01

Расчет структуры и инфракрасных спектров поглощения водородно связанных комплексов метилформиата с фтористым водородом

© В.П. Булычев, М.В. Бутурлимова

Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия

e-mail: v.bulychev@spbu.ru

Поступила в редакцию 25.05.2023 г. В окончательной редакции 21.06.2023 г. Принята к публикации 23.06.2023 г.

> С использованием квантово-химического метода MP2/aug-cc-pVTZ с учетом ошибки наложения атомных функций мономеров рассчитаны равновесные ядерные конфигурации трех димеров, образованных наиболее стабильным конформером молекулы метилформиата с молекулой фтористого водорода. Частоты и интенсивности ИК полос поглощения димеров определены как в гармоническом, так и в ангармоническом приближениях с использованием теории возмущений второго порядка. Метод расчета апробирован при расчете спектра изолированной молекулы метилформиата и сравнением с экспериментальными данными. Выполнен анализ изменений геометрических параметров мономеров и зарядов на атомах под действием водородных связей. Рассчитаны сдвиги частот колебаний мономеров при образовании димеров. Определены наиболее интенсивные полосы поглощения димеров, которые могут быть использованы при детектировании этих комплексов в спектроскопических экспериментах.

> Ключевые слова: водородная связь, расчеты спектров молекулярных комплексов, ангармонические взаимодействия.

DOI: 10.21883/OS.2023.07.56123.5259-23

Введение

Метилформиат, НСООСН3, метиловый эфир муравьиной кислоты является простейшим эфиром карбоновых кислот. Молекула метилформиата (МФ) является изомером молекул уксусной кислоты CH₃COOH и гликольальдегида CH₂(OH)CHO. Метилформиат имеет широкое технологическое применение прежде всего как прекурсор при синтезе более сложных органических соединений. Осуществление разнообразных процессов синтеза становится возможным благодаря присутствию в МФ как карбонильной, так и метоксильной групп. Поэтому взаимодействие молекул МФ с молекулами других веществ, в частности при образовании промежуточных комплексов, представляет значительный интерес. Дополнительный интерес к изучению этого соединения возник после обнаружения его значительного присутствия в межзвездной среде [1,2].

Строение и спектры молекулы МФ изучены достаточно хорошо. В основном электронном состоянии молекула имеет две стабильные, *cis-* и *trans-*конфигурации, разделенные барьером с высотой около 59 kJmol⁻¹ [3,4]. Наиболее прочным является *cis-*конформер, в котором двугранный угол О=СОС имеет нулевое значение. Информация о спектре поглощения изолированной молекулы МФ представлена в [5]. Значительно меньшее внимание исследователей было уделено экспериментальным и теоретическим исследованиям комплексов МФ с другими молекулами. Возможность образования молекулами МФ комплексов с молекулами HCl и H₂O изучалась экс

периментально с использованием техники низкотемпературной матричной изоляции в аргоне при T = 12 K [6]. Были зарегистрированы спектры поглощения смесей МФ, HCl и H₂O в области валентных колебаний H-Cl, С=О, С-О и С-Н. На основе полученных спектров было показано, что стабильные комплексы могут образовываться в результате присоединения молекул доноров протона к атомам кислорода как карбонильной, так и метоксильной групп МФ. Основные выводы этой работы были подтверждены квантово-химическим расчетом [7]. Колебательный спектр комплексов НСООСН3 с Н2О в твердом неоне при $T = 3 \,\mathrm{K}$ был изучен экспериментально в области 80-6000 cm⁻¹ [8]. Для интерпретации полученных спектров был выполнен расчет в гармоническом приближении. Насколько нам известно, комплексы МФ с фтористым водородом еще не изучались экспериментально. В [9] были выполнены расчеты двух конформеров МФ, моно- и дифторзамещенных молекул МФ, протонированных систем и димеров, образованных молекулами МФ с фтористым водородом. В расчетах был использован метод теории функционала плотности B3LYP и набор атомных функций 6-311++G(3df,3pd). Основное внимание уделялось определению равновесной геометрии этих систем, энергии сродства к протону, внутримолекулярному и межмолекулярному сверхсопряжениям, гибридизации атомных орбиталей и другим аспектам природы химической связи. Использованный в расчете квантово-химический метод был достаточно надежен для этих целей. Частоты валентных колебаний

Рис. 1. Структуры *cis*-конформера (*a*) и *trans*-конформера (*b*) молекулы МФ НСООСН₃.

H-F, C=O и C-H группы HC=O были определены в гармоническом приближении.

Целью настоящей работы является определение равновесных ядерных конфигураций молекул МФ и комплексов, образованных наиболее прочным конформером с молекулой фтористого водорода, на более высоком квантово-химическом уровне, чем это было сделано ранее, и вычисление частот и интенсивностей для всех фундаментальных полос поглощения изучаемых систем не только в гармоническом, но и в ангармоническом приближениях. Информация об ангармонических значениях частот необходима для надежной интерпретации экспериментальных спектров комплексов, которые могут быть получены в будущем. Анализируются энергии связи комплексов и изменения структурных и спектральных параметров при их образовании с участием различных атомов кислорода МФ. Рассматриваются корреляции между изменениями геометрических параметров, переносом электронной плотности и сдвигами частот колебаний при образовании комплексов. Полученная в данном исследовании информация о свойствах комплексов МФ с фтористым водородом может быть полезна при рассмотрении комплексов более сложных эфиров карбоновых кислот, квантово-химические расчеты которых требуют использования очень мощных компьютеров.

Использованные методы и результаты расчета

Вычислительные процедуры

Квантово-химические расчеты равновесных ядерных конфигураций двух конформеров МФ HCOOCH₃ и стабильных водородно-связанных гетеродимеров, образованных наиболее прочным *cis*-конформером МФ с фтористым водородом, были выполнены по методу MP2/aug-cc-pVTZ с использованием пакета программ Gaussian 16 [10]. Равновесные ядерные конфигурации были найдены с использованием оптимизационной процедуры "tight". На рис. 1 показаны равновесные ядер-

ные конфигурации *cis-* и *trans-*конформеров молекулы МФ. Электронная энергия *cis-*конформера ниже энергии *trans-*конформера на 22.47 kJmol^{-1} . Равновесные конфигурации трех стабильных гетеродимеров *cis-* HCOOCH₃...HF показаны на рис. 2.

Равновесные ядерные конфигурации всех рассматриваемых систем имеют плоскость симметрии и их свойства описываются точечной группой симметрии C_s. В отличие от работы [9] в настоящей работе при расчете комплексов была учтена поправка на ошибку наложения базисных наборов мономеров по методу противовесов [11]. Полученные в настоящей работе энергии связи гетеродимеров I, II и III имеют значения 35.65, 35.80 и 24.48 kJmol⁻¹ соответственно. В [9] было получено такое же соотношение энергий связи трех димеров, но полученные там значения 37.87, 38.99 и 24.85 kJmol⁻¹ заметно выше наших значений. Дипольные моменты и заряды атомов в формализме естественных орбиталей связи вычислялись с применением опции "density=current". Для дипольных моментов были получены следующие значения (в D): 1.8096 (HF), 1.8096 (cis-МФ), 4.2305 (trans-МФ), 3.6635 (гетеродимер I), 4.7918 (гетеродимер II), 1.8141 (гетеродимер III). Интересно, что получаемые в данном расчете значения дипольных моментов НF и cis-HCOOCH₃ совпадают с точностью до пяти значащих цифр. Расчетное значение 1.8096 D дипольного момента HF близко к экспериментальному значению 1.796 D [12]. Полученное значение дипольного момента cis-МФ находится в удовлетворительном согласии с результатом расчета [4] по методу MP2/сс-pVQZ 1.99 D и с экспериментальным значением 1.765 D [13].

Рис. 2. Структуры стабильных гетеродимеров I, II и III, образованных молекулой *cis*-МФ с молекулой HF.

Параметр	cis-MΦ	trans-MΦ	Димер I	Димер II	Димер III
$R(C_1 = O_2)$	1.2079	1.2006	1.2153	1.2171	1.2027
$R(C_1 - O_3)$	1.3401	1.3473	1.3246	1.3242	1.3529
$R(C_1 - H_4)$	1.0933	1.1009	1.0912	1.0914	1.0928
$R(O_3 - C_5)$	1.4395	1.4307	1.4459	1.4443	1.4454
$R(C_5 - H_6)$	1.0870	1.0863	1.0863	1.0864	1.0860
$R(C_5 - H_8)$	1.0836	1.0901	1.0829	1.0830	1.0836
$R(O_2 \dots H_{10})$	-	—	1.7279	1.7133	1.7635
$\angle O_2 C_1 O_3$	125.6	122.8	126.4	124.9	124.7
$\angle O_2 C_1 H_4$	125.1	124.2	123.5	124.4	126.0
$\angle C_1O_3C_5$	114.0	116.9	115.3	114.6	114.6
$\angle O_3C_5H_8$	105.4	111.2	105.1	105.2	105.4
$\angle H_6C_5H_8$	110.9	109.5	111.0	111.1	111.1
$\angle H_6C_5H_7$	109.3	110.0	109.6	109.7	109.8
$\angle H_{10}O_2C_1$	-		137.2	112.8	-
$\angle H_{10}O_3C_5$	-		-	-	120.5

Таблица 1. Равновесные значения межъядерных расстояний (в Å) и углов (в deg) в *cis*- и *trans*-конформерах МФ и димерах I, II и III

Ангармонические значения частот и интенсивностей фундаментальных и обертонных полос поглощения рассматриваемых мономеров и димеров были получены с использованием колебательной теории возмущений второго порядка [14,15].

Геометрические параметры и заряды на атомах

Полученные в расчете значения наиболее важных межъядерных расстояний и углов в cis- и transконформерах молекул МФ и димерах I, II и III приведены в табл. 1. Рассчитанные равновесные значения длины связи H-F в изолированной молекуле HF и в димерах I, II и III равны 0.9218, 0.9387, 0.9409 и 0.9346 Å соответственно. Значения длин связей и углов в мономерах МФ, приведенные в табл. 1, совпадают с результатами работы [9] в пределах 0.01 Å и 3°. С нашими результатами лучше согласуются результаты расчета [4], где использовался достаточно точный *ab initio* метод. Но изменения в длинах связей и углах при переходе от cis- к trans-МФ воспроизводятся практически одинаково в нашем расчете и в [4,9]. Стоит отметить, что двойная связь $C_1 = O_2$ в МФ заметно короче, чем в ацетоне [16] и формальдегиде [17]. Эта связь становится короче при переходе от cis- к trans-MФ, а также при образовании димера III. Напротив, при образовании димеров I и II $R(C_1=O_2)$ значительно увеличивается. Противоположные изменения в этом ряду систем происходят с длиной связи С1-О3. Конкуренция между связями С1=О2 и C_1-O_3 очевидна. Длина $R(O_3-C_5)$ МФ, так же как $R(C_1 = O_2)$, укорачивается при *cis-trans*-переходе, но она становится больше при образовании всех трех димеров. Более слабая с энергетической точки зрения водородная связь в димере III характеризуется большим значением $R(O_2...H_{10})$ и приводит, как правило, к меньшим изменениям геометрических параметров, чем

Таблица 2. Заряды на атомах молекул *cis*-МФ и НF и димеров I, II и III, рассчитанные в формализме естественных орбиталей связи (в единицах заряда электрона)

Атом	Мономеры	Димер I	Димер II	Димер III
C_1	0.629	0.657	0.649	0.638
O_2	-0.556	-0.607	-0.597	-0.530
O ₃	-0.513	-0.491	-0.489	-0.560
H_4	0.114	0.127	0.135	0.125
C_5	-0.220	-0.226	-0.221	-0.216
H_6	0.182	0.190	0.187	0.188
H_8	0.182	0.189	0.188	0.191
F9	-0.546	-0.582	-0.584	-0.571
H_{10}	0.546	0.553	0.545	0.546

водородные связи в димерах I и II. Стоит отметить, что значения R(O...H), приведенные в [9] для димеров I, II и III, меньше значений табл. 1 соответственно на 0.037, 0.036 и 0.025 Å.

В табл. 2 приведены значения зарядов на атомах изолированных молекул и димеров I-III, вычисленные в формализме естественных орбиталей связи [18]. Этот метод позволяет получить более достоверные значения зарядов на атомах, чем широко используемый метод Малликена. Полученные в данном расчете значения полных дипольных моментов димеров, приведенные в предыдущем разделе, заметно отличаются от векторной суммы дипольных моментов мономеров. Это свидетельствует о значительном перераспределении электронной плотности внутри мономеров и о переносе заряда между ними при образовании комплексов. Огромное различие между значениями зарядов на атомах С1 и С5 объясняется тем, что эти атомы участвуют в принципиально разных химических связях. Атом С1 образует двойную и полуторную связи с более электроотрицательными атомами кислорода, в то время как атом C₅ участвует в четырех одиночных связях, в частности, с тремя менее электроотрицательными атомами водорода.

При образовании димеров I-III увеличивается полярность связи H-F и электронная заселенность атома F. Происходит заметный перенос электронной плотности от МФ к HF (0.029, 0.039 и 0.025 заряда электрона в димерах I-III соответственно). Эти изменения максимальны при образовании наиболее прочного димера II. Примечательно, что атомы кислорода, входящие в водородные мостики О... HF, во всех случаях увеличивают свою электронную заселенность по сравнению с мономером МФ. Основная часть электронной плотности, уходящая от М Φ к HF, теряется атомом C₁ и атомом кислорода, не участвующим в образовании водородной связи. Полярность связи С₁ = О₂ увеличивается при переходе от мономера МФ к димерам I и II, но становится меньше в димере III. Полярность связи С1-О3 ведет себя противоположным образом. Изменения полярности связей С1=О2 и С1-О3 при образовании димеров коррелируют с отмеченными выше изменениями длин этих связей.

Частоты и интенсивности колебательных полос поглощения мономеров HF и *cis*-HCOOCH₃

Для изолированной молекулы HF использованный метод расчета дает значения частоты и интенсивности фундаментального перехода 4122.9 cm⁻¹ и 121 km/mol в гармоническом приближении и 3952.4 cm⁻¹ и 118 km/mol в ангармоническом приближении по теории возмущений второго порядка [14,15]. Ангармоническое значение частоты находится в хорошем согласии с экспериментальным значением 3961.43 cm⁻¹ [19].

В табл. З представлены гармонические и ангармонические значения частот и интенсивностей фундаментальных колебательных полос поглощения молекулы cis-МФ. Значения интенсивностей показаны в скобках. Полосы поглощения нумеруются в порядке возрастания их гармонических частот. Для сравнения в табл. 3 также представлены известные экспериментальные значения частот фундаментальных полос поглощения [5]. В табл. 3 и далее в тексте будут использованы следующие обозначения типов колебаний: wag — качание группы атомов с выходом из плоскости, str — валентное колебание, sci ножничное колебание, bend — деформационное колебание, libr — либрационное колебание, tors — торсионной колебание, sym и asy — симметричные и асимметричные колебания, ір — деформационное колебание атомов внутри плоскости, оор — деформационное колебание с выходом атомов из плоскости, dih — колебание группы атомов по двугранному углу.

Из табл. З видно, что основная часть рассчитанных значений частот фундаментальных переходов находится в прекрасном согласии с экспериментальными результатами. Наиболее интенсивными в спектре поглощения МФ являются колебательные полосы v_8 , v_9 и v_{14} . Эти полосы связаны соответственно с качанием метильной группы CH_3 как целого и с изменениями длин связей C_1-O_3 и $C_1=O_2$. Отметим, что полоса $\nu_{14}(C_1=O_2 \text{ str})$ *cis*-МФ имеет высокое значение интенсивности, как и полоса C=O в молекуле ацетона (243 km/mol) [20]. При колебании ν_{17} ($C_5H_{6,7}$ asy str) изменяются только длины связей C_5H_6 и C_5H_7 . При колебании ν_{18} ($C_5H_{6,7,8}$ asy str) длины связей C_5H_6 и C_5H_6 и C_5H_7 меняются в фазе друг с другом, но в противофазе с изменением длины связи C_5H_8 .

Частоты и интенсивности колебательных полос поглощения димеров I, II и III

Гармонические и ангармонические значения частот и интенсивностей фундаментальных полос поглощения димеров I, II и III, образованных молекулами *cis*-МФ и фтористого водорода, показаны в табл. 4. Полосы поглощения нумеруются в порядке возрастания гармонической частоты полос поглощения димера I. Отнесение полос поглощения к определенному типу колебаний атомов в комплексах достаточно строгое в случае всех рассмотренных димеров. Но у димера II принятый порядок следования полос по частоте нарушается в парах близко расположенных по частоте полос (v_1 , v_2) и (v_{17} , v_{18}). В случае димера II значительнее, выбранный порядок следования полос поглощения в табл. 4 нарушается в группах полос (v_{12} , v_{13} , v_{14}) и (v_{17} , v_{18}).

Теоретические значения частот фундаментальных полос поглощения понижаются при учете ангармоничности. Исключением являются некоторые низкочастотные моды, спектральные параметры которых по теории возмущений второго порядка рассчитываются менее точно [21]. Наиболее сильно понижаются частоты либрационных колебаний фрагмента HF (до 100 cm⁻¹) и валентных колебаний связей CH (до 157 cm⁻¹) и связи НF (до 165 ст⁻¹). В спектрах рассматриваемых димеров наиболее интенсивными полосами поглощения являются полосы валентных колебаний v₂₄ (F₉H₁₀ str). При вхождении молекулы HF в димеры I-III гармоническая частота полосы колебания H-F понижается на 366, 420 и $289 \, \text{cm}^{-1}$, а интенсивность увеличивается в 7.17, 9.68 и 7.48 раз. В расчете [9] аналогичное понижение частоты колебания H-F принимало значения 444, 490 и 335 cm⁻¹. Ангармоническая частота полосы колебания H-F понижается на 359, 414 и 281 сm⁻¹, а интенсивность увеличивается в 5.76, 7.23 и 5.97 раз (табл. 4). Понижение частоты коррелирует с приведенными выше значениями энергии образования водородной связи и расстояниями R(F-H) и R(O...H) в димерах. Полосы поглощения v_{24} (F₉H₁₀ str) довольно прочных димеров I и II удалены от интенсивных полос мономеров и обладают высокой интенсивностью, что может способствовать обнаружению этих комплексов в спектроскопическом эксперименте. Высокой интенсивностью в спектрах димеров обладают также две полосы колебаний связей СО

Полоса	$ u(S)_{ m rapm}$	$ u\left(S ight)_{ m ahr}$	Эксперимент [5]
v_1 (C ₅ H _{6,7,8} tors)	155 (0.1)	137 (0.1)	_
v_2 (C ₁ O ₃ C ₅ bend)	308 (14)	316 (12)	318
v_3 (C ₅ O ₃ O ₂ H ₄ dih)	347 (26)	336 (25)	_
v_4 (O ₂ C ₁ O ₃ bend)	772 (7)	762 (8)	767
$v_5 (O_3C_5 \text{ str})$	954 (27)	927 (26)	924
v_6 (C ₁ H ₄ oop libr)	1046 (0.1)	1025 (0.1)	_
$v_7 (H_6 H_7 \text{ tors})$	1187 (2)	1162(1)	_
$\nu_8 (C_5 H_{6,7,8} \text{ wag})$	1193 (87)	1161 (125)	1166
$v_9 (C_1 O_3 \text{ str})$	1247 (241)	1208 (165)	1207
v_{10} (C ₁ H ₄ ip libr)	1399(1)	1370(1)	1371
v_{11} (C ₅ H _{6,7,8} sym bend)	1479 (4)	1443 (4)	1445
v_{12} (C ₅ H _{6,7,8} asy bend)	1512 (10)	1469 (7)	1454
v_{13} (H ₆ C ₅ H ₇ sci)	1519 (10)	1474 (7)	_
v_{14} (C ₁ =O ₂ str)	1769 (289)	1738 (269)	1754
v_{15} (C ₅ H _{6,7,8} sym str)	3096 (26)	2996 (29)	2969
v_{16} (C ₁ H ₄ str)	3112 (35)	2964 (26)	2943
v_{17} (C ₅ H _{6,7} asy str)	3189 (12)	3051 (14)	3045
$v_{18} (C_5 H_{6,7;8} \text{ asy str})$	3224 (7)	3086 (9)	-

Таблица 3. Гармонические и ангармонические значения частот ν (в сm⁻¹) и интенсивностей *S* (в скобках, в km/mol) фундаментальных полос поглощения молекул *cis*-МФ и экспериментальные [5] значения частот

Таблица 4. Гармонические и ангармонические значения частот ν (в ст $^{-1}$) и интенсивностей *S* (в скобках, в km/mol) фундаментальных полос поглощения димеров I, II и III

Полоса	Димер I		Димер II		Димер III	
	$\nu(S)_{ m rapm}$	$ u(S)_{ m ahr}$	$ u(S)_{\mathrm{гарм}}$	$ u(S)_{ m ahr}$	$ u(S)_{\mathrm{гарм}}$	$ u(S)_{ ext{ahr}}$
v_1 (H-bond oop bend)	52 (0.4)	50 (0.4)	49 (< 1)	49 (< 1)	34 (6)	37 (5)
v_2 (H-bond ip bend)	88 (3)	75 (2)	46 (2)	54 (2)	36 (8)	39 (8)
$\nu_3(C_5H_{6,7,8} \text{ tors})$	191 (0.3)	169 (0.3)	157 (< 1)	141 (< 1)	151 (< 1)	132 (< 1)
v_4 (H-bond str)	202 (12)	183 (13)	178 (2)	164 (3)	161 (2)	149 (3)
$v_5 (C_1 O_3 C_5 bend)$	316 (11)	289 (5)	342 (45)	344 (33)	310 (15)	318 (12)
$\nu_6 \left(C_5 O_3 O_2 H_4 \text{ dih} \right)$	359 (15)	346 (13)	361 (27)	351 (24)	329 (20)	321 (16)
$v_7 (F_9 H_{10} \text{ oop libr})$	691 (101)	612 (100)	717 (99)	638 (97)	583 (102)	516 (103)
$\nu_8 (F_9 H_{10} \text{ ip libr})$	93 (161)	603 (157)	757 (126)	657 (123)	693 (56)	604 (61)
$\nu_9 (O_2 C_1 O_3 \text{ bend})$	779 (7)	771 (3)	796 (46)	788 (11)	774 (12)	761 (12)
$\nu_{10} (O_3 C_5 \text{ str})$	943 (26)	916 (26)	951 (22)	924 (22)	939 (58)	911 (54)
v_{11} (C ₁ H ₄ oop libr)	1056 (0.4)	1035 (0.3)	1060 (< 1)	1039 (< 1)	1041 (< 1)	1019 (< 1)
ν_{12} (H ₆ H ₇ tors)	1181 (2)	1157 (2)	1188 (2)	1163 (1)	1189 (1)	1163 (1)
$\nu_{13} (C_5 H_{6,7,8} wag)$	1205 (29)	1174 (46)	1204 (24)	1175 (42)	1232 (130)	1204 (41)
$\nu_{14} (C_1 O_3 \text{ str})$	1283 (275)	1241 (222)	1286 (290)	1243 (208)	1181 (239)	1138 (312)
v_{15} (C ₁ H ₄ ip libr)	1411 (2)	1388 (17)	1405 (3)	1373 (3)	1402 (< 1)	1372 (3)
$v_{16} (C_5 H_{6,7,8} \text{ sym bend})$	1482 (10)	1447 (8)	1481 (7)	1446 (7)	1483 (2)	1447 (5)
$\nu_{17} (H_6 C_5 H_7 sci)$	1517 (9)	1470 (8)	1518 (11)	1473 (7)	1521 (11)	1473 (4)
ν_{18} (C ₅ H _{6,7,8} asy bend)	1520 (12)	1475 (10)	1514 (11)	1465 (8)	1511 (11)	1456 (5)
$\nu_{19} (C_1 = O_2 \text{ str})$	1754 (379)	1725 (325)	1745 (411)	1717 (326)	1784 (290)	1752 (258)
$\nu_{20} (C_5 H_{6,7,8} \text{ sym str})$	3104 (12)	3003 (12)	3103 (17)	3002 (17)	3104 (17)	3004 (17)
$\nu_{21} \left(C_1 H_4 \text{ str} \right)$	3140 (29)	2987 (29)	3141 (14)	2984 (15)	3122 (20)	2975 (18)
v_{22} (C ₅ H _{6,7} asy str)	3204 (5)	3066 (7)	3200 (8)	3062 (9)	3204 (7)	3065 (9)
$\nu_{23} (C_5 H_{6,7;8} \text{ asy str})$	3234 (5)	3095 (6)	3234 (5)	3096 (6)	3230 (3)	3092 (4)
$v_{24} (F_9 H_{10} str)$	3757 (867)	3593 (680)	3703 (1171)	3538 (853)	3834 (905)	3671 (705)

 $(v_{14} u v_{19})$ и две полосы либрационных колебаний фрагментов HF в димерах $(v_7 u v_8)$. В димерах I и II полоса v_{14} испытывает высокочастотный сдвиг около 34 cm^{-1}

относительно полосы v_9 МФ, в то время как в димере III, в котором фрагмент НF связывается с атомом кислорода метоксильной группы, полоса v_{14} уменьшает

свою частоту на 70 cm⁻¹ и практически удваивает свою интенсивность. Противоположные по знаку изменения частоты и интенсивности при переходе от димеров I и II к димеру III предсказаны для полосы v₁₉. Такое поведение спектральных параметров полос v14 и v19 при образовании димеров коррелирует с изменениями длин связей $R(C_1=O_2)$ и $R(C_1-O_3)$ (табл. 1). Более прочный димер II имеет более высокие значения либрационных частот, но соотношения между спектральными параметрами полос v7 и v8 в димерах I и II приблизительно одинаковы. В спектре димера III разность между частотами плоских и неплоских либраций фрагмента HF значительно больше, чем в спектрах димеров I и II. Это может объясняться сильным отталкиванием фрагмента HF от атомов H₄ и H₈, которое повышает частоту плоской либрации.

Из полос поглощения валентных колебаний C–H связей наиболее интенсивными являются полоса колебания одиночной связи C₁–H₄ и полоса симметричного колебания трех связей C–H метильной группы. При образовании гетеродимеров полосы колебаний C–H, кроме полосы C₁–H₄, заметно понижают интенсивность. Из четырех полос колебаний C–H полоса C₁–H₄ испытывает максимальный голубой сдвиг от 11 до 23 сm⁻¹. Следует отметить, что наряду с полосами поглощения изолированного *cis*-MΦ, частоты и интенсивности которых значительно меняются при образовании димеров, есть спектральные полосы, параметры которых остаются практически неизменными. Прежде всего это полосы ν_4 (O₂C₁O₃ bend), ν_6 (C₁H₄ oop libr), ν_7 (H₆H₇ tors), ν_{10} (C₁H₄ ip libr) и ν_{11} (C₅H_{6,7,8} sym bend).

Согласно расчету по теории возмущений второго порядка в спектрах димеров I–III могут наблюдаться некоторые обертонные полосы поглощения, которые лежат в инфракрасной области и имеют достаточно высокую интенсивность. Эти полосы связаны с либрационными колебаниями НF. Частоты ν (в сm⁻¹) и интенсивности *S* (в km/mol) этих обертонов, рассчитанные по теории возмущений, таковы: $\nu = 1110$ и S = 77 ($2\nu_8$ димер I), $\nu = 1189$ и S = 79 ($2\nu_7$ димер II), $\nu = 994$ и S = 45 ($2\nu_7$ димер III) и $\nu = 1132$ и S = 32 ($2\nu_8$ димер III).

Обсуждение результатов

Хорошее совпадение рассчитанных в данной работе частот ИК полос поглощения молекулы *cis*-МФ с экспериментальными данными [5] свидетельствует о достаточно высокой точности выбранного метода расчета структуры и спектра молекулярных систем. Расчет равновесных геометрических параметров димеров *cis*-МФ...НГ с учетом ошибки наложения атомных функций мономеров, а также зарядов на атомах по методу естественных орбиталей связи выявил корреляцию между значениями электронных зарядов, переносимых между атомами в процессе образования комплексов, и изменениями длин химических связей. Были обнаружены различия в этих закономерностях между димерами, образованными присоединением фрагмента HF к атому кислорода карбонильной или метоксильной групп МФ. Представляет интерес сравнение обнаруженных в настоящей работе корреляций между изменениями двух разных параметров при переходе от одного комплекса к другому с аналогичными закономерностями, полученными в работе [22]. Полученные нами корреляции между изменениями параметров $q_1 = R(F-H) + R(O...H)$ и $q_2 = (R(F-H) - R(O...H))/2$ и между энергией связи комплекса ΔE и q_1 при переходе между димерами I–III совпадают с результатами работы [22]. Что касается корреляций между изменениями пары параметров ΔE и $\Delta A^{1/2}$ и пары параметров ΔE и $\Delta (A/\nu)^{1/2}$ (здесь A и ν интенсивность и частота полосы валентного колебания H-F в комплексе), то наши результаты для димеров II и III совпадают с закономерностями, полученными в работе [22]. Димер I выпадает из этой закономерности, так как его энергия связи почти совпадает с энергией связи димера II, но полоса H-F в димере I имеет значительно меньшую интенсивность. Возможно, найденные в [22] корреляции между энергиями связи и интенсивностями полос поглощения не выполняются для комплексов, образованных присоединением HF к разным электронным парам одного и того же акцептора протона. Из выполненных расчетов следует, что два димера, образованные присоединением HF к карбоксильному атому кислорода, обладают достаточной прочностью и могут быть обнаружены экспериментально. Эти димеры могут быть обнаружены даже при их низкой концентрации, так как в их спектрах имеется нескольких полос поглощения с высокой интенсивностью, которые значительно удалены от интенсивных полос мономеров. Выполненные расчеты продемонстрировали, на какие структурные и спектральные параметры мономеров присоединение молекулы HF к конкретному атому кислорода МФ влияет значительно, а какие параметры остаются практически неизменными. Например, образование димера с участием карбонильного атома кислорода влияет в основном на свойства связи С1Н4 и оставляет практически неизменными свойства связей СН метильной группы.

Заключение

Геометрические параметры равновесных конфигураций молекул $M\Phi$ и фтористого водорода, а также стабильных 1:1 гетеродимеров с водородной связью, образованных этими молекулами, определены с использованием пакета программ Gaussian 2016 [10] в приближении MP2/aug-cc-pVTZ с учетом ошибки наложения атомных функций мономеров. Частоты и интенсивности ИК полос поглощения мономеров и димеров рассчитаны в гармоническом приближении и с учетом ангармоничности по теории возмущений второго порядка [14,15]. Надежность выбранного метода расчета подтверждена хорошим совпадением ангармонических значений частот ИК спектра молекул МФ и НF с экспериментальными данными. Сдвиги частот и изменения интенсивностей полос поглощения мономеров при образовании комплексов определены из сравнения результатов расчетов мономеров и димеров с использованием одного метода. Проанализированы корреляции между изменениями межатомных расстояний, зарядов на атомах и сдвигов колебательных частот, вызванных водородными связями. Предсказаны интенсивные и достаточно характеристичные полосы гетеродимеров *cis*-МФ...НF, которые могут быть использованы для спектроскопического детектирования этих систем.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- G.A. Blake, E.C. Sutton, C. Masson, T.G. Phillips. Ap. J. Suppl., 60 (1), 357 (1986).
- [2] C.A. Cole, N. Wehres, Z. Yang, D.L. Thomsen, T.P. Snow, V.M. Bierbaum. Astrophys. J. Lett., **754**, 6 (2012). DOI:10.1088/2041-8205/754/1/L5
- [3] T. Uchimaru, S.Tsuzuki, M. Sugie, A. Sekiya. Chem. Phys. Lett., 373 (1-2), 182 (2003).
 DOI:10.1016/S0009-2614(03)00573-6
- [4] M.L. Senent, M. Villa, F.J. Meléndez, R. Dominguez-Gómez. Astrophys. J., 627 (1), 567 (2005). DOI:10.1086/430201
- [5] J. Chao, K.R. Hall, K.N. Marsh, R.C. Wilhoit. J. Phys. Chem. Ref. Data, 15 (4), 1369 (1986). DOI:10.1063/1.555769
- [6] L. Vanderheyden, G. Maes, Th. Zeegers-Huyskens. J. Mol. Struct., 114, 165 (1984).
 - DOI:10.1016/0022-2860(84)87121-5
- Z. Latajka, H. Ratajczak, Th. Zeegers-Huyskens. J. Mol. Struct. (Theochem.), 164 (3-4), 201 (1988).
 DOI:10.1016/0166-1280(88)80145-3
- [8] P. Soulard, B. Tremblay. J. Mol. Struct., 1257, 132604 (2022). DOI:10.1016/j.molstruc.2022.132604
- [9] T. Zeegers-Huyskens, E.S. Kryachko. J. Phys. Chem. A., 115, 12586 (2011). DOI:10.1021/jp202981m
- [10] M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian 16, Revision A.03 (Wallingford CT, 2016).
- S.F. Boys, F. Bernardi. Mol. Phys., 19 (4), 553 (1970). DOI:10.1080/00268977000101561
- [12] R.N. Sileo, T.A. Cool. J. Chem. Phys., 65, 117 (1976). DOI:10.1063/1.432808
- [13] A. Bauder, J. Phys. Chem. Ref. Data, 8 (3), 583 (1979).
 DOI:10.1063/1.555604
- [14] V. Barone. J. Chem. Phys., **122** (1), 014108 (2005). DOI:10.1063/1.1824881
- [15] J. Bloino. J. Phys. Chem. A, **119** (21), 5269 (2015).
 DOI:10.1021/jp509985u
- [16] В.П. Булычев, Е.А. Енгалычева, К.Г. Тохадзе. Опт. и спектр., 126 (4), 404 (2019).
 DOI:10.21883/OS.2019.04.47507.341-18 [V.P. Bulychev, E.A. Engalycheva, K.G. Tokhadze. Opt. Spectrosc., 126, 321 (2019). DOI:10.1134/S0030400X19040052].
- [17] R.E. Asfin, V.P. Bulychev, M.V. Buturlimova, K.G. Tokhadze.
 J. Comp. Theor. Chem., **1217**, 113876 (2022).
 DOI:10.1016/j.comptc.2022.113876

- [18] F. Weinhold, C.R. Landis. Valency and bonding. A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press, New York, 2005).
- [19] W.F. Herget, W.E. Deeds, N.M. Gailar, R.J. Lovell, A.H. Nielsen. J. Opt. Soc. Am., **52** (10),1113 (1962).
 DOI:10.1364/JOSA.52.001113
- [20] V.P. Bulychev, E.A. Svishcheva, K.G. Tokhadze. Spectrochim. Acta A, 117, 679 (2014). DOI:10.1016/j.saa.2013.09.033
- [21] S. Oswald, M.A. Suhm. Phys. Chem. Chem. Phys., 21 (35), 18799 (2019). DOI: 10.1039/C9CP03651B
- [22] E.Yu. Tupikina, P.M. Tolstoy, A.A. Titova, M.A. Kostin, G.S. Denisov. J. Comp. Chem., 42, 564 (2021). DOI: 10.1002/jcc.26482