12

Измерения частотной зависимости скин-эффекта металлических проводов с круглым сечением

© Н.Д. Прасолов,¹ А.И. Лихачев,¹ Р.В. Соколов,¹ А.А. Левин,¹ М.В. Нарыкова,¹ А.Г. Кадомцев,¹ П.Н. Брунков,¹ М.М. Султанов,² А.В. Стрижиченко,² И.А. Болдырев²

¹ Физико-технический институт им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 ² Национальный исследовательский университет "Московский энергетический институт",
 404110 Волжский, Волгоградская обл., Россия
 e-mail: nikpras@mail.ioffe.ru

Поступило в Редакцию 26 декабря 2022 г. В окончательной редакции 10 апреля 2023 г. Принято к публикации 4 мая 2023 г.

Представлены результаты измерений частотной зависимости активного сопротивления алюминиевых и медных проводников с круглым сечением различного диаметра в широком диапазоне частот от 20 Hz до 2 MHz. С использованием моделирования скин-эффекта показано, что для всех типов проводов наблюдается повышенное по сравнению с расчетным активное сопротивление в диапазоне частот выше 200 kHz, где толщина скин-слоя становится менее 200 µm. Данное явление может быть связано с тем, что при изготовлении металлической проволоки методом волочения через фильеру в приповерхностном слое формируются дефекты, приводящие к его повышенному удельному сопротивлению.

Ключевые слова: электросопротивление, алюминиевые провода, медные провода.

DOI: 10.21883/JTF.2023.08.55982.288-22

Введение

Известно, что при увеличении частоты переменный электрический ток в сплошном металлическом проводнике распределяется неравномерно по сечению, а протекает преимущественно в приповерхностном слое [1]. Поскольку площадь поперечного сечения, где протекает ток, уменьшается, то активное сопротивление проводника увеличивается с частотой. Данное явление называется поверхностным эффектом или скин-эффектом [2]. Ранее нами было показано, что этот эффект может применяться в диагностических целях для определения износа высоковольтных линий электропередач, когда приповерхностный слой провода модифицируется с течением времени в процессе эксплуатации, что оказывает существенное влияние на его удельное сопротивление [3,4]. В настоящей работе описывается методика измерения и анализа частотной зависимости активного сопротивления алюминиевых и медных проводников различного диаметра в широком диапазоне частот от 20 Hz до 2 MHz.

1. Методы и оборудование

Согласно модели скин-эффекта [5,6], при протекании переменного электрического тока в идеальном цилиндрическом проводнике его плотность уменьшается от поверхности к его центру, и на глубине δ_s от поверхности проводника плотность тока составляет 0.368 от величины плотности тока на поверхности. Поэтому можно считать, что ток преимущественно протекает в скин-слое толщиной δ_s :

$$\delta_s = \sqrt{\frac{2}{\omega\mu\sigma}},\tag{1}$$

где ω — угловая частота переменного тока, μ — магнитная проницаемость материала проводника, σ — удельная проводимость материала проводника (в $\Omega^{-1} \cdot m^{-1}$).

Для практического применения наиболее удобно использовать следующее выражение:

$$\delta_s \,[\mathrm{mm}] = 503 \cdot 10^3 \sqrt{\frac{\rho}{f\mu_r}},\tag{2}$$

где ρ — удельное электрическое сопротивление проводника, $[\Omega \cdot m]$; $f = \frac{\omega}{2\pi}$ — частота переменного тока, [Hz]; $\mu_r = \frac{\mu}{\mu_0}$ — относительная магнитная проницаемость материала проводника, $\mu_0 = 4\pi \cdot 10^{-7}$ — магнитная проницаемость вакуума.

Для цилиндрического провода с длиной l, которая значительно большей его радиуса r, зависимость активного сопротивления Rs от частоты f разбивается на два диапазона и описывается следующими выражениями в зависимости от соотношения радиуса проводника r и толщины скин-слоя δ_s [5,6]:

$$Rs(f) = rac{
ho l}{\pi r^2}$$
 при $\delta_s > r,$ (3)

$$Rs(f) = rac{
ho l}{\pi r^2 - \pi (r - \delta_s)^2}$$
 при $\delta_s \le r.$ (4)

Наименование	Материал	Диаметр, mm	Удельное сопротивление $\rho, \Omega \cdot m$ [7]
Al ₁	Алюминий	1.77	$2.650\cdot 10^{-8}$
Al ₂		2.22	
Al ₃		2.67	
Cu ₁	Медь	0.77	$1.724\cdot 10^{-8}$
Cu ₂		1.34	
Cu ₃		1.75	

Таблица 1. Параметры исследуемых алюминиевых и медных проводов длиной 62 cm

Для исследований использовались образцы алюминиевых и медных проводов круглого сечения с различными диаметрами (табл. 1).

Измерения активного сопротивления Rs исследуемых прямолинейных кусков металлических проводов проводились по четырехконтактной схеме (в режиме моста Кельвина [8]) с помощью измерителя полной проводимости LCR E4980A (Agilent Technologies Inc., США) в диапазоне частот от 20 Hz до 2 MHz. К противоположным концам исследуемого провода подключены пары контактов L_{curr} , L_{pot} и H_{curr} , H_{pot} с использованием зажимов Кельвина [8] (рис. 1, a). Поскольку исследуемые образцы металлических проводов имели низкий импеданс (< 100 Ω), то измерения частотной зависимости полного электрического сопротивления проводились в режиме последовательной эквивалентной электрической цепи Rs-Ls (активное сопротивление-индуктивность). В этом режиме на образец подается переменный ток через пару соединений L_{curr} и H_{curr} (рис. 1, *a*). Для измерения падения переменного напряжения V на измеряемом образце провода используется пара измерительных соединений L_{pot} и H_{pot} (рис. 1, *a*). Экспериментально было установлено, что наилучшие значения уровня сигнал/шум достигались при амплитуде переменного тока равной 30 mA.

2. Результаты

На рис. 1, *b* представлены измерения частотной зависимости индуктивности *Ls* и активного сопротивления *Rs* образца Cu₁ (табл. 1) в виде прямолинейного куска медного провода с диаметром 0.77 mm и длиной 62 cm. В области низких частот (ниже 20 kHz) в соответствии с выражением (2) толщина скин-слоя δ_s значительно больше, чем радиус проводника *r*, поэтому активное сопротивление *Rs* практически не зависит от частоты измерительного сигнала и определяется выражением (3). При повышении частоты измерительного сигнала выше 20 kHz толщина скин-слоя δ_s становится меньше радиуса проводника *r*, что приводит к резкому росту активного сопротивления *Rs* (рис. 1, *b*). Индуктивность *Ls* образца Cu₁ слабо зависит от частоты измерительного сигна-

Рис. 1. a — схема измерения активного сопротивления с помощью четырехконтактного метода в режиме моста Кельвина с использованием измерителя полной проводимости LCR, где $L_{\text{сигг}}$, L_{pot} и $H_{\text{сигг}}$, H_{pot} — точки измерения электрического тока и напряжения, DUT — измеряемый образец; b — график экспериментальной зависимости активного сопротивления Rs и индуктивности Ls медного провода от частоты тока.

ла в исследуемом диапазоне частот от 20 Hz до 2 MHz и составляет порядка 1 μ H (рис. 1, *b*).

На рис. 2 представлены результаты измерений активного сопротивления Rs алюминиевых (Al₁, Al₂, Al₃) и медных проводов (Cu₁, Cu₂, Cu₃) с разными диаметрами, но одинаковой длины 62 ст (табл. 1). Сравнение экспериментальных данных с теоретическими расчетами частотной зависимости активного сопротивления идеальных проводников такой же длины и диаметра с использованием выражений (3) и (4) показывает очень хорошее совпадение в области частот ниже 200 kHz. Предполагалось, что удельное электрическое сопротивление ρ медных и алюминиевых образцов однородно по сечению проводов и совпадает с известными из литературы значениями (табл. 1) [7]. Для обоих типов материалов проводов модельные расчеты активного сопротивления Rs достаточно хорошо описывают сдвиг в область высоких частот учета вклада скин-эффекта с уменьшением диаметра исследуемых проводов (рис. 2). Следует отметить, что в области частот выше 200 kHz для всех исследуемых образцов проводов наблюдается более сильный рост экспериментально измеренного

Рис. 2. Частотная зависимость активного сопротивления Rs, алюминиевых (a) и медных (b) проводов различного диаметра (расчет и измерения). Толщина скин-слоя δ_s рассчитана с помощью выражения (2). Штриховой линией показаны смоделированные частотные зависимости электросопротивления идеальных проводников такой же длины и диаметра с использованием параметров из табл. 1.

активного сопротивления Rs по сравнению с тем, что следует из расчетов. Подобное поведение может быть связано с вкладом полного сопротивления измерительных проводов L_{curr}, L_{pot} и H_{curr}, H_{pot}, используемых для реализации четырехконтактного метода в режиме моста Кельвина (рис. 1, а). Для оценки их влияния были проведены измерения частотной зависимости активного сопротивления *Rs* для медных проводов типа Cu₁ (табл. 1) разной длины от 62 до 8 cm (рис. 3, a). Моделирование частотной зависимости активного сопротивления Rs с помощью выражений (3) и (4) для всех образцов показало достаточно хорошее согласие в диапазоне от 20 Hz до 200 kHz. Однако в диапазоне выше 200 kHz экспериментальные значения активного сопротивления Rs лежат выше расчетных (рис. 3, a) при этом величина отклонения масштабируется пропорционально длине провода. Это свидетельствует об отсутствии вклада в измеряемое активное сопротивление Rs от проводов L_{curr} , Lpot и H_{curr}, H_{pot}, используемых для реализации моста Кельвина. При частотах выше 200 kHz толщина скинслоя δ_s , рассчитанная с помощью выражения (2), для медного провода составляет менее $200\,\mu$ m (рис. 2, *b*), поэтому повышенные значения активного сопротивления *Rs* могут быть связаны с тем, что удельное сопротивление приповерхностных слоев выше, чем в объеме проводника.

Изготовление металлической проволоки производится методом волочения [9]. Операция состоит в протягивании металлической заготовки сквозь фильеру, которая имеет отверстие с диаметром меньшим, чем у исходного материала проволоки. В результате прохождения через фильеру происходит сдавливание исходного материала, и проволока становится более тонкой и длинной. Для получения проволоки нужного диаметра возможно применение нескольких фильер с разными последовательно уменьшающимися диаметрами. Производство проволоки завершается выполнением отжига. Сдавливание провода и трение его о поверхность фильеры может приводить

Рис. 3. a — частотная зависимость активного сопротивления Rs медных проводов с диаметром 1.75 mm различной длины; b — смоделированные частотные зависимости активного сопротивления R медного провода при наличии приповерхностного дефектного слоя с увеличенным значением удельного сопротивления с использованием параметров из табл. 2. На вставке показана увеличенная область активного сопротивления Rs в диапазоне частот от 200 kHz до 2 MHz.

к формированию дефектов в его приповерхностном слое, что, в свою очередь, вызывает рост удельного сопротивления по сравнению с объемным значением, характерным для бездефектного материала.

Для моделирования активного сопротивления провода с приповерхностным дефектным слоем толщиной T_d рассматривалось параллельное соединение идеального проводника в виде сплошного цилиндра с удельным сопротивлением ρ и радиусом $(r - T_d)$ и проводника в виде полого цилиндра с увеличенным удельным сопротивлением приповерхностного дефектного слоя ρ_d и толщиной стенки T_d . Таким образом, полная величина радиуса провода r оставалась неизменной.

Активное сопротивление идеального проводника R_i в виде сплошного цилиндра длиной l рассчитывается с использованием следующих выражений:

$$R_i(f) = rac{
ho l}{\pi (r - T_d)^2}$$
 при $\delta_s > r,$ (5)

$$R_i(f) = rac{
ho l}{\pi((r-T_d)^2 - (r-\delta_s)^2)}$$
 при $\delta_s \le r.$ (6)

Активное сопротивление приповерхностного дефектного слоя R_d в виде полого цилиндра с толщиной стенки T_d рассчитывается как

$$R_d(f) = rac{
ho_d l}{\pi (r^2 - (r - T_d)^2)}$$
 при $\delta_d > T_d,$ (7)

$$R_d(f) = rac{
ho_d l}{\pi (r^2 - (r - \delta_d)^2)}$$
 при $\delta_d \le T_d,$ (8)

где δ_d — толщина скин-слоя в приповерхностном дефектном слое.

Итоговое активное сопротивление провода R для параллельного соединения идеального проводника R_i и приповерхностного дефектного слоя R_d рассчитывается следующим образом:

$$R(f) = \frac{R_i(f)R_d(f)}{R_i(f) + R_d(f)}.$$
(9)

Смоделированные с помощью выражения (9) частотные зависимости активного сопротивления R медного провода с диаметром r, равным 1.75 mm, с использованием параметров приповерхностного дефектного слоя, приведенными в табл. 2, представлены на рис. 3, b. Видно, что наилучшее совпадение расчетов с экспериментальными данным наблюдается для толщины дефектного слоя T_d равной 200 μ m, когда удельное сопротивление приповерхностного дефектного слоя ρ_d увеличивается на 10% до 1.896 · 10⁻⁸ Ω ·m ($\rho_d = Cf \rho$, коэффициент модификации Cf = 1.10).

Предложенная выше модель предполагает резкую границу между бездефектной центральной частью провода и дефектным приповерхностным слоем. Наиболее реальным является предположение, что дефектная область не отделена четкой границей от основного провода, а **Таблица 2.** Параметры моделируемых медных проводов с удельным сопротивлением $\rho = 1.724 \cdot 10^{-8} \,\Omega$ ·m и приповерхностным дефектным слоем толщиной $Td = 200 \,\mu$ m

Наименование	Коэффициент модификации, <i>С f</i>	Удельное сопротивление дефектного слоя ρ_d , Ω ·m
Cu _{S1}	1.05	$1.810\cdot 10^{-8}$
Cu _{S2}	1.10	$1.896 \cdot 10^{-8}$
Cu _{S3}	1.15	$1.983 \cdot 10^{-8}$

скорее обладает растущим удельным сопротивлением. Так, в работе [3] было показано, что плотность дефектов в приповерхностных слоях провода плавно меняется с глубиной. Поэтому необходима разработка модели, учитывающей неоднородное распределение величины удельного сопротивления по толщине дефектного слоя.

Выводы

Таким образом, в работе были представлены частотные зависимости активного сопротивления алюминиевых и медных проводников с круглым сечением различного диаметра в диапазоне частот от 20 Hz до 2 MHz. С использованием моделирования скин-эффекта показано, что для всех типов проводов наблюдается значительное повышенное, по сравнению с расчетным, активное сопротивление при частотах выше 200 kHz, где толщина скин-слоя становится менее 200 µm. Для описания данного явления была предложена модель частотной зависимости активного сопротивления цилиндрического металлического провода с приповерхностным дефектным слоем, характеризующимся увеличенным удельным сопротивлением. Это может быть связано с тем, что при изготовлении металлической проволоки методом волочения в приповерхностном слое формируются дефекты, приводящие к повышению его удельного сопротивления.

Благодарности

Работа выполнена с использованием оборудования и программного обеспечения Центра коллективного пользования "Материаловедение и диагностика в передовых технологиях" (ФТИ им. А.Ф. Иоффе, Санкт-Петербург).

Финансирование работы

Работа выполнена при финансовой поддержке государственного задания РФ № FSWF-2020-0025 "Разработка методики и анализ методов обеспечения безопасности и конкурентоспособности объектов энергосистемы на основе цифровых технологий".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J.C. Maxwell. *Treatise on Electricity and Magnetism* (Oxford University Press, Oxford, 1892), v. 2.
- [2] F.E. Terman. *Radio Engineers Handbook*. 1st ed. (McGraw-Hill, NY., 1943)
- [3] M.V. Narykova, A.A. Levin, N.D. Prasolov, A.I. Lihachev, B.K. Kardashev, A.G. Kadomtsev, A.G. Panfilov, R.V. Sokolov, P.N. Brunkov, M.M. Sultanov, V.N. Kuryanov, V.N. Tyshkevich. Crystals, 12, 166 (2022). https://doi.org/10.3390/cryst12020166
- [4] В.Г. Кульков, В.Н. Тышкевич, В.Н. Курьянов, М.М. Султанов, М.В. Нарыкова, А.Г. Кадомцев, Н.Д. Прасолов, П.Н. Брунков, А.И. Лихачев, Р.В. Соколов, А.А. Левин. Надежность и безопасность энергетики, 14, 189–195 (2021). https://doi.org/10.24223/1999-5555-2021-14-4-189-195
- [5] J.A.M.B. Faria, M.S. Raven. Progr. Electromagn. Res. M, 31, 29 (2013). https://doi.org/10.2528/PIERM13042405
- [6] M.S. Raven. Acta Technica, 60, 51 (2015).
- [7] R.A. Serway. *Principles of Physics* (Saunders College Pub, London, 1998)
- [8] E.F. Northrup. Methods of Measuring Electrical Resistance. VI: The Measurement of Low Resistance (McGraw-Hill, NY., 1912)
- [9] J.T. Black, R.A. Kohser. Materials and Processes in Manufacturing (John Wiley & Sons, Inc, USA, 2008)