nm [84]. Для частиц MnFe₂O₄ размерами от 20 до 68 nm и размерами 42 nm в [84,85] соответственно были получены МС с узкими хорошо разрешенными секстиплетами неэквивиаелнтаных положений ионов Fe. MC MHЧ MnFe₂O₄ размерами 10 nm состоят из секстиплетов с широкими интенсивными линиями на фоне которых наблюдается дублет [86]. МС с разрешенными скстиплетами неэквивалентных положений ионов Fe получены для МНЧ Мn_xFe_{3-x}O₄ размером от 30 до 40 nm [87]. МС частиц Мп_{0.5}Fe_{2.5}O₄

размерами 10 nm представляют собой секстиплеты с очень широкими линиями[45].

Сравнение полученных МС с опубликованными и их анализ позволяет предположить, что что средние размеры кристаллитов $Mn_xFe_{3-x}O_4@OA$ меняются от 8 nm для $Fe_3O_4@OA$ (x = 0) до 12 nm для $MnFe_2O_4$ (x = 1.0).

6. Заключение

Проведены систематические исследования свойств, фазового состава и магнитной структуры наночастиц $Mn_xFe_{3-x}O_4@OA$, синтезированных методом термического разложения и функционализированных олеинатовой кислотой. Экспериментальные рентгеноструктурные и мёссбауэровские данные указывают, что примесные фазы отсутствуют и МНЧ $Mn_xFe_{3-x}O_4@OA$ однофазны. Из РД измерений установлено, что средние размеры кристаллитов $Mn_xFe_{3-x}O_4@OA$ при повышении концентрации Mn меяются от 11 до 18 nm. Анализ мёссбауровских спектров и сравнение с опубликованными данными показал, что по мере повышения концентрации ионов Mn средний диаметр наночастиц $Mn_xFe_{3-x}O_4@OA$ меняется от 8 до 12 nm. На мёссбауэровских спектрах частиц при x = 1.0 на фоне слабоинтенсивного секстиплета, наблюдается парамагнитный дублет. Дублет относится к ионами Fe, находящимися в более мелких частицах, температура блокирования которых ниже комнатной. Допирование магнетита ионами Mn приводит к понижению эффективных магнитных полей и намагниченности образцов, что согласуется с общим сценарием, наблюдаемым при замене ионов Fe на ионы двухвалентных металлов.

Анализ мёссбауэровских спектров МНЧ Mn_xFe_{3-x}O₄@OA и функций распределения эффективных магнитных полей на ядрах железа $P(H_{\text{eff}})$ показал, что исследуемые наночастицы имеют поверхностный слой, магнитная структура которого отличается от структуры объемной части частицы, т.е. на поверхности МНЧ существует так называемая скошенная структура поверхностного слоя [59]. Причиной образования такого слоя является отсутствие части суперобменных связей на поверхности наночастиц. Таким образом, если ранее существование скошенной магнитной структуры на поверхности МНЧ устаналивалось мёссбауэровской спекроскопией МНЧ в сильных магнитных полях дорогостящего (c применением оборудования). то в данной работе впервые (без использования внешних магнитных полей) показано, что магнитная структура поверхностного МНЧ является скошенной относительно объема частиц. Можно утверждать, что МНЧ Mn_xFe_{3-x}O₄@ОА представляют собой частицы типа ядро/оболочка. Полученные данные показывают сложность структуры наночастиц Mn_xFe_{3-x}O₄@OA (где М — двухвалентыне ионы металлов) и позволяют объяснить магнитные свойства таких наночастиц, что важно при разработке и создании МНЧ для различных применений, в том числе для биомедицины.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- O. Kalogirou. Modern Ferrites: Emerging. Technologies and Applications. Biomedical Applications of Nanoparticle Ferrites / Ed. V.G. Harris. John Wiley & Sons Ltd. (2023). V. 2. Ch. 10. P. 347.
- [2] L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T. de Lima, A.C.B. Delbem, D.R. Monteiro. Antibiotics 7, 46 (2018). DOI: 10.3390/antibiotics7020046.
- [3] V. Socoliuc, D. Peddis, V.I. Petrenko, M.V. Avdeev, D. Susan-Resiga, T. Szabó, R. Turcu, E. Tombácz, L. Vékás. Magnetochem. 6, 2 (2020).
- [4] Н.В. Ткаченко, Л.П. Ольховик, А.С. Камзин. ФТТ 53, 1512 (2011).

- [5] А.М. Гранов, С.Ф. Вершинина, Р.Б. Самсонов, А.Б. Маркочев, В.И. Евтушенко. Мед. акад. журн. 17, 1, 82 (2017).
- [6] L. Vékás. Adv. Sci. Technology 54, 127 (2008).
 DOI: 10.4028/www.scientific.net/AST.54.127
- [7] С.А. Новопашин, М.А. Серебрякова, С.Я. Хмель. Теплофизика и аэромеханика **22**, *4*, 411, (2015).
- [8] O. Oehlsen, S.I. Cervantes-Ramírez, P. Cervantes-Avilés, I.A. Medina-Velo. ACS Omega 7, 3134 (2022).
- [9] S. Vinod, J. Philip. Adv. Colloid Interface Sci. 307, 102729 (2022). https://doi.org/10.1016/j.cis.2022.102729.
- [10] XVIII Междунар. Плесская науч. конф. по нанодисперсным магнитным жидкостям. Тр. / Под ред Ю.Б. Казакова. Изд-во Ивановского гос. энергетического ун-та им. В.И. Ленина. ISBN 978-5-00062-343-5. 2018. 260 с.
- [11] В.Р. Хабибуллин, Г.В. Степанов. Журн. физ. химии 93, 7, 1048 (2019).
- [12] N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko. J. Magn. Magn. Mater. 561, 169654 (2022). https://doi.org/10.1016/j.jmmm.2022.169654.
- [13] А.С. Камзин, G. Caliskan, N. Dogan, A. Bingolbali, В.Г. Семенов, И.В. Бурьяненко. ФТТ, 64, 1570 (2022). DOI: 10.21883/FTT.2022.10.53107.391.
- [14] А.С. Камзин, G. Caliskan, N. Dogan, A. Bingolbali, В.Г. Семенов, И.В. Бурьяненко. ЖТФ 92, 1884 (2022).
- [15] L.S. Ganapathe, M.A. Mohamed, R.M. Yunus, D.D. Berhanuddin. Magnetochem. 6, 68 (2020). DOI: 10.3390/magnetochemistry6040068.
- [16] S. Gul, S.B. Khan, I.U. Rehman, M.A. Khan, M.I. Khan. Front. Mater. 6, 179 (2019).
- [17] K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314.
- [18] V. Narayanaswamy, S. Sambasivam, A. Saj, S. Alaabed, B. Issa, I.A. Al-Omari, M. Obaidat. Molecules 26, 796 (2021). https://doi.org/10.3390/molecules26040796.
- [19] T. Muthukumaran, S.S. Pati, L.H. Singh, A.C. de Oliveira, V.K. Garg, J. Philip. App. Nanosci. 8, 593 (2018). https://doi.org/10.1007/s13204-018-0715-y.
- [20] M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomaterials **11**, 1787 (2021). https://doi.org/10.3390/nano11071787.
- [21] R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R. K. Vatsa, B.N. Pandey, R.S. Ningthoujam. J. Mater. Chem., 21, 13388 (2011).
- [22] Z. Karimi, S. Abbasi, H. Shokrollahi, Gh. Yousefi, M. Fahham, L. Karimi, O. Firuzi. Mater. Sci. Eng. C71 (2017) 504 p. http://dx.doi.org/10.1016/j.msec.2016.10.008.
- [23] S.R. Mokhosi, W. Mdlalose, A. Nhlapo, M.I. Singh. Pharmaceutics 14, 937 (2022).

https://doi.org/10.3390/pharmaceutics14050937.

- [24] U. Klekotka, D. Satuła, Simo Spassov, Beata Kalska-Szostko. Mater. 14, 100 (2021). https://doi.org/10.3390/ma14010100.
- [25] R.G.D. Andrade, S.R.S. Veloso, E.M.S. Castanheira. Int. J. Mol. Sci. 21, 2455 (2020). DOI: 10.3390/ijms21072455.
- [26] X. Liang, Y. Zhong, S. Zhu, H. He, P. Yuan, J. Zhu, Z. Jiang. Solid State Sci. 15, 115 (2013).
- http://dx.doi.org/10.1016/j.solidstatesciences.2012.10.005. 1 [27] P. Saha, R. Rakshit, K. Mandal. J. Magn. Magn. Mater. **475**,
- 130 (2019). https://doi.org/10.1016/j.jmmm.2018.11.061.

- [28] А.С. Корсакова, Д.А. Котиков, Ю.С. Гайдук, В.В. Паньков. Конденсированные среды и межфазные границы 22, 466 (2020). DOI: https://doi.org/10.17308/kcmf.2020.22/3076.
 A.S. Korsakova, D.A. Kotsikau, Yu.S. Haiduk, V.V. Pankov. Condens. Matter Interphas. 22, 466 (2020).
 DOI: https://doi.org/10.17308/kcmf.2020.22/3076.
- [29] K. Rotjanasuworapong, W. Lerdwijitjarud, A. Sirivat. Nanomaterials 11, 876 (2021). https://doi.org/10.3390/nano11040876
- [30] Y.H. Li, T. Kouh, In-Bo Shim, Ch.S. Kim. J. App. Phys. 111, 07B544 (2012). DOI: 10.1063/1.3687007.
- [31] J. Lee, S. Zhang, S.H. Sun. Chem. Mater. 25, 1293 (2013).
- [32] M. Aghazadeh, I. Karimzadeh, M.R. Ganjali. Mater. Lett. 228, 137 (2018). https://doi.org/10.1016/j.matlet.2018.05.087
- [33] В.Г. Семенов, В.В. Панчук. Программа обработки мёссбауровских спектров MOSWIN. Частн. сообщение.
- [34] N.C.C. Lobato, M.B. Mansur, A. de M. Ferreira. Mater. Res. 20, 736 (2017).
- https://doi.org/10.1590/1980-5373-mr-2016-0707
- [35] J. Dhumal, S.S. Bandgar, M. Phadatare, G.S. Shahane. Internat. J. Res. Anal. Rev. 6, 1058 (2019).
- [36] S. Sunaryono, M.F. Hidaya, N. Mufti, S. Soontaranon, A. Taufiq. J. Polymer Res. 27, 284 (2020). https://doi.org/10.1007/s10965-020-02065-w.
- [37] G. Antarnusa. Mater. Res. Express 7, 056103 (2020). https://doi.org/10.1088/2053-1591/ab8bef
- [38] Mössbauer Spectroscopy Applied to Magnetism and Material Science/Eds G.J. Long, F. Grandjean. Plenum Press, N.Y. (1993). 479 p.
- [39] S. Morup, H. Topsoe. App. Phys. 11, 63 (1976).
- [40] М.А. Чуев. ЖЭТФ 141, 698 (2012).
- [41] K.S. Al-Rashdi, H.M. Widatallah, F. Al Ma'Mari, O. Cespedes, M. Elzain, A. Al-Rawas, A. Gismelseed, A. Yousif. Hyperfine Interact. 239, 3 (2018). https://doi.org/10.1007/s10751-017-1476-9.
- [42] A. Alomari, H.M. El Ghanem, A.-F. Lehlooh, I.M. Arafa, I. Bsoul, Sensors Transducers **192**, 53 (2015).
- [43] G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales. J. Appl. Phys., 94, 3520 (2003).
- [44] V. Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker, Chem. Mater. 18, 3057 (2006).
- [45] B. Kalska, J.J. Paggel, P. Fumagalli, J. Rybczynski, D. Satula, M. Hilgendorff, M. Giersig. J. App. Phys. 95, 1343 (2004). DOI: 10.1063/1.1637134.
- [46] S.H. Gee, Y.K. Hong, D.W. Erickson, M.H. Park. J. Appl. Phys. 93, 7560 (2003).
- [47] S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatte, S.M. Yusuf, D.L. Sastry. Ceram. Int. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09.
- [48] W.B. Dlamini, J.Z. Msomi, T. Moyo. J. Magn. Magn. Mater. 373, 78 (2015). http://dx.doi.org/10.1016/j.jmmm.2014.01.066.
- [49] M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbal, M. Bekhit, E.K. Abdel-Khale, H.H. El-Bahnasawy, M.A. El-Kodous, H. Ashour, A.S. Awed. J. Inorg. Organomet. Polym. Mater. **30**, 3709 (2020). doi.org/10.1007/s1090 4-020-01523-8.
- [50] K.L. Zaharieva, Z.P. Cherkezova-Zheleva, B.N. Kunev, I.G. Mitov, S.S. Dimova. Bulgar. Chem. Commun. 47, 261 (2015).

- [51] E. Umut, M. Coşkun, H. Güngüneş, V. Dupuis, A.S. Kamzin. J Supercond. Nov. Magn. 34, 913 (2021).
- [52] S. Mørup, F. Bødker, P.V. Hendriksen, S. Linderoth. Phys. Rev. B 52, 287 (1995).
- [53] G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 747 (1969).
- [54] L. Häggström, H. Annersten, T. Ericsson, R. Wäppling, W. Karner, S. Bjarman, Hyperfine Interact. 5, 201 (1978).
- [55] E.J.W. Verwey. Nature 144, 327 (1939).
- [56] T. Merceron, C. Djega-Mariadassou, J.L. Dormann, J. Magn. Magn. Mater. **31–34**, 781 (1983).
- [57] B. Issa, I. Obaidat, B. Albiss, Y. Haik. Int. J. Mol. Sci. 14, 21266 (2013) http://www.mdpi.com/1422-0067/14/11/21266.
- [58] A.E. Berkowitz, W.J. Schuele, P.J. Flanders, J. Appl. Phys. 39, 1261 (1968). DOI: 10.1103/physrevlett.27.1140.
- [59] J.M.D. Coey. Phys. Rev. Lett 27, 17, 1140 (1971).
- [60] S. Mørup, M.F. Hansen, C. Frandsen. Materials Science and Materials Engineering. Comprehensive Nanoscience and Nanotechnology. 2-d ed. Magn. Nanopart. 1, 89 (2019). https://doi.org/10.1016/B978-0-12-803581-8.11338-4
- [61] А.С. Камзин, Л.А. Григорьев. Письма в ЖЭТФ. 57, 543 (1993). А.С. Камзин, Л.А. Григорьев. ЖЭТФ 104, 3489 (1993).
- [62] A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Physics of Transition Metals. Int. Conf. USSR(1988). Proc. Pt. II. P. 271.
- [63] А.С. Камзин, Л.А. Григорьев, Письма в ЖТФ, 16, 16, 38 (1990), А.С. Камзин, Л.А. Григорьев. ЖТФ 60, 7, 151 (1990).
- [64] F. Schaaf, U. Gonser. Hyperfine Interact. 57, 2101 (1990).
 U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 95 (1991).
- [65] А.С. Камзин, Л.П. Ольховик, В.Л. Розенбаум. Письма в ЖЭТФ. 61, 916 (1995).
- [66] L. Neel. J. Phys. Rad. 15, 4, 225 (1954).
- [67] А.С. Камзин, Л.А. Григорьев. Письма в ЖЭТФ 57, 9, 543 (1993). [A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)].
- [68] А.С. Камзин. ЖЭТФ 116, 5, 1648 (1999). [A.S. Kamzin. JETP 89, 5, 891 (1999)].
- [69] А.С. Камзин, Л.П. Ольховик, В.Л. Розенбаум. ФТТ 41, 3, 483 (1999). [A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)].
- [70] А.С. Камзин, В.Л. Розенбаум, Л.П. Ольховик. Письма в ЖЭТФ 67, 10, 798 (1998). [A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)].
- [71] А.С. Камзин, Л.П. Ольховик. ФТТ 41, 10, 1806 (1999).
 [A.S. Kamzin, L.P. Ol'khovik. Phys. Solid State 41, 10, 1658 (1999)].
- [72] А.С. Камзин, І.М. Obaidat, А.А. Валлиулин, В.Г. Семенов, І.А. Al-Omari. ФТТ 62, 10, 1715 (2020).
 DOI: 10.21883/FTT.2020.10.49928.056
 [A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 10, 1933 (2020).
 DOI: https://link.springer.com/article/10.1134/ S1063783420100157].
- [73] M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012).
- [74] Г.Н. Коныгин, О.М. Немцова, В.Е. Порсев. Журн. прикл. спектроскопии **86**, 374 (2019).
- [75] M. Eibschuts, S. Shtrikman. J. Appl. Phys. 39, 997 (1968).

- [76] M.A. Чуев. ЖЭТФ. 141, 698 (2012). [M.A. Chuev. J. Exp. Theor. Phys. 114, 609 (2012)].
 DOI: 10.1134/S1063776112020185.
- [77] Dézsi, Cs. Fetzer, Á. Gombkötö, I. Szücs, J. Gubicza, T. Ungár. J. App. Phys. 103, 104312 (2008). DOI: 10.1063/1.2937252
- [78] М.А. Шипилин, И.Н. Захарова, А.М. Шипилин, В.И. Бачурин. Поверхность. Рентгеновские, Синхротронные и Нейтронные Исследования 6, 45 (2014). DOI: 10.7868/S0207352814060171
- [79] A.-F. Lehlooh, S.H. Mahmood. J. Magn. Magn. Mater. 151, 163 (1995).
- [80] H.Y. Hah, S. Gray, C.E. Johnson, J.A. Johnson, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. J. Magn. Magn. Mater. 539, 168382 (2021).
- [81] V.V. Grecu, S. Constantinescu, M.N. Grecu, R. Olar, M. Badea, R. Turcu, Hyperfine Interact. 183, 205 (2008).
- [82] E. Umut. Hittite J. Sci. Eng. 6, 243 (2019). DOI: 10.17350/HJSE19030000154.
- [83] S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, B. Sahoo. J. Magn. Magn. Mater. 433, 29 (2017). http://dx.doi.org/10.1016/j.jmmm.2017.02.040.
- [84] S.K. Shaw, J. Kailashiya, Santosh K. Gupta, C.L. Prajapat, Sher Singh Meena, D. Dash, P. Maiti, N.K. Prasad. J. Alloys Comp. 899, 163192 (2022). https://doi.org/10.1016/j.jallcom.2021.163192.
- [85] M. Popa, P. Bruna, D. Crespo, J.M.C. Moreno. J. Am. Ceram. Soc. 91, 2488 (2008).
 DOI: 10.1111/j.1551-2916.2008.02501.x.
- [86] W.H. Kwon, Jae-Gwang Lee, W.O. Choi, K.P. Chae. J. Magnet. 18, 26 (2013).
- http://dx.doi.org/10.4283/JMAG.2013.18.1.026.
- [87] M. Sorescu, D. Mihaila-Tarabasanu, L. Diamandescu. App. Phys. Let. 72, 2047 (1998); DOI: 10.1063/1.121260.

Редактор Д.В. Жуманов