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A vortex lattice in a high-temperature superconductor (HTS) with an array of submicron magnetic dots on the

surface has been studied by the Monte Carlo method within the framework of a three-dimensional model of a

layered high-temperature superconductor. The adjustment of the vortex lattice to an array of magnetic points was

observed — ordered states arising in the process of remagnetization — configurations of one, two, three, or more

vortex filaments fixed to a single magnetic point. The occurrence of these configurations was accompanied by

peaks on the magnetization curve. The influence of the HTS anisotropy on the adjustment of the vortex lattice is

analyzed. The ordered configurations of the vortex lattice are also associated with the non-monotonic nature of the

dependences of the superconductor critical current on the magnetic field. The influence of temperature, magnetic

moment of points, and film thickness on the critical current is investigated. With an increase in temperature and

a decrease in the magnetization of magnetic points, the maximum of the critical current shifts towards a lower

field. The structure of vortex filaments in the inhomogeneous field of a magnetic point is analyzed in detail. The

mechanism of the influence of ordered vortex configurations on magnetization and critical current is discussed.
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1. Introduction

Currently, artificial ferromagnetic–superconductor struc-

tures are of fundamental and application interest. It is a well-

established experimental fact that the angular dependence of

resistance of a superconducting film with a periodic array

of magnetic dots on the magnetic film has sharp minima.

These minima correspond to so-called matching field [1,2].
At the same time, some studies show the absence of such

effects in the case of nonmagnetic impurities [3]. In [1] a
rectangular array of submicron magnetic dots has been

investigated (with a distance between dot centers of 1µm).
Depending on the magnitude of the magnetic field, the

dots were magnetized up to the saturation or were in the

state of magnetic vortex. The investigations were carried

out for a thin film of Nb with permalloy dots applied

on its surface. Pinning of vortices in the film is due to

the scattering fields of the magnetic dots. The magnetic

field in the experiment was oriented at an angle of 86◦

to the normal to the film plane; at the same time, it is

well-established that Abrikosov vortices are caused by the

field component perpendicular to the film. Dependencies of

magnetic resistance on the magnetic field magnitude have

shown the presence of hysteresis and minima related to the

matching field. In [2] also a collective pinning of vortices

has been observed on an array of magnetic dots and an

emergence of field-induced superconductivity due to the

scattering field of magnetic dots.

In [4] the effect of micron ferromagnetic dots as vortex

pinning centers on the critical current of a YBa2Cu3O7−x

thin film has been studied experimentally. Size of the

dots was 3µm, thickness of the superconductor layer was

250 nm, which was at the limit of modern technology. The

magnetic moment of dots was oriented both in the layer

plane and normal to it. It has been noted that almost

two times increase of the critical current takes place in

weak fields, and the experiment was showing that this

increase was due to exactly the magnetic nature of pinning

centers. Also, the remagnetization and the critical current of

ferromagnetic–superconductor structures were investigated

in [5], however, no critical current increase in weak magnetic

fields has been found.

An attention is paid to the magnetic dots on the surface of

superconducting film in theoretical works as well. In [6,7]
the pinning of vortices on a magnetic dot has been studied

in the London approximation. It has been shown that more

than one vortices can be secured on a single magnetic dot.

In [7] the demagnetization factor of dots has been taken

into consideration, the force of pinning has been calculated

and it has been shown that at a temperature of ∼ 77K

(nitrogen boiling temperature) it is an order of magnitude

higher than the force of pinning on intrinsic nonmagnetic

defects. Vortex lattice near magnetic dots has been also

investigated in [8–11].

A significant number of studies have been focused on

the numerical solving of Ginzburg–Landau (GL) equations
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for the hybrid ferromagnetic–superconductor structure, in

particular, for the superconductor near the magnetic dot.

In [12], by solving time GL equations, the dynamics of

vortices has been investigated for a superconductor in a non-

uniform field of magnetic dipole. In [13] the general case of

a superconductor in an arbitrary external potential has been

considered, vortex solutions has been found. In [14–17]
different configurations of vortices and antivortices in hybrid

ferromagnetic–superconductor structures has been derived,

the possibility of existence of vortices containing several

magnetic flux quanta has been shown.

Vortex lattice in a layered anisotropic high-temperature

superconductor (HTS) is a complex system that demon-

strate a large diversity of configurations in external field.

Vortex line can be represented as a stack of flat layer

vortices, the pancake vortices bound by an interplanar bond.

In a tilted and non-uniform magnetic field tilted vortices,

chains of Abrikosov vortices extended along the Josephson

vortex, vortex molecules are observed. In some cases the

arrangement of pancakes in a tilted vortex can result in an

effective attraction of neighbor stacks of vortices [18–24].
In the general case, the problem of system of interacting

vortices can not be solved analytically, therefore numerical

methods become of major importance. The Monte Carlo

method for a vortex system (pancakes are represented as an

ensemble of classic interacting particles with a long-range

potential) allows calculating magnetization curves, current-

voltage curves (IU-curves), critical current of a layered

anisotropic HTS with an arbitrary potential of pinning.

In [6–12] special cases of isolated vortex or hexagonal vortex

lattice have been analyzed, however, magnetization curves

or critical current have not been calculated. The experimen-

tal determination of the effect of magnetic dot parameters

on features of magnetization curves or magnetoresistance

is related to the need to produce samples that are different

in only one parameter and can be seriously challenging.

Numerical solving of GL equations allows obtaining a

vortex configuration typical for the given parameters of the

magnetic dot and an arbitrary size of the system, however,

in practice it can be achieved only for the sizes that are not

more than a few times greater than the depth of magnetic

field penetration into the superconductor. Therefore, the

purpose of this study was to analyze by the Monte Carlo

method the processes of remagnetization and transport

current flow through a HTS-film with magnetic dots on the

surface, to derive the dependencies of the critical current

on the external magnetic field and temperature. For this

purpose, in the three-dimensional model of layered HTS an

approximated description of the interaction between a three-

dimensional vortex line and a non-uniform field of magnetic

dot is introduced.

2. Model description

The calculations were performed within a three-dimensio-

nal model of layered HTSC [25–30]. In this model a super-
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Figure 1. Geometry of the layered HTS model A general case of

sample is shown that contains point defects of pinning.

conductor can be represented as a stack of superconducting

CuO-planes separated by isolating gaps. The geometry

of model is shown qualitatively in Fig. 1. The external

magnetic field is directed along the axis of anisotropy

(perpendicular to layers). The external field causes nucle-

ation of Abrikosov vortices in the superconductor. Each

Abrikosov vortex can be represented as a stack of flat layer

vortices, pancakes bound by an interplanar bond. The

interaction between pancakes in neighbor layers has an

electromagnetic component and a Josephson component.

The nucleation of vortex line is possible only at a boundary

of the sample; under the effect of the Lorentz force from

the Meissner current and the transport current the vortices

pass into the depth of the superconductor. Vortices in

Fig. 1 pass into the sample along the x axis, and along

the y axis periodic boundary conditions are in force. Also,

the Meissner current and the transport current are directed

along the y axis.

Within this model, the energy of pancake system G is as

follows:

G =
∑

z

{

Nz ε +
∑

i< j

Uin-plane(r i j) +
∑

i, j

Up(r i j)

+
∑

i, j

Usurf

(

r (im)
i j

)

+
∑

i

Uinter-plane

(

r z ,z+1
i

)

}

,

where ε = dε0(ln[λ(T )/ξ(T )] + 0.52) is intrinsic energy of

vortex λ(0), ξ(0) is penetration depth and coherence length

atT = 0; Nz is number of pancakes in the HTS-plane

(ab) with a number of z ; the second term describes the

pairwise interaction of pancakes, the third term describes

interaction of vortices with pinning centers, the fourth term

describes interaction of vortices with the surface and the
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Meissner current and the transport current, the last term de-

scribes interplanar interaction of pancakes;ε0 = 82
0/(4πλ)

2,

80 = π~c/e is magnetic flux quantum. For a plate with a

thickness of Lx the interaction between the vortex and the

surface (the flat boundary) of superconductor is described

as an interaction with its own specular reflection and

reflections of other vortices. The energy of interaction with

the Meissner current and the transport current is equal to

the work of the Lorentz force when the vortex is moved

from the plate edge to its location x , and has the following

form:

UM = −
1

4π

x
∫

±Lx /2

j80dx

= d
80

4π

(

H0

(

ch
x
λ

ch
Lx
2λ

− 1

)

− HI

(

sh
x
λ

sh
Lx
2λ

∓ 1

))

,

j = −
c

4πλ

(

H0

sh
x
λ

sh
Lx
2λ

− HI

ch
x
λ

ch
Lx
2λ

)

.

The external magnetic field H0 the field of current HI

are directed parallel to the axis of anisotropy (the c axis).
The Meissner current and the transport current flow in

the plane of HTS-layers (the ab plane). In the case of

low anisotropy of the HTS, the relative displacement of

pancakes in neighbor layers are small as compared to the

average distance between vortex lines. Therefore, as it has

been shown in [31], the energy of pairwise interaction of

pancakes inside the Uin-plane is approximately proportional

to K0(r/λ), K0 is the Macdonald function.

For the interplanar interaction we used the shape of

potential obtained in [31,32]:

Uinter-plane(r
z ,z+1
i ) = Uem(r z ,z+1

i ) + UJos(r
z ,z+1
i ),

where Uem is electromagnetic interaction, UJos is Josephson

interaction of pancakes located in neighbor layers. These

terms are as follows:

Uem(r z ,z+1
i ) = 2dε0

⌊

C + ln[r z ,z+1
i /(2λ)] + K0(r

z ,z+1
i /λ)

⌋

,

where C = 0.5772 is the Euler constant.

U z ,z+1
Jos (r z ,z+1

i ) =

=















ε0d
[

1+ln
(

λ
d

)]

0.25
(
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i
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)2

ln
(

9rg

r z ,z+1
i

)

, r z ,z+1
i ≤2rg

ε0d
[

1+ln
(

λ
d

)][(
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i
rg

)

− 0.5
]

, r z ,z+1
i > 2rg

,

where rg = γd is typical distance of the Josephson interac-

tion, γ is parameter of anisotropy, d is interplanar distance,

r z ,z+1
i is projection of the distance between pancakes

located in z and z + 1layers and belonging to the same

vortex line on the ab plane.

Due to computer speed and memory limitations in the

Monte Carlo calculation, it is possible to consider a stack of

no more than 20 planes. At the same time, the minimum

HTSC film thickness used in practice is about several

hundreds of nm. The requirement of the aforementioned

minimum film thickness is also related to the existence of a

typical distance, at which the field of magnetic dot changes

significantly in the experiment. This allows combining

within our model a number of pancakes in neighbor planes

and applying the sub-processes of nucleation, annihilation

and movement to the stack of pancakes as a single object.

This approach is possible because the real scale of the

Abrikosov vortices bends is determined by the elastic

parameters of the vortex line [33] and is usually much larger

than the interlayer distance. In the following, a stack of

NL = 100 layer vortices is taken as a single object, thus,

a system of 1200 CuO-layers is considered. This approach

allows qualitatively reproducing main features of the vortex

lattice in a weakly anisotropic superconductor, i. e. with

γ ≈ 10, and is limitedly applicable for strongly anisotropic

HTSs. Therefore, in the following calculations γ = 10 is

taken everywhere.

The magnetic moment of one dot is chosen as

µ ≈ 106 µB, where µB is the Bohr magneton. Such a mag-

netic moment corresponds to the dot size of 10−100 nm.

The energy of interaction between a pancake and a magnetic

dot on the surface of the HTS-layer depends on both the

distance between centers of the dot and the pancake in

the ab plane and the distance from the pancake to the

surface in the direction of the axis of anisotropy. The energy

of vortex in a superconducting film in the presence of a

magnetic dipole above its surface has been calculated in

the London approximation in [34]. By using the results

of this study (for the dipole orientation perpendicular to

the film plane) we combine approximately the energy for

the cases of large and small distances between centers

of the vortex and the dipole to derive an approximated

representation for the pancake energy near the dot, which

describes qualitatively the behavior of the interaction

Uint1 =
Ud0

√

2(r/λ)2 + (ld/λ)2 + (r/λ)6
,

where r is distance between centers of the pancake and

the dot in the ab plane, ld is some typical size. In these

calculations we have chosen ld = λ. Ud0 is typical energy of

pancake under the center of magnetic dot, its magnitude

depends on µ and is chosen coincident in the order of

magnitude with typical interaction energies of vortices. The

case of vortex line near the magnetic dot is similar to

the case non-uniform magnetic field that has been already

considered by us [29]. The pancake energy decreases as

1/z 3 with increase in the distance from the surface z ,
z = ndNL. Thus, the final representation for Uint1 is as

follows:

Uint1 =
1

z 3

Ud0
√

2(r/λ)2 + (ld/λ)2 + (r/λ)6
.

It is worth to note that this representation does not

take into account the screening of field in the direction
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of c axis. However, the typical depth of magnetic field

penetration in this direction is γ times greater than that in

the plane of layers and, thus, it is comparable with the

chosen film thickness. As can be seen from test calculations,

vortex configurations do not change qualitatively with small

quantitative variations of the potential.

The calculations are carried out for typical parameters

of the Bi2Sr2CaCu2O8+δ bismuth-based HTS: λ(T = 0) =
= 180 nm, ξ(T = 0) = 2 nm, Tc = 84K, distance between

HTS-layers is s = 2.7 nm. This choice allows comparing

the calculation results to the test calculations and results

obtained by us earlier. The size of sample in the ab planes

is 5× 3µm. With the above-mentioned parameters, the

typical energy of vortex line per one superconducting layer

is 0.01−0.1 eV. The system has no nonmagnetic centers of

pinning.

In this study magnetization curves and IU-curves of the

superconductor with magnetic dots are calculated. The

critical current has been determined from the IU-curve

by the criterion of 1µV/cm. Taking into account that in

the resistive state the energy released on the sample per

unit time is Q = δddy j s E , where d is thickness of the

sample, dy is size in the direction of the transport current,

j s is average current density over the cross-section, the

electric field strength E can be determined. The energy Q
in the superconductor is equal to the energy released at

annihilation of a vortex–antivortex pair in the center of the

sample. If it is assumed that at each pair annihilation in the

center a vortex and an antivortex are nucleated on opposite

boundaries (which is really the case in the mode of running

flow), then the energy released from the pair annihilation is

equal to the work of Lorentz force when moving a vortex

and an antivortex from sample edges to the center. The

average current density is set as in input parameter for

the calculation. This method of IU-curve calculation is

developed in [26].

3. Results

Let us analyze the process of remagnetization in a vortex

system in the presence of magnetic dots with the above-

listed parameters. The calculations will be performed for

a HTS-plate with plane dimensions of ab 5000 × 3000 nm.

Let us assume that there are 60 magnetic dots on the sample

surface, which is correspondent to the two-dimensional

concentration of 4 · 108 cm−2 (according to preliminary

calculations, such a concentration yields the most noticeable

effects). Assume the magnetic moment of each dot is

perpendicular to the plane of HTS-layers and has an order

of magnitude of 106 Bohr magnetons.

Magnetization curves at two magnetic moments of the

dot and at T = 1K are shown in Fig. 1. In the calculations

a fixed value of the anisotropy parameter of γ = 10 is

taken. This value corresponds to the yttrium-based HTS,

which is the most widely used in practical applications.

According to preliminary calculations, with a low anisotropy
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Figure 2. Magnetization curves of the film with magnetic dots

at two values of magnetic moment of the dots. The film surface

has 60 magnetic dots. T = 1K (a), T = 50K (b). Features in

curves (shown with arrows) are related to effects of vortex lattice

matching to the ordered lattice of magnetic dots.

the lattice matching effects are the most explicit. However,

it is worth to note that all HTSs have different parameters

of anisotropy; in particular, bismuth-based HTSs have

γ ≈ 100. It can be seen that the magnetization curve

has features: more or less regular peaks, which are not

smoothed with increase in temperature. These peaks can

be considered as matching effects occurring in the vortex

system, which are very similar to those that have been

observed in many experiments with common nonmagnetic

defects. The fact that peaks are kept at high temperature

(over half of Tc) in Fig. 1, b may be related to rather high

values of µ used in the calculations and the chosen value

of γ . This phenomenon needs further investigation. It is

worth to note some features (Fig. 2). The magnetic moment

of dots probably determines the fields where the peaks

occur: on both images they are slightly displaced to the

right with increase in µ, which means that correspondent

fields can be due to the magnetization of dots. Also, it is
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a b

c d

Figure 3. Ordered configurations of vortices resulting in features in the magnetization curve. Vortex configurations are shown in points

of the curve corresponding to the following fields: a — 540, b — 660, c — 800, d — 960Gs along the magnetization curve with

µ = 5 · 106 · µB in Fig. 2, a. Black circles show magnetic dots (their size is zoomed up for illustration purposes), blue circles correspond

to pancakes.

worth to note that the difference between magnetization

curves for two values of µ increases considerably with

increase in temperature: despite the general lowering of the

magnetization for both curves, the red curve is displaced up

at T = 50K in relation to the blue curve, and its decreasing

slope becomes less rapid. Nonetheless, it can be seen that

an increase in temperature also shifts the peaks to the left:

for example, at T = 1K the first noticeable peak of the

blue curve is observed at approximately 580Gs, and at

50K the peak is observed near 500Gs. In general, the

above-mentioned features are indicative of the fact that the

peaks really can be caused by appropriate effects in the

vortex system because µ to some extent is an analog to

the depth of quantum well of common nonmagnetic defects

and changes in the magnetization curves caused by changes

in µ and T are similar to those observed in the case of

nonmagnetic defects.

The analysis of vortex configurations in points of the

magnetization curve shows that the appearance of peaks

is accompanied by ordered configurations of the vortex

lattice (matching-effect). Such ordered configurations are

related to the periodicity of the lattice of pinning centers

and have been previously observed many times, including

for nonmagnetic defects. Some of these configurations are

shown in Fig. 3. Fig. 3 shows top view on the ab plane

with individual pancakes shown with blue circles. Thus, a

straight vortex line is represented in the figure as virtually a

single circle, a tilted vortex line is shown as a stretched chain

of circles. Fig. 4 shows the scheme of securing of several

vortex lines on a magnetic dot. Due to the large depth of the

quantum well under the dot center the pancakes in the top

layer (the closest layer to the dot) are arranged very close

to each other; inward the sample the attraction to the dot

becomes weaker due to the mutual repulsion, and pancakes

become away from each other at greater distances. This

results in a tilt of the vortex line. It is worth to note that

the higher is external magnetic field, the greater is number

of vortices occupying magnetic dots: at 540Gs (Fig. 4, a)
there are two vortex lines per dot almost everywhere in

the sample (except for some edge points occupied by three

vortices), then in the range from 660 to 800Gs (Fig. 4, b
and c) more dots capture one additional vortex each and

by 960Gs (Fig. 4, d) each dot contains exactly three vortex

lines. The vortex lines surrounding the occupied dots are

straight and probably are distributed in a semi-ordered way

in all figures. On other hand, all secured lines are tilted and

go away from each other: the bigger is number of vortices

in one dot, the bigger is the tilt angle.

In practice, the main goal of creation of magnetic defects

in HTS films is the increase in critical current density jc and

the decrease in its dependence on the external magnetic

field. Now let us consider the effect of the presence of
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Magnetic dot

Vortex lines

Superconducting layers

Pancakes

frep

Figure 4. Scheme of arrangement of a number of vortex lines

under a magnetic dot. Immediately under the dot the force of

pancake attraction to it is sufficient to hold pancakes together,

inward the film the force of the pairwise repulsion of vortices

becomes prevailing over the attraction to the dot, which results in

the above-mentioned arrangement of vortex lines.
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Figure 5. IU-curves calculated for a film with γ = 10 that

contain 60 magnetic dots with µ = 5 · 106 µB at 1K in an external

magnetic field of 200Gs (blue circles) and in a zero external field

(red triangles).

magnetic dots on jc of our samples. This will be done

by considering the calculated IU-curves. Fig. 5 shows two

IU-curves (E is electric field generated inside the sample

and j is current density) obtained for the same sample in

its own current field and in an external magnetic field of

200Gs. These curves were calculated for the sample that

demonstrated the most explicit coinciding peaks in all our

calculations. This sample corresponds to the red curve of

magnetization in Fig. 2, a. Based on the IU-curve the jc

was determined by the standard criterion of 1µV/cm at the

given applied magnetic field. As can be seen from Fig. 5,

shapes of IU-curves obtained at zero and non-zero external

magnetic fields are significantly different: the curves have

different slopes and are twisted in relation to each other

(forming a 8-like shape before they start to be coincident at

higher currents). These unique shapes occurred at different

external magnetic fields in our calculations and probably

were also caused by corresponding effects arising in the

vortex system. The fact that the IU-curve shape changes

when the external field is turned on suggests changes in

the behavior of vortices motion through the sample as the

external field grows. This issue will be considered and

modes of the vortex flow manifested in this system will

be thoroughly studied in our further research activities.

If the transport current flows through the sample in a

zero magnetic field or in a field not greater than the field

a

c

b

Figure 6. Vortex configurations arising during magnetization

reversal by current. a — the current field at the plate edges

is 450Gs, which corresponds to an average current density of

1.35 · 106 A/cm2; b — the current field at the plate edges is 580Gs,

the average current density is 1.74 · 106 A/cm2; c — the current

field at the plate edges is 800Gs, the average current density is

2.4 · 106 A/cm2 . Vortices are shown with blue, antivortices are

shown with red. Also, in the field of transport current matching

effects are observed for vortices, which magnetic flux is parallel to

magnetic moments of dots.
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Figure 7. Magnetization curves at T = 1K and two magnetic

moments of dots (magnetic moments of dots are opposite to the

magnetizing field). It can be seen that in this case the curves are

merged.

of vortices entry, then vortices of different signs enter the

sample from the left and the right boundaries. However, in

our calculation for simplicity we assume that magnetic fields

are magnetized to saturation and their magnetic moment

is constant. Magnetic moments of all dots have the same

direction. Thus, vortices with the sign opposite to the

external field (antivortices) are repulsed from the magnetic

dot. Vortex configurations for the IU-curve calculation are

as follows (Fig. 6, calculation at T = 1K for 60 magnetic

dots and a magnetic moment of one dot of 5000µB).
It can be seen that vortices parallel to the external field

are secured on magnetic dots and form ordered configura-

tions on them, while antivortices are repulsed from the dots

and in some cases form a regular lattice with alternating

sites on magnetic dots and on antivortices. Such a behavior

of antivortices is confirmed by the magnetization curve of

superconductor in the case when magnetic moments of

dots are opposite to the external field (Fig. 7). In contrast

to curves shown in Fig. 2, a, curves in Fig. 7 are almost

completely coincident and demonstrate no any visible peaks

even at 1K because dots in this case act as anti-securing

sections and their magnetic moment has no effect on the

shape of curves. The vortices secured on dots near the

boundary screen the new vortices entering into the sample,

which results in a critical current increase. It is worth

noting that even in the absence of nonmagnetic defects

the critical current of the film with magnetic dots in a

number of cases is 10−20% higher than its typical values

obtained by us with nonmagnetic defects [26,27]. One more

feature which is worth noting is that although the IU-curve

obtained at H = 200Gs is the first that demonstrate non-

zero electric field, it is the zero-field calculation curve that

first crosses the criterion of 1µV/cm, which results in a

lower critical current. This may be a cause of ambiguity

when determining jc(H) dependencies because the choice

of criterion for the evaluation of jc may lead to different

results.

Let us investigate the effect of temperature on the

density of critical current. Let us consider once again the

jc(H) dependencies calculated for samples with 60 dots

with various magnetization but at different temperatures

from 1 to 50K. The results are shown in Fig. 8: Fig. 8, a

corresponds to µ = 5 · 106 µB and Fig. 8, b corresponds

to µ = 2 · 106 µB. There is a significant difference in

general values of jc between two images and between their

behaviors with increase in H . The magnetic moment of dots

equal to 5 · 106 µB provides about 10−15% higher critical

density of current than that of the sample in Fig. 8, b at any

temperature under consideration. Moreover, its maximum

jc is achieved at slightly higher fields than those in the

case of µ = 2 · 106 µB: no any visible maximum is seen in

Fig. 8, a in fields below 700Gs, while in Fig. 8, b jc starts

to decrease even at 600Gs. An increase in temperature

from 1 to 30K does not result in any considerable changes

in jc in both samples and does not changes the general

shape of its field dependence: wave-like behavior of the

increasing tilt probable remains unchanged (for both values
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Figure 8. Dependence of critical current on magnetic field for

the sample that contains 60 magnetic dots a — µ = 5 · 106 µB and

b — µ = 2 · 106 µB at different temperatures.
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of µ) and in Fig. 8, b field where critical density of current

achieves its maximum is just slightly shifted to the left.

At 50K jc decreases by approximately 10% in case of

Fig. 8, a and slightly greater (about 12%) in Fig. 8, b but

still demonstrates an increasing tilt with increase in H .

In general, this parameter shows that the selected values

of dot magnetization provide a good increase in jc at

temperatures up to at least 50K. A decrease in the critical

current after the maximum value is related to the fact that

processes of penetration of new vortices into the sample

start prevail over the screening by vortices secured on the

dots. Due to a finite depth of dot potential the number of

vortices that can be secured on it is limited.

Our results are qualitatively consistent with the experi-

ment [4]. In [4] critical current of the film with magnetic

dots is higher as compared to the current of the film without

dots. At the same time, with increase in temperature

increment in the critical current grows. In our calculations

this can be referred to the more sharp tilt of the jc(H)
dependence in Fig. 8, b at 50K. It is worth to note that in [4]
nonmonotonous dependencies of critical current have been

observed for a sample with a hexagonal lattice of magnetic

dots, for which the matching effects of vortex lattice are the

most explicit.

Then, it is worth noting that in [4] the size of magnetic

dot is a few µm with the distance between them of several

tens of µm. In our calculations the dot size is several tens

of nm with the distance between them equal to several

hundreds of nm. Despite such a proportional increase

in sizes results of the calculation and the experiment

are qualitatively comparable. This suggests that vortex

configurations obtained in the calculation correspond to

those occurring in the experiment. Thus, the calculation

allows identifying a transformation of vortex lattice in the

presence of magnetic dots and the structure of vortex lines

secured on the dots. Results of the calculation can be used

to select the optimum configuration of magnetic dots in the

experiment.

4. Conclusion

In the three-dimensional model of layered HTS a de-

scription of the interaction between the vortex line and

the magnetic dot located on the surface of the HTS-film

is introduced. Parameters used in the model correspond to

the magnetic dot size of about several tens of nm and an

average distance between dots from 100 to 200 nm.

The modeling of vortex lattice at different anisotropy of

HTS has shown the presence of ordered vortex configura-

tions near magnetic dots. Especially explicit is the ordering

at a low anisotropy of γ ≈ 10. In these configurations 1, 3

and more vortices are secured on one magnetic dot. Peaks

in the magnetization curve are demonstrated, which are

related exactly to these ordered configurations. Also, the IU-

curves with differently sloped sections in magnetic field may

be related to these configurations.

The effect of temperature, film thickness and dot magne-

tization on the critical current is analyzed. The following

conclusions are made.

1. At any fields, the critical current is lower at a lower dot

magnetization.

2. Dependencies of the critical current on the magnetic

field have a growing behavior at low fields, which may be

also related to the ordered vortex configurations.

3. With increase in temperature and decrease in dot

magnetization maximum of the critical current shifts toward

lower field.

Dependencies of the critical current on the magnetic

field obtained in this study are qualitatively consistent with

the experiment. Thus, it can be expected that vortex

configurations obtained in this study also correspond to the

vortex configurations that are realized in the experiment.

The main result of this study is the identification of the

behavior of vortex lattice transformation in the presence

of magnetic dots, the demonstration of ordered vortex

configurations and approximate mechanism of their impact

on the magnetization and the critical current. Vortices

secured on magnetic dots near the boundary of the sample

screen new vortices in the sample. This mechanism results

in both the formation of magnetization peaks and the

growth of the critical current with increase in the magnetic

field. This mechanism is effective at low magnetic fields.
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