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Introduction

Resonant tunneling (RT) is a quantum wave effect of

total resonant transmission of particles through structures

that have two or more strongly reflecting elements, between

which particles move almost freely [1–7]. In this case,

in the vicinity of the reflecting element, the waves are

evanescent. In fact, RT means such interference of reflected

waves, in which the total reflection coefficient R equals zero.

When modeling RT, 1D structures are considered and

the momentum of particles in the direction of motion

is taken into account, i. e., one-dimensional problems are

solved. RT began to be used over 50 years ago in

solid-state resonant tunneling diodes and resonant tunneling

transistors [6–21], in which a quantum heterostructure

was created that forms two or more potential barriers for

tunneling electrons, separated by a region or several regions,

which are sometimes referred to as quantum wells. Such a

heterostructure is made from nanoscale layers of wide-gap

and narrow-gap semiconductor, e.g., AlxGa1−xAs and GaAs

with ohmic contacts on the GaAs cathode and anode. The

energy bottom of the well must be lower than the energy

of incident electrons, and in this case, the formation of

metastable levels in the well is possible. The quantum

potential configuration can be controlled by doping. In solid-

state structures, charge carriers are understood as quasi-

particles with a certain effective mass µ, i. e. holes can also

be considered, and the simplest form of such a quantum

potential V (z ) can have two rectangular barriers counted

from the zero level, separated by a region with zero

potential. Since particles with mass µ have wave properties,

and their motion obeys the Schrödinger equation (SE)
with wave function ψ(z ), they can be assigned momen-

tum p = ~k and wavenumber k =
√

2µ(E−V (z ))/~ = iκ,
and the motion can be described by wave admittance

η(z ) = −iψ′(z )/ψ(z ) = k , since the wave function and its

derivative must be continuous everywhere. The condition

R = 0 in the case of two identical rectangular barriers leads

to the equation [22]:

tan(ktW ) tanh(κtB) = − 2i η̃
1 + η̃2

=

√
V/E − 1

1− (1/2)V/E
. (1)

At V/E > 1, this complex transcendent equation can

have complex roots, corresponding to the RT energy

levels. Here tB denotes the barrier (depleted region)
size,tW is the well size,V is the rectangular barrier height,

and η̃ = η(V )/η(0) is the ratio of wave admittances.

Hereinafter the tilde denotes normalized quantities. In a

symmetric structure, there is a similar back current (flux) of
electrons. Asymmetry arises upon the application of anode

voltage. The RT is also possible for the motion through two

potential wells (V < 0) [20].
There is a direct analogy between the stationary SE and

the Helmholtz wave equation in electrodynamics, i.e., be-

tween tunneling of electrons and photons [22–25]. Namely,

the propagation of a plane wave through the space with

permittivity ε(z ) is equivalent to the motion of an electron

in a potential field V , if we take into account the relation

k2
0ε(z ) = 2meE

(

1−V (z )/E
)

/~2, from which we conclude

that there is a correspondence ε(z ) = 1−V (z )/E to the

motion of a plane electromagnetic wave in the direction

of the z -axis. Therefore, the absence of the potential corre-

sponds to the motion of a photon in vacuum (ε = 1), the
condition V (z )/E > 1 (tunneling) means ε(z ) < 0, which

corresponds to the photon motion through a collisionless

plasma, and the condition V (z )/E < 1 corresponds to

the over-barrier (V > 0) and over-well (V < 0) motion.

These two cases correspond to conditions 0 < ε(z ) < 1

and ε(z ) > 1, (plasma above the plasma frequency) and

(dielectric). The condition ε ≈ 1 can be fulfilled in a low-

dissipation plasma; in electrodynamics, it corresponds to
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waves in ENZ (epsilon-near-zero) media [26]. In quantum

mechanics V (z ) = E corresponds to a singular point. It

is important to note that the RT can be total in the

absence of dissipation, which is so in quantum mechanics

due to the conservation of the number of particles. In

electrodynamics, this requires neglecting the absorption of

photons. It should be also kept in mind that a photon with

energy ω~ in a medium is a quasiparticle (quasiphoton)
with a different momentum; in particular, in a plasma

an imaginary momentum should be attributed to it. The

strongly expressed resonance structure (RS) for a photon

arises when there are two sharp plasma layers, separated

by a vacuum or dielectric gap. For the electron, this is

an analog of the potential with two humps separated by a

potential well. Another resonant structure can have the form

of two dielectric plates with high permittivity separated by

a vacuum gap or a low-permittivity layer. In optics, both

structures are open resonators, whose radiative Q factors

are the higher, the higher is the reflection from the layers

(plates). However, in the second case one should speak of

resonant transmission rather than of resonant tunneling. The

reflection depends on the thickness of the layers and on the

difference of the permittivity from one. That is why under

the condition 0 < ε < 1 plasma layers are low efficient for

the formation of sharp resonances. In cold plasma, it is

difficult to produce layers with sharp boundaries. A possible

exception can be the case of placing plasma in glass vessels

with thin planar walls. It is easier to implement plasma using

metallic or semiconductor layers; in this case, the layers

can be made to have the thickness from a few nanometers

to rather high values. A radical reduction of losses is

possible through using cryogenic temperatures. Making

RSs with high-permittivity layers is limited by the choice

of materials, the anisotropy of their permittivity, and the

dissipation. For example, semiconductor materials with the

permittivity above 10, as a rule, have high losses. For a

dielectric layer η̃ =
√
ε, and for a plasma layer η̃ = i

√

|ε|,
therefore, Eq. (1) is valid in these cases, too. However, in

optics structures of two layers separated a dielectric payer

are more practical. This changes the wave admittances ratio;

the left-had side of Eq. (1) should be taken in the form

tan(k0tW
√
εW ) tanh(k0tB

√

|εB |). Here εB < 0 corresponds

to the permittivity of plasma. For εB > εW we should make

the replacement tanh(k0tB

√

|εB |) → −i tan(k0tB
√
εB).

1. Multilayered tunneling RSs
with metal-dielectric layers

For tunneling photons it is reasonable to

consider diffraction of a plane electromagnetic wave

E = e0E0 exp(−ik0z ), H = z0e
√
ε0/µ0E0 exp(−ik0z ), by

a multilayer dissipation-free RS, e0 = x0. For a wave

incident at angle in the plane θ (x , z ) one should use

the dependences exp(−ikz z−ikx x), kz =
√

k2
0 − k2

x , and

the polarization direction e0 = x0 cos(ϕ) + z0 sin(ϕ) or

e0 = (x0kz + z0kx )/k0, since in this case an E-wave

is considered. For this wave the normalized medium

admittance is ỹ e =
√
µ0/ε0Hy/Ex = k0ε/kz . For the other

polarization ỹh = kz /k0. Below we present expressions for

normally incident wave. The results for arbitrarily incident

wave are obtained by the abovementioned replacements.

We consider symmetric RSs It is in these structures that

the total RT is possible in the absence of dissipation. Total

RT means zero reflection coefficient. Partial RT may mean

that there are frequencies at which a minimum of power

reflection coefficient |R|2 is reached, which is nonzero even

when there is no dissipation. Let us consider a five-layered

symmetric RS. To calculate it, we may use the normalized

transfer matrix of a layer

ân =

[

cos(k0t
√
εn) i η̃−1

n sin(k0t
√
εn)

i η̃n sin(k0t
√
εn) cos(k0t

√
εn)

]

, (2)

which involves the normalized wave admittances η̃n,

and the total five-layer RS transfer matrix. However, in

dissipation-free RS it is convenient to use the transformation

of wave admittances:

ỹ in
n = ỹn

ỹ in
n+1 + i ỹn tan(k0tn

√
εn)

ỹn + ỹ in
n+1 tan(k0tn

√
εn)

. (3)

Here ỹ in
n are the normalized admittances transformed to

the planes of the layers and ỹn are the normalized wave

(medium) admittances of the layers. In the case of three

identical plasma layers separated by two dielectric layers,

we have a characteristic equation in the form (4) and (5):

ỹ i3 =
−η̃itgth + i η̃2(1 + itg + t2h) + η̃3th(2 + itg) + η̃4tg t2h

tgt2h − η̃th(2 + itg) + i η̃2(1 + itg + t2h) + i η̃3tg th
,

(4)

ỹ i3 =
itg th + η̃(1− tg) + i η̃2th

−th + η̃(1− tg) + η̃2thtg
. (5)

For simplicity, they are derived by transformation of

the Eq. (3) type from two external boundaries to one

internal. In these relations the following notations are used:

tg = tan(k0tε
√
ε), th = tanh(k0td

√

|εm|), η̃ =
√

|εm|/εd , tε
and td being the thicknesses of the layers. The equation

determines the complex resonance frequencies. At all

other frequencies 0 < |R|2 < 1. Similar relations for

symmetric structures can be obtained from the following

considerations. A symmetric structure must have an odd

number of layers N = 2M + 1, n and N−n, layers and being

similar, n = 1, 2, . . . ,M = (N−1)/2. This means that in

the center of the layer with the number n = (N + 1)/2
there is ether magnetic or electric wall. Transforming the

unit admittance ỹN+1 = 1 of vacuum by means of Eq. (3)
to the layer boundary and then to the layer center, we have

as well as conditions,

ỹ in
M+2 = ỹM+2

ỹ in
M+3 + i ỹM+2 tan(k0tM+2

√
εM+2)

ỹM+2 + i ỹ in
M+3 tan(k0tM+2

√
εM+2)

,

ỹ in = ỹM+1

ỹ in
M+2 + i ỹM+1 tan(k0tM+1

√
εM+1/2)

ỹM+1 + i ỹ in
M+2 tan(k0tM+1

√
εM+1/2)

,
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as well as conditions

tan(k0tM+1

√
εM+1/2) = i(ỹ in

M+2/ỹM+1)
ν ,

where ν = 1 corresponds to a magnetic wall and ν = −1

to an electric wall. These are again implicit transcendent

equations. It should be noted that when considering the

wave incidence different from normal with the longitudinal

components of the wave vectors kz n =
√

k2
0εn−k2

x and

the transverse component kx , the same equations describe

plasmon polaritons moving along the x -axis in the multilayer

structure [27].

2. Multilayer dielectric RS

Consider a dielectric plate with the thickness td and

permittivity εd > 1. It is well known that such a plate

is transparent at half-wave thickness td = λ
√
εd/2. The

corresponding condition of zero reflection has the form,

1 + i
√
ε tan(k0td

√
εd)

1 + i tan(kdtd
√
ε)/

√
εd

= 1,

or tan(k0td
√
ε) = 0, which yields the frequencies of trans-

parency ωn = nπc/(td
√
ε), n = 1, 2, . . .. If such a plate is

overlaid on the left and on the right by two other identical

plates with a different permittivity, then we obtain a RS,

which is described by the same Eq. (1) taking into account

the indicated correspondence. We will rewrite Eq. (1),
denoting the parameters of the outer plates by index 1,

and the inner plate by index 2. The transformation of

the unit (normalized) vacuum admittance by the first plate

yields

ỹ1 =
1 + i

√
ε1 tan(k0t1

√
ε1)

1 + i tan(k0t1
√
ε1)/

√
ε1
. (6)

The transformation by the second plate yields

ỹ2 =
ỹ1 + i

√
ε2 tan(k0t2

√
ε2)

1 + i ỹ1 tan(k0t2
√
ε2)/

√
ε2
. (7)

After the transformation by the third plate we get .

ỹ3 =
ỹ2 + i

√
ε tan(k0t1

√
ε1)

1 + i ỹ2 tan(k0t1
√
ε1)/

√
ε1

= 1.

We set it equal to one to fulfil the condition of the absence

of reflection. Therefore

ỹ2 =
1− i

√
ε tan(k0t1

√
ε1)

1− i tan(k0t1
√
ε1)/

√
ε1
. (8)

Comparing with Eq. (7), we find

ỹ1 =

1− i
√
ε tan(k0t1

√
ε1) − i

√
ε2 tan(k0t2

√
ε2)

×[1− i tan(k0t1
√
ε1)/

√
ε1]

1− i tan(k0t1
√
ε1)/

√
ε1 − [1− i

√
ε tan(k0t1

√
ε1)]

×[i tan(k0t2
√
ε2)/

√
ε2]

.

(9)

Finally, comparing with Eq. (6), we arrive at the desired

characteristic equation. It is rather cumbersome, but

can be simplified. For this purpose, it is necessary to

convert tan(k0t2
√
ε2) to the tangent of half the argument.

We will not make calculations, but we will obtain two

equations for the quantity x = tan(k0t2
√
ε2/2), into which

the resulting quadratic equation for x decomposes. Namely,

the imposition of magnetic and electric walls at the

center of the RS leads to the equations ỹ1 + ix
√
ε2 = 0

and 1 + i ỹ1x/
√
ε2 = 0, i.e. e. x = i

(

ỹ1/
√
ε2

)±1
, where plus

corresponds to the magnetic wall and minus to the electric

one. The physical nature of the resonances obtained for

and ε1 ≪ ε2 and ε1 ≫ ε2 is different, since the reflections

of the partial waves with two directions inside the second

plate upon their incidence on its boundaries are different.

Particularly, they differ in phase. The case ε1 ≪ ε2 is close

to the considered single plate, especially if t1 ≪ t2. The case
ε1 = ε2 corresponds to a shift of the resonances to lower

frequency compared to a single plate due to the actual path

length increase by 2t1, and the case ε1 ≫ ε2 upon a certain

ratio of the thicknesses can implement the mode of nearly

standing waves with nodes at the boundaries of the plates.

To obtain high-Q resonances, the permittivities of the layers

should strongly differ. If we increase the number of layers to

five, there will be a doublet instead of each resonance peak.

A multilayer symmetric RS creates several frequency peaks.

At large number of layers, these peaks transform into a

transmission band of a corresponding photonic crystal. The

RS operas like a bandpass filter with transmission bands and

stop bands.

3. RS as a photonic crystal

It is possible to describe a RS with n periods d = t1 + t2
with the transfer matrix â = ĉn = (â (1)â (2)), where the

transfer matrices for the layers are introduced. However,

such matrix describes a structure with an even number

of layers. For the RS the total matrix should be used

b̂ = â â (1). Then the problem is solved in such a way:

1 + R = b11T + b12T , 1−R = b21T + b22T , T = 2/(b11 +
+b12 + b21 + b22), and for the normalized input

wave admittance we get y in = (1−R)/(1 + R) =
= (b21 + b22)/(b11 + b12). The characteristic equation

has the form or y in = 1 or R = 0. Here all quantities are

normalized. We have b1 = a11a
(1)
11 + a12a

(1)
21 and analogous

expressions for the rest elements of the total matrix. It is

convenient to express the matrix elements â of in terms of

Chebyshev polynomials using recurrent formulae. Let us

denote X = (c11 + c22)/2. Then the dispersion equation

for the dispersion of a Bloch wave in an infinite photonic

crystal (PC) takes the form

cos(kBd) = X . (10)

For the first Brillouin zone −π < kBd < π

and −1 < X < 1. In the bandgap, the wave number

Technical Physics, 2023, Vol. 68, No. 4



10th International Symposium on Optics and Biophotonics 465

kB = iκB is imaginary, i. e. cosh(κBd) − X > 1. At the band

boundaries X = ±1. Resolving Eq. (10) in terms of arcco-

sine or logarithm, we have ϕB = kBd = arccos(X) + 2nπ
or ϕB = kBd = ±i ln(X−

√
X2−1) + 2nπ, i. e., the Bloch

waves can be presented in the form exp(∓ikBz ). Inside the

PC the waves can be presented as

Ex = A+ exp(−ikBz ) + A− exp(ikBz ),

Hy =
√

ε0/µ0kB/k0[A
+ exp(−ikBz )−A− exp(ikBz )].

These waves should be matched with the incident wave

Ex = exp(−ik0z ) + Re x p(ik0z ),

Hy =
√

ε0/µ0[exp(−ik0z )−Re x p(ik0z )]

These waves should be matched with the incident wave,

and with the transmitted wave Ex = T exp
(

−ik0(z−l)
)

,

Hy =
√
ε0/µ0T exp

(

−ik0(z−l)
)

, where l is the total length

of the structure. However, for a symmetric RS, the first

layer should also be placed in front of it before the incident

wave. This complicates the calculation. In addition, we

must also solve Eq. (10) and determine dispersion kB(k0).
Such matching is reasonable in the case of a large number

of periods. The transfer matrix method is more general and

convenient. However, the determination of band boundaries

based on Eq. (10) is convenient for synthesizing RSs with

a given band. The PC-based description begins to work

well at n ≥ 40. The synthesis of a structure with given

band can be performed based on the conditions X = ±1,

and then using the transfer matrix algorithm to calculate

the parameters R and T of the ultimate structure. If the

losses can be really ignored, a better and faster method is

to recalculate the wave admittances or impedances, since

the transfer matrix method may be unstable. In this

case, transparency D = |T |2 = 1−|R|2 can be determined

through the reflection coefficient.

Another approximate possibility of analyzing the pas-

sage of photons through quasi-periodic layered structures,

the photonic crystals, can be based on homogeniza-

tion [28,29]. According to Rytov, homogenization in this

case is quite simple, and it is possible both without

taking into account spatial dispersion and with it [29].
Weak dissipation can lead to almost total transmission,

while it strongly depends on the angle of incidence if the

anisotropy axis of the metamaterial is rotated relative to

the normal [29,30]. There are a number of misconceptions

regarding the tunneling of photons through a PC regarding

the time and rate of tunneling [23–25]. This is especially

true for tunneling through band gaps, and not only in PCs. It

was noted above that what propagates are quasi-particles —
quasi-photons, determined by the collective interactions of

photons and atoms. Their momentum may be imaginary.

To determine the speed of movement and the time of

tunneling, one cannot use interference measurements, which

often show superluminal speeds. Strictly, the rate of such

motion can be defined as the rate of energy transfer by a

quasi-monochromatic wave [24,25].

4. Permittivity dissipation and dispersion

Dissipation is related to the dispersion of permittivity,

however, for purely dielectric RSs with highly transparent

layers dispersion is usually weak, so that dissipation plays

the main role. Below we demonstrate that a weak

dissipation below 0.01 has practically no effect on the RT.

Substantial reduction of RT is possible due to the dissipation

above the level of 0.01. In metallic layers the frequency

dispersion is very strong, and in the low-frequency region

(below ωc) a strong skin effect takes place with complex

waves, strong dissipation and partial waves weakly changing

in amplitude in the metallic layers as thick as a few

nanometers. The main band-stop effect at low frequencies is

due to reflection, and attenuation weakly contributes to the

band-stop effect. In the plasmonic region (ωc ≪ ω < ωp)
the waves are evanescent and possess weak dissipation.

In all cases the deceleration of waves strongly increases with

a decrease in frequency and the penetration depth is always

greater than 100 nm [31]. In a dissipative structure, there

can be no total transmission (the number of photons is not

conserved). Correspondingly, there is not total RT. This is

the key distinction from the RT in quantum mechanics,

where the number of particles is conserved. For RSs

with transparencies close to unity, it is necessary to reduce

losses in all possible ways. For metallic layers as thick

as 10−20 nm and more, it is still possible to use the

permittivity of a bulk metal sample. Except in the UV

range, the permittivity of a metal is well described by

the Drude−Lorentz formula, where the Lorentz term εL
is constant and real:

εm = ε′m − iε′′m = εL − ω2
p/(ω

2 − iωω0c). (11)

The quantity εL determines the short-wave, optical and

UV properties of the metal, and in the range of our

interest it is real and has the order of 10. We will

determine the plasma frequency ωp in Eq. (1) from the

concentration of charge carriers and the collision frequency

ω0c and εL from the DC conductivity σ0 = ε0ω
2
p/ωc and

the condition of passing zero ε′m. Considering resonance

frequencies in the Lorentz term is important in the UV

region, where one should take into account the electron

interband transitions and the transitions between atomic

energy levels. For our purposes, it is quite sufficient to

take this term constant. So, for silver we can take εL = 9.3,

ωp = 1.57 · 1016 Hz, ω0c = 3.56 · 1013 Hz, and for copper

εL = 13.09, ωp = 1.65 · 1016 Hz, ω0c = 5.41 · 1013. Here

and in Eq. (1), the collision rates are presented for room

temperature T̃0 = 300K. In the case of an arbitrary tem-

perature T̃ for pure metals, there is a good correspondence

between the dependence on temperature: ωc = ω0c T̃/T̃0.

The results of calculating the absolute value of the

transmission coefficient of quasi-periodic metal-dielectric

structures with many periods are shown in Figs. 1. Results

using homogenization are also presented there. As can be

seen, they correspond well to a rigorous calculation. The

0 Technical Physics, 2023, Vol. 68, No. 4
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1
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3

500 1500 2500 3500 4500 5500 6500

λ, nm

–310

–410
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–710

–810

–910

Figure 1. Absolute values of transmission coefficients as functions

of wavelength based on homogenization (dashed curves) and on a

rigorous model (solid curves) for a structure with tm = td = 10 nm,

22 periods, and a thickness of 440 nm. 1 — normal incidence,

2 — incidence of an E mode, 3 — incidence of an H mode (the
incidence angle is π/4).

presented structure is transparent in the UV and short-

wavelength part of the optical range. For transparency in

the entire optical range, the number of periods should be

reduced, and the thickness of the dielectric layers should be

increased. Figure 2 presents the frequency characteristics of

the transparency D = |T |2 and reflection coefficient absolute

value |R| for a RS with two and three metallic layers

separated by vacuum gaps. Curves 1 and 4 are presented

for temperatures in 1K. Curves 2 and 5 with symbols show

the effect of room temperature. In the frequency range

considered, for the used ratio ω0c/ωp ∼ 0.001 a decrease

in temperature below the room one has practically no effect

on the result. There is an expressed high-frequency region

with numerous RT frequencies, which sharply transits to

the region of strong screening in the IR range, when the

transparency falls by a few orders of magnitude.

Figure 3 presents analogous results for an RS in the

form of metallic layers separated by dielectric layers. No

dielectric losses were taken into account. Figure 4 illustrates

the calculation of dielectric RSs with and without the

dielectric losses in them taken into account. The permittivity

dispersion was not considered. Dielectric losses below

ε′′d /ε
′
d = 0.01 practically do not affect the transmission. For

simplicity, they were taken the same for all layers. Figure 5

demonstrates the effect of the incidence angle of p-polarized
wave for a three-layered metal-dielectric RS. An increase in

the incidence angle leads to a slight decrease in the band-

stop effect in the IR region. The considered dependences

on the incidence angle at fixed frequencies show resonances

that correspond to the excitation angles in the system of

surface plasmon polaritons. In all cases in the optical range,

the resonant behavior is strongly expressed, whereas in the

IR range the transparency tends to zero with an increase

in the wavelength. The Table shows the effect of dielectric

losses on the complex resonance frequencies of an open

D
, 

|R
|

1

2

3

λ, nm

010

–410

–510

–610

–710

–810

–910

–310

–210

–110

310 410

4

5

6

Figure 2. Dependences of D = |T |2 (curves 1–3) and |R| (4–
6) on the wavelength (nm) for a tunnel RS with three 20 nm

thick silver layers separated by vacuum gaps 150 (curves 1, 2, 4, 5)
and 50 nm (3, 6). Curves 1, 4 are plotted for T̃ = 1K, the rest

curves for T̃ = 300K.

D
, 

|R
|

1

2

3

λ, nm

010

–410

–510

–610

–710

–310

–210

–110

310 410

4

5
6

Figure 3. Dependences of E = |T |2 (curves 1–3) and |R|
(curvescurves 4–6) on wavelength (nm) for tunnel RT at room

temperature with three (1, 2, 4, 5) and two (3, 6) silver layers 10 nm
thick separated by a dielectric ε + d = 3 with thicknesses

50 nm (1, 3, 4, 6) and 150 nm (2, 5).
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Resonance frequencies ωn = ω′

n + iω′′

n (THz) and Qn = ω′

n/(2ω
′′

n )
factors for a five-layered dielectric RS, corresponding to the curves

in Fig. 4

Number of resonance n ω′

n ω′′

n Qn

ε′′n /ε
′

n = 0

1 3170.2 18.54 85.5

2 5850.4 17.08 171.3

ε′′n /ε
′

n = 0.01

1 3160.4 34.28 46.09

2 5848.3 46.31 63.14

ε′′n /ε
′

n = 0.1

1 3168.6 177.02 8.95

2 5835.1 308.73 9.45

D
, 

|R
|

1

2

3

λ, nm

010

–310

–210

–110

310 410

4

5

6

8

7

Figure 4. Transparency D (curves 1–4) and modulus

|R| (5–8) for a three-layer dielectric RS (curves 1–3, 5–7) for

t1 = t3 = 10 nm, t2 = 20 nm, ε′1 = ε′3 = 9, ε′2 = 3 and five-layer

dielectric RS (4, 8) at t1 = t3 = t5 = 10 nm, t2 = t4 = 20 nm,

ε′1 = ε′3 = ε′5 = 9, ε′2 = ε′4 = 3 and ε′′n /ε
′

n = 0 (curves 1, 4, 5, 8),
ε′′n /ε

′

n = 0.01 (2, 6), ε′′n /ε
′

n = 0.1 (3, 7).

five-layered dielectric resonator. The losses substantially

reduce the Q factor, if 1/Q is comparable with them. If

the losses are still greater, the RT virtually vanishes.

The high intrinsic Q factor is inversely proportional to the

spectral linewidth and is associated with a long energy level

lifetime. In other words, to establish such oscillations in

the case of excitation, a long time is needed, substantially

exceeding 2π/ω0. A photon is defined by a monochromatic

wave, for which the transit time is not defined. Such a wave

D
, 

|R
|

1

2

3

λ, nm

010

–510

–210

–110

310 410

4

5

6

–410

–310

Figure 5. Dependence of the transparency of D (curves 1−3)
and |R| (2–6) on the wavelength (nm) for a three-layer tunnel RS

with two silver layers tm = 10 nm and a dielectric layer εd = 3,

td = 50 nm at different angles of incidence: 0 (curves 1, 4),
π/4 (2, 5), π/3 (3, 6).

is a stream of photons with the same energy ~ω0, where the

localization of each is not defined. Only the energy density

per unit volume and, accordingly, the density of the photon

flux can be introduced. For a quasi-monochromatic wave

with a narrow spectrum 1ω = |ω−ω0| ≪ ω0, containing

mainly photons with the frequencies close to ω0, it is

possible to speak about approximate transit time of photons

with the frequency ω0 through the RS. Rigorously, the

duration of wave packet tunneling is determined by the

energy transfer with averaging over the spectrum [23].

Obviously, the result for photons with the given frequency

will be the more accurate, the narrower the spectrum.

Clearly, the tunneling time cannot be shorter than the

lifetime of the resonant energy level, i. e., the time required

for establishing the oscillation in the structure. This is also

true for the tunneling through the allowed bands of PC.

These bands should form due to multiple reflections, which

takes certain time. Such behavior is demonstrated by, e.g.,

the finite difference time domain (FDTD) electrodynamic

modeling packages: a rather weak (precursor) signal at

the output of RS with the length d appears in time after

the approach of the wave packet front edge τ = d/c , and
then after a large enough transient time the signal becomes

amplified and nearly harmonic. Upon tunneling through

a bandgap, the signal appeared after the time τ is begins

to be gradually suppressed. This again testifies that the

tunneling of photons is a collective multiphoton effect of

their interaction with matter.
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5. Using tunneling RSs for IR screening
of window panes

Window glasses are currently subject to very high

requirements of a different nature [32]. One of the most

important requirements is the property not to transmit

infrared radiation and to transmit the entire visible range.

This is due to the fact that the walls of buildings practically

do not transmit infrared radiation, but window panes

transmit it very well. At room temperature T0 about

300K, thermal radiation inside a building can with good

approximation considered equilibrium Planck radiation, i. e.

equivalent to the ideal blackbody radiation. If the room

temperature is T̃0 = 27◦C and the temperature outside

is T̃ = −23◦C, then for the temperature difference of

50◦ the heat flux through the windows from the building

is rather high (394W from a square meter without

taking into account the small absorption in the glass). If

in summer the outside temperature is T̃ = 37◦C, then

the temperature difference will be ten degrees and the

corresponding flux is also essential. The maximum density

of thermal radiation is up = ~ω3 f FD(ω, T̃ )/(π2c3), where

f FD(ω, T̃ ) = [exp
(

~ω/(kBT̃ )
)

−1]−1 is the Bose−Einstein

function. If the area of the windows is S, then the

energy flux per second through almost transparent

window glasses equals P = σSB
(

(̃T )4−T̃ 4
0

)

W. Here

is the Stefan−Boltzmann constant. Here σSB is the

Stefan−Boltzmann constant. The flux maximum at

temperatures 300 ± 500K lies in the wavelength range

from 8.27 µm to 11.59µm, i. e. in the middle of the IR

range. Therefore, the problem is to screen the IR range

with the maximum screening at wavelengths about 10µm,

keeping the transmission high enough in the visible range.

The use of only dielectric layers in this case is not efficient,

since ensuring the resonant transmission at short optical

wavelengths we will not achieve band-stop effect of long

IR waves. Metals reflect electromagnetic radiation well.

In optics, thin layers of metal as thick as a few nm are

semitransparent. There are many publications on layered

photonic structures (see, e.g., [33–35] and references

therein). However, there are few publications on RT of

photons in metal-dielectric structures. Refs. [36,37] consider
multilayer screens with such films and alternating dielectric

layers, e.g., made of SiO2. They can be fabricated on

glass with a thickness of several mm. Then the problem

is to synthesize the optimal structure of such a coating on

glass. In this case, strong suppression of IR radiation is

possible while maintaining good transparency in the optical

range [36,37]. In the microwave range, as the wavelength

increases, transparency also improves, which, for example,

is important for cellular communications. However,

technologically it is difficult and expensive to make such

a multilayer coating. Window glass with a thickness of

several millimeters can be symmetrically coated with RS

on both sides. Another way is to cover one side of the

glass and then cover it with another glass of the same type,

i. e. perform an RS in the center of the double pane. This is

a more expensive technology. It is cheaper, but less efficient,

to perform non-symmetrical coatings. The cheapest way is

to introduce metal nanoparticles into glass to a certain depth

(see, e.g., [32]). It can be done by introducing nanoparticles

into the glass melt and depositing a thin layer of the melt on

the base glass. In this way, several layers can be fabricated

hundreds of nanometers thick. The effective permittivity of

such layers can be estimated using the Bruggeman formula

(see [29]), or based on the simple homogenization formula

ε
e f
⊥

= cmεm + (1−cm)εd . Here cm is the concentration of

metallic particles. For layered structures, this formula is

more accurate than Bruggeman’s one. It corresponds to the

fact that the depth of penetration into the metal is much

smaller than the size of the nanoparticles, i. e. the field

inside them is uniform and has a dipole character [31].
Accordingly, for the polarization of particles, we can write

Pm = cmε0(εm−εd)E. Taking into account that P = Pm + Pd ,

Pd = (1− cm)ε0εdE, we get the above relation. Note that

the Bruggeman formula corresponds to the above one for

planar layers after introducing depolarization coefficients

(factors) into it. Such a multiphase formula has the form

n
∑

j=1

c j
ε

e f
α − ε j

ε
e f
α + Lα(ε j − ε

e f
α )

= 0, α = x , y, z . (12)

For planar layers Lx = Ly = 0, Lz = 1, we immediately

get Rytov’s homogenization [28,29]: ε
e f
⊥

= c1ε1 + c2ε2.

By introducing metal cylindrical particles with magnetic

properties in the presence of magnetic fields in the glass,

it is possible to control their orientation along the field

when the glass layer is solidified and to create optically

anisotropic structures. They transmit better in the direction

of particle alignment, i. e., not upon the normal incidence,

but when the anisotropy axis is rotated with respect to the

normal and the wave is incident along this axis [29,30]. The
effect of somewhat of jalousie arises. In this case, the tensor

of effective permittivity can be obtained based on Eq. (12)
using a rotation matrix [30]. Note that the Garnett formula is

not applicable for metal particles [38]. It leads to resonances

of the localized plasmon type in the frequency region,

where εm = −2εd , i. e., at frequencies ω ≈ ωp/
√
εL + 2εd .

In this case, ε′e f changes the sign. Figure 4 presents the

comparison of results obtained using Eq. (12) for spherical

particles and for layers with the results obtained using the

above formula for ε
e f
⊥
. The negative real part of permittivity

follows from Bruggeman formula upon exceeding the

percolation threshold, i. e., a strong saturation of glass with

metallic particles is necessary. In reality, this is an overstated

requirement. Note also that the Bruggeman formula works

worse in the vicinity of the percolation threshold and should

be used at high concentration cm > 1/2. A usual 4mm-

thick window glass is 12 600 wavelengths thick for a

medium-wavelength, say, green light. This means that the

power reflection |R|2 in the optical range rapidly changes

from zero to 0.07 within a small frequency region, i. e., there

are many frequencies of total tunneling. They are also many
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in the IR range, but they are sparser. In this range, the losses

in the glass should be taken into account. The RS implemen-

tation on a glass leads to the superposition of such minor os-

cillations on strongly expressed resonances with substantial

band-stop effect in the IR range. We did not take into ac-

count dispersion and glass losses in the IR range. Compared

to the effect of metallic RS, this is a weak effect. Near IR

(NIR) and short-wave IR (SWIR) radiation are well trans-

mitted through a usual window glass. The medium wave

IR radiation is absorbed stronger. In principle, these effects

can be taken into account, but their contribution is minor.

Conclusion

The structures that almost totally transmit photons with

certain frequencies, i. e., implement RT, are considered.

The total RT is related to negligibly small losses, which

can be reached in at ultralow temperatures. The RT is

due to complex resonance eigenfrequencies and it is the

closer to total tunneling, the higher is the Q factor of

the open resonator, corresponding to the RS. For simplest

RSs, we present the characteristic equations that determine

such frequencies. Their derivation is analogous to the

determination of dispersion for surface plasmon polaritons

in the structure and requires the iterative solution of

characteristic equation. It is interesting to note that in

both case the condition for the existence of solutions is

zero reflection coefficient. The difference is that in the first

case we find complex frequencies from given real wave

vector components of the incident wave, whereas in the

second case we find complex values of the wave vector in

vacuum from given real frequencies. These complex values

of the vacuum wave vector determine the wave type: it

can be an inflowing surface or outflowing (anti-surface)
wave [39,40]. Upon the frequency change, a transition from

one type of the wave to another is possible. In the case of

inflowing wave, the energy is transferred from vacuum to

the structure and absorbed. In the case of outflowing wave,

the accumulated energy is radiated into vacuum, therefore,

the wave decays in the longitudinal direction even in the

absence of dissipation. The frequency of the transition

determines the surface wave cutoff and corresponds to

propagation with the speed of light. It is interesting to note

that for a loss-free semispace this condition corresponds to

the Brewster condition [39]. We considered the simplest

case of normal incidence. In the case of E or H waves

((p polarization or s polarization) the difference is only in

the change of wave impedances of admittances, which will

include the vector components tangent to interfaces. An

increase in the number of layers leads to an increase in the

number of resonant transmission peaks, i.e., to the formation

of a transmission band. In this way, the transition to

a photonic crystal structure is implemented. In RSs with

a large number of periods, the calculation methods based

on homogenization are considered. It should also be noted

that Hartmann’s paradox [41] does not hold in the structures

under consideration [23–25].
The application of RSs is demonstrated by an example

of window glass screening, which allows reducing the

transmission of thermal radiation by several orders of

magnitude, while in the visible range the RT is achieved.

Manufacturing of the appropriate coatings by implanting

metallic particles into glass layers and determining the

effective permittivity of such layers are considered. Under

the action of waves incident at various angles, the excitation

of surface plasmons is possible in the coatings considered.

This means that when considering these surfaces at different

angles in the reflected light in the optical and IR ranges,

glares of different colors (frequencies) that change when

changing the angles should be observed.
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