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The luminescent properties of core-shell quantum dots are being exploited in an unconventional solar concentrator
which promises to reduce the cost of photovoltaic electricity. Luminescent solar collectors have advantages over
geometric concentrators in that tracking is unnecessary and both direct and diffuse radiation can be collected.
However, development has been limited by the performance of luminescent dyes. We present experimental and
theoretical results with a novel concentrator in which the dyes are replaced by quantum dots. We have developed
a self-consistent thermodynamic model for planar concentrators and find that this three-dimensional flux model
shows excellent agreement with experiment.

1. Introduction

The luminescent planar solar concentrator [1] was ori-
ginally proposed in the late 1970 s. It consisted of a trans-
parent sheet doped with appropriate organic dyes. Sunlight
is absorbed by the dye and then re-radiated isotropically,
ideally with high quantum efficiency and trapped in the
sheet by internal reflection. A stack of sheets doped with
different dyes [1] can separate the light, as in Fig. 1, and
solar cells can be chosen to match the different luminescent
wavelengths to convert the trapped light at the edge of the
sheet.

Advantages over geometric concentrators include that
expensive solar tracking is unnecessary and that both direct
and diffuse radiation can be collected. However, the
development of this promising concentrator was limited by
the stringent requirements on the luminescent dyes, namely
high QE, suitable absorption spectra and red-shifts and
stability under illumination [2].

2. The quantum dot concentrator (QDC)

We have recently proposed a novel concentrator [3] in
which the dyes are replaced by quantum dots (QDs).
The first advantage of the QDs over dyes is the ability
to tune the absorption threshold simply by choice of dot
diameter. Secondly, high luminescence quantum efficiency
has been observed. CdSe/CdS heterostructure dots have
demonstrated luminescence quantum yields above 80% at
room temperature [4]. Thirdly, since they are composed
of crystalline semiconductor, the dots should be inherently
more stable than dyes.

The disappointing results obtained with dye concentrators
were probably mainly because of re-absorption, which was
considered, but not modelled at the time of the original
calculations [1]. Therefore, in [3] we have argued that
there is a further advantage in that the red-shift between
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absorption and luminescence is quantitatively related by the
thermodynamic model to the spread of quantum dot sizes,
which can be determined during the growth process [5].
The ability to limit the overlap between the luminescence
and absorption by the choice of QD size distribution is
a significant improvement compared to dye concentrators
allowing re-absorption losses to be minimised [6,7].

3. Thermodynamic modelling of the QDC

Yablonovitch [8] applied a detailed balance argument to
the original dye-concentrator to relate the absorbed light
and self-absorbed concentrated light to the spontaneous
emission. The paper considers a uniformly illuminated thin
slab, for which the variation of the incident light with depth
is negligible. In a practical device however, a significant
fraction of the incident flux is absorbed. Yablonovitch
applies the boundary condition to the trapped flux that it is
zero at the edge of the sheet and derives an expression for
the flux propagating towards the cell. It is not possible using
Yablonovitch’s boundary condition to derive an expression
for the flux propagating backwards that is consistent with
that propagating forwards. The form of the detailed
balance expression in [8] is again limited to thin sheets
for which a negligible fraction of the radiation emitted into
the escape cone may be re-absorbed by the sheet. This
model does not consider losses owing to absorption by
the

”
transparent“ sheet material and we find that this is

one of the most important factors limiting the efficiency
of planar luminescent solar consentrators. Yablonovitch’s
one-dimensional model is also limited to the case where
there is no spectral overlap of the incident radiation and
the luminescence. To overcome these difficulties we have
developed a self-consistent three-dimensional (3D) flux
model in which we apply reflection boundary conditions
to the radiation depending on whether if falls within the
escape cone, �c, or within the solid angle of total internal
reflection in each co-ordinate direction x, y, z.
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Figure 1. a — schematic of a three-stack luminescent concentra-
tor. Each layer in the stack absorbs and re-emits light of longer
wavelength with ideal absorption coefficient and luminescence
spectra as in b.

Our 3D flux model allows for: 1) a significant fraction of
the incident flux to be absorbed by the sheet, 2) spectral
overlap of the incident radiation with the luminescence,
3) re-absorption of radiation emitted into the escape cone,
4) reflection at the surfaces, and 5) losses due to absorption
in the host material. Including (1) to (5) can make an order
of magnitude difference to the calculated luminescence
escaping the right surface (see Fig. 1, a) compared to the
predictions of [8], even for a small 42× 10× 5 mm test
slab. The model provides equations from which the photon
chemical potential as a function of position within a finite
slab of material may be determined by iteration.

4. 3D flux model

To obtain the differential equations describing the pro-
pagation of the trapped and escaping photon intensities,
we start with Chandrasekhar’s general three-dimensional
radiative transfer equation [9]. We consider a finite slab
of material of thickness D in the z direction, length L in
the x direction and width W in the y direction, uniformly
illuminated on (say) the top surface.

We apply the method of Schwarzschild and Milne [10],
in which the detailed angular dependence of the radiative
intensity described by the transfer equation is ignored
and the radiation is considered as consisting simply of
forward (+) and backward (−) streams. However, in
addition, we also distinguish between what happens when
the angle of propagation, θ, is greater or less than the
critical angle θc . Escaping photons with θ < θc and trapped
photons with θ > θc are treated as separate streams. We
then integrate over the appropriate angular ranges to obtain
the intensities of the photon streams and ignore other
details of the angular dependence. Integrating over the
escape cones in each co-ordinate direction produces two
differential equations [6] for the luminescent escaping fluxes
propagating in the positive and negative directions:

∓ ∂I (±)
x,y,z

∂x, y, z
= λaI (±)

x,y,z −
�c

4π
λeB. (1)

In equation (1) I (±)
x , I (±)

y and I (±)
z are the escaping lumines-

cent fluxes propagating within the slab in the positive and
negative x, y and z directions respectively, and λa and λe
are defined by:

λa =
Nσa(ν)

cos2(θc/2)
, λe =

Nσe(ν)
cos2(θc/2)

. (2)

Here, N is the density of luminescent centres, σa(ν) is
the absorption cross section of the slab material comprising
a transparent medium with absorption cross section σb(ν)
within which the luminescent species with absorption cross
section σe(ν) = σa(ν)− σb(ν) is uniformly dispersed. The
luminescent brightness, B, of a radiation field in equilibrium
with the electronic degrees of freedom of the absorbing
species is given by

B(ν) =
8πn2ν2

c2

1

exp
[
(hν − µ)β

]
− 1

(3)

where n is the refractive index, ν is the frequency,
µ is the photon chemical potential, β = 1/kT, and the
other quantities have their usual meaning. The incident
radiation, I 1, is not distributed over the same angular range
as the escaping luminescence and thus must be treated
separately. If I 1 is incident at θi it generates escaping

fluxes, I (±)
d , within the slab which depend on z and the

transmission angle, θt :

∓∂I (±)
d

∂z
=

Nσa

cos θt
I (±)

d . (4)

4.1. Trapped intensity

Suitable transparent media generally have refractive in-
dices close to 1.5. Thus the totally trapped solid angle
�6 = 4π − 6�c is small. The trapped intensity also
equilibrates within the slab by multiple reflections and hence
we may integrate the radiative transfer equation over this
solid angle to obtain an average trapped intensity:

I (·)
t =

Nσe

Nσa

�6B
4π

. (5)

4.2. Detailed balance

Application of the principle of detailed balance within the
slab of material leads to equation:

F(µ) =
∫

dνσe(ν)I C(ν)−
∫

dν
σe(ν)

Qe
B(ν) = 0 (6)

where Qe is the quantum efficiency of the luminescent
species and F(µ) is minimised to determine µ. I C is the
concentrated photon field within the slab which is obtained
by adding the total trapped and escaping intensities in
the x, y and z directions:

I C = I (·)
t + I x + I y + I z + I d. (7)
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The escaping intensities are themselves given by adding the
appropriate photon streams as in:

I x,y,z,d = I (+)
x,y,z,d + I (−)

x,y,z,d. (8)

Equation (6) shows that the variation of I C with position in
the slab is dependent on the variation of µ with position.

For thin films, the differential equations (1) may be
solved analytically [7]. For thick slabs, we can only solve
the differential equations up to integration over the slab of
the luminescent brightness B multiplied by the appropriate
forward and backward Green’s functions [6].

4.3. Boundary conditions

For the luminescent escaping fluxes, I (±)
x,y,z, we have to

consider reflection and transmission at the surfaces. For
example, at the left surface x = 0, the far surface y = 0 and
the top surface z = 0 these are:

I (+)
x,y,z(0) = BL, F, T I (−)

x,y,z(0) (9)

where RL, F, T are the reflection coefficients averaged over
the escape cone for the luminescent escaping fluxes at the
left, far and top surfaces respectively. Similar boundary
conditions on I (±)

x,y,z apply at the right surface x = L, the near
surface y = W and bottom surface z = D, with appropriate
reflection coefficients RR, N, B at the right, near and botton
surfaces respectively. At the top and bottom we also have
boundary conditions on the fluxes I (±)

d :

I (+)
d (0) = (1− RTd)I 1 + RTdI (−)

d (0), (10)

I (−)
d (D) = RBdI (+)

d (D) (11)

with reflection coefficients RTd and RBd as required for the
angle of incidence of the direct incident light.

In the x and y directions at the left (L), and far (F),
surfaces, the boundary conditions for the luminescent
escaping fluxes outside the slab are:

I L,F = (1− RL,F)I (−)
x,y (0) (12)

with similar equations at the right (R), near (N), top (T),
and bottom (B) surfaces. By integrating the differential
equations for the escaping fluxes, evaluating the resulting
expressions at the surfaces and applying the boundary
conditions, we derive the escaping intensities. In carrying
out these calculations, it is convenient, since the reflection
coefficients lie in the range [0, 1], to rewrite the reflectivities
as:

RP = e−αP , αPQ =
αP + αQ

2
(13)

where P, Q = L, R, F, N, T, B, Td, Bd.

4.4. Escaping intensities

The expressions for the luminescent escaping intensities
within the slab in the x, y and z directions are related by
symmetry. For example I x is given by

I x(x,y, z) =
�cλe cosh (λax + αL/2)

2π sinh (λaL + αLR)

×
L∫

0

dx′ cosh
[
λa(L− x′) + αR/2

]
B(x′, y, z)

− �cλe

2π

x∫
0

dx′ sinh
[
λa(x − x′)

]
B(x′, y, z) (14)

and the expressions for I y and I z are generated by replacing
the co-ordinate, the slab dimension and the α subscripts
in equation (14) with those appropriate for the direction
of interest. The intensity, I d, within the slab owing to
unabsorbed incident radiation is diven by

I d(z) =
2I 1 sinh(αTd/2) cosh

[
Nσa(D−z)/ cos θt + αBd/2

]
sinh(NσaD/ cos θt + αTdBd)

.

(15)

The expressions for the luminescent fluxes outside the
slab escaping the surfaces in the x, y and z directions are
again related by symmetry. For example the fluxes I R
and I L escaping the right and left surfaces in the x direction
respectively are:

I R(y, z) =
�cλe

2π
exp(−αLR) exp(−λaL) sinh(αR/2)

sinh(λaL + αLR)

×
L∫

0

dx′ cosh
[
λa(L− x′) + αR/2

]
B(x′, y, z)

+
�cλe exp(−αR/2) sinh(αR/2)

2π

×
L∫

0

dx′ exp
[
−λa(L− x′)

]
B(x′, y, z), (16)

I L(y, z) =
�cλe

2π
sinh(αL/2)

sinh(λaL + αLR)

×
L∫

0

dx′ cosh
[
λa(L− x′) + αR/2

]
B(x′, y, z). (17)

The expressions for I N and I F and the luminescent compo-
nents of I B and I T are generated by appropriate substitution
as for equation (14). The latter, I B and I T, are similar but
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Figure 2. Schematic diagram illustrating the intensities within
the slab comprising the concentrated intensity, I C, and the fluxes
escaping the surfaces.

contain additional terms arising from the incident flux:

I B(incident) = I 1
2 sinh (αBd/2) sinh (αTd/2)

sinh (NσaD/ cos θt + αTdBd)
, (18)

I T(incident) = I 1

×

[exp(−αTd/2) sinh (NσaD/ cos θt + αBd/2) +
+ exp(−αBd/2) exp(−NσaD/ cos θt) sinh (αTd/2)

]
sinh (NσaD/ cos θt + αTdBd)

.

(19)
The intensities comprising I C within the slab (see Fig. 2) are
calculated as outlined above by determining the chemical
potential, µ(x, y, z), over a mesh of positions within the
slab by Newton−Raphson iteration. This chemical potential
distribution best satisfies the detailed balance condition
(equation (6)) at each point in the slab and is then used to
calculate the position dependent fluxes exiting the surfaces.
In this calculation the Newton−Raphson equation below is
solved iteratively for µ at each point in the mesh:

µs = µs−1 −
F(µs−1)
F ′(µs−1)

(20)

where we ignore the dependence of I C on µ so that:

F ′(µ) ≈
∫

dν
σe(ν)

Qe

8πn2ν2

c2

β exp
[
(hν − µ)β

]{
exp[(hν − µ)β]− 1

}2 .

(21)

5. Results

This section is divided into three parts. The first details
experimental absorption and luminescence measurements,
and the latter are shown to compare favourably with
predictions from the model. The second section concerns
modelling results and discusses the importance of the QD

size distribution, the predicted fluxes exiting the surfaces
of a slab and the photon chemical potential. In the third
part predicted short-circuit currents resulting from the fluxes
exiting the surfaces of sample slabs uniformly illuminated
on their top surfaces are compared with experiment. These
measurements show that the 3D flux model agrees with
experiment, providing a tool for optimisation of the QDC.

5.1. Absorption and luminescence

Both the sample absorption and luminescence are measu-
red on a wavelength calibrated double monochromator
system, composed of two 30 cm Bentham monochromators.
The source monochromator has a current stabilised 100 W
tungsten filament lamp attached to a variable entrance slit.
It is also equipped with order sorting filters, a 1800 lines/mm
grating and an exit pinhole aperture of 200 µm. The
wavelength resolution varies with entrance slit width but
excitation wavelengths < 1 nm can be achieved. The
spectrometer monochromator also has a pair of variable slits,
a 1200 lines/mm grating and wavelength resolution of 2 nm.
A calibrated Newport 818-UV silicon detector was used for
all absorption and luminescence measurements as shown in
Fig. 3 and 4.

Absorption measurements were performed in a parallel-
beam configuration (see Fig. 3) by acquiring a transmission
measurement on the sample and a reference measure-
ment. The absorption coefficient, Nσa, corrected for
multiple reflections using equation (18) is extracted from
the data. Scans were generally carried out over the
wavelength range 400 to 800 nm under computer control
with the output of the silicon detector amplified by a
Stanford research systems SR510 lock-in amplifier and
the monochromator driven by a Bentham PM C3B/IEEE
controller. For absorption measurements light from the lamp
was chopped before it entered the monochromator with

Figure 3. Apparatus used to measure the absorption properties
of test slabs.

Figure 4. Apparatus used to measure the luminescence properties
of test slabs.
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Figure 5. Measured absorption coefficient (1) and Gaussian fit (2) to the absorption threshold together with the normalised predicted
and observed luminescence for the L×W × D = 42× 10× 5 mm3 test slab of CdSe/CdS QDs in acrylic. For laser illumination on the
near surface (3) indicates the predicted and (4) the observed luminescence. For laser illumination on the left surface (5) indicates the
predicted and (6) the observed luminescence.

a Bentham 218 variable frequency chopper at a frequency
of approximately 188 Hz which was suitably far away from
the mains frequency of 50 Hz to produce good results.

Luminescence measurements were often performed with
the straight-through configuration (see Fig. 4) and the light
escaping the surface of the sample opposite the laser
illumination was focused onto the entrance slit of the
spectrometer monochromator and detected at the exit slit
by the silicon detector. The luminescence scans were
carried out over the relevant wavelength range, again under
computer control, using a second chopper and monochro-
mator controller. The luminescence signal was corrected
for the throughput of the spectrometer by performing two
additional scans firstly with the beam from the source
monochromator focused into the spectrometer and secondly
a reference scan as for the absorption measurements.

We assume that the frequency dependence of σe(ν) at
threshold is Gaussian as expected for dots with δ-function
density of states and Gaussian distributed diameters [3].
A Gaussian fits the experimental absorption very well down
to threshold [6,7], as illustrated in Fig. 5 together with
the predicted and observed luminescence escaping a test
slab of CdSe/CdS core-shell QDs in acrylic illuminated by
a 530 nm laser in the x and y co-ordinate directions. The
laser spot (diameter 3 mm) was positioned in the centre of
the face of the slab of material and the luminescence was
collected from the opposite surface. The slab was rotated

such that the laser illuminated the left surface at x = 0 and
the near surface at y = 0.

Fig. 5 shows the excellent agreement between the shape
and position (red-shift) of the predicted and observed
luminescence for the two directions of laser illumination
although a small laser feature interferes with the experiment
between 1.7 and 1.8 eV.

With laser illumination of a slab the intensity and red-shift
of the flux escaping the right surface, I R, is very dependent
on the position of laser excitation on the top surface. In an
additional experiment the luminescence escaping the right
surface of the sample slab of CdSe/CdS QDs in acrylic was
measured as the laser spot was moved along the centre of
the top surface. The same equipment as shown in Fig. 4 was
used but the laser was positioned such that the beam was
perpendicular to the collection optics. Fig. 6 shows both
the variation of the predicted and observed luminescence
escaping the right surface of the slab with laser illumination
position x/L. Unfortunately, the collected signal was too
noisy to detect at laser positions less than x/L = 0.5 since
the path-length of the escaping luminescence is longer than
in the straight-through configuration. It is easy to adapt
the model to simulate laser excitation because the incident
light term depends only on z and can simply be removed
from the model at (x, y) positions where the laser is not
illuminating the slab. These measurements show that the
model predicts the correct trends for the red-shift, the
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Figure 6. Variation of the predicted (I pr) and observed (I exp) luminescence escaping the right surface with the position of laser
illumination on the top surface for the test slab of CdSe/CdS QDs in acrylic. In the calculations of the predicted luminescence (top chart)
it was assumed that Qe = 0.5 as determined from the photocurrent measurements. Simulations were carried out at laser positions x/L:
1 — 0, 2 — 0.25, 3 — 0.5, 4 — 0.75, 5 — 1. The bottom chart shows the experimental luminescence measured with the laser at
positions x/L: 1 — 0.55, 2 — 0.76, 3— 0.86, 4 — 0.95.

Figure 7. Predicted average fluxes escaping the top and right surfaces of the test slab of CdSe/CdS QDs in acrylic again assuming
the best fit value of Qe = 0.5. The slab has perfect mirrors at x = 0, y = (0,W) and z = D, and is illuminated by AM1.5 at normal
incidence. The solid line indicates the incident flux, 1 — the average flux escaping the top surface and 2 — the average flux escaping
the right surface. The latter two escaping fluxes were both calculated using the Gaussian fit to the experimental absorption threshold with
a half-width of 0.07 eV. Curve 3 illustrates the average flux escaping the right surface for a narrower QD size distribution modelled by
a Gaussian fit of half-width 0.05 eV.
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profile of the luminescence and its intensity as the laser
position is varied. Compared to illumination at x/L = 1 we
would expect the luminescence spectrum for illumination
at x/L = 0.95 to be narrower owing to re-absorption and
of higher intensity because more of the laser light can be
absorbed.

5.2. Modelling results

The profile and red-shift of the luminescence peak
also depends critically on the shape of the absorption
cross section near threshold which reflects the QD size
distribution. A narrower distribution of dot diameters can
be modelled by narrowing the Gaussian fit to the absorption
edge. The calculated fluxes escaping the surfaces for the test
slab of CdSe/CdS core-shell QDs in acrylic assuming perfect
mirrors at x = L and y = (0,W) are illustrated in Fig. 7 for
the Gaussian fit (half-width 0.07 eV) to the experimental
absorption. Fig. 7 shows the concentration of radiation
into the flux that would be collected by a solar cell at the
right surface. Also illustrated in Fig. 7 is the predicted flux
escaping the right surface if the distribution of QD sizes
were narrower such that the Gaussian fit to the absorption
threshold has half-width 0.05 eV.

For a narrow distribution of QD sizes characterised
by a sharp absorption threshold there is a smaller red-
shift and therefore greater overlap with the luminescence,
leading to larger re-absorption losses [6,7] and less radiation
escaping the right surface. The model allows us to
investigate quantitatively the distribution of dot diameters
that minimises these losses. This is particularly important in
our experiments since the luminescence quantum efficiency
of the QDs in our test slab was rather low.

The chemical potential determined from the 3D flux
analysis as a function of position, (x, y), for the CdSe/CdS
QD sample slab with perfect mirrors at y = (0,W) such that
there is no variation of µ with y, is shown in Fig. 8. With
no mirrors on the surfaces in the x direction the chemical
potential is symmetric about x = L/2 and decreases with
depth z allowing radiation of low energy photons near the
bottom of the slab.

Figure 8. The position dependent chemical potential of the test
slab of CdSe/CdS QDs in acrylic assuming Qe = 1, perfect mirrors
at y = (0,W) and illumination by AM1.5 at normal incidence.

Table 1. Measured (top) and predicted (bottom) short circuit
current, Jsc, using the 2.65× 2.65 mm Si photodetector for the
3 unmirrored slabs investigated

Luminescent Slab size Qe

Jsc (mA/m−2)

species (mm) z = D y = W x = L

CdSe/CdS 42×10×5 0.50 84.0±2.0 4.6±2.0 11.1±2.0
QDs 78.3±1.9 3.6±0.8 10.0±1.4

Red dye 40×15×3 0.95 88.4±2.0 10.4±2.0 20.1±2.0
85.4±2.0 11.1±1.1 22.0±1.7

Green dye 40×15×3 0.95 93.2±2.0 3.2±2.0 4.9±2.0
96.0±2.1 2.1±0.3 4.0±0.9

Table 2. Measured (top) and predicted (bottom) short circuit
current, Jsc, using the 3× 3 mm GaAs photodetector for the red
mirrored slab

Luminescent Slab size Qe
Blue filter Jsc (mA/m−2)

species (mm) used x = L

Red dye 40× 15× 3 0.95 No 26.0± 2.0
26.0± 2.6

Red dye 40× 15× 3 0.95 Yes 12.7± 2.0
15.6± 2.1

Note. The reflectivity of the evaporated aluminium mirrors on the surfaces
at x = 0, z = D and y = (0,W) was assumed to be 0.9. A blue filter
could be placed between the lamp and sample to modify the spectrum of
the light incident on the top surface of the slab.

5.3. Photocurrent measurements

Short circuit currents, Jsc, resulting from the radiation
escaping the bottom, near and right surfaces of the slab
of CdSe/CdS QDs in acrylic and slabs of red and green
dyes in perspex were measured and are compared with
the predicted values in Tables 1 and 2. The luminescence
quantum efficiency, Qe, of the perylene dyes is known to be
about 0.95 and the unknown Qe of the QDs was determined
by the best fit to the experimental measurements.

The slabs were positioned on a matt black stage with
a matt black background to avoid unwanted reflections
and were illuminated at normal incidence by a calibrated
Oriel fibre lamp. Two calibrated photodetectors that
could be positioned against any surface were utilised to
obtain Jsc values, using a Keithley 236 source measure
unit. The uncertainty in the measurements is due to current
generated by coupling of the incident light into the edges
of the photodetector and allowance has been made for
this by background measurements. The uncertainty in the
predictions is mainly due to the 5% uncertainty in the
experimental absorption.

The lamp spectrum was measured using the apparatus in
Fig. 4 with the lamp focused into the entrance slit of the
spectrometer monochromator. For the Jsc measurements
the lamp was positioned such that light reaching the sample
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Figure 9. The Oriel lamp spectrum and effect of the blue filter together with the absorption spectra of the three materials investigated.
Curve 1 is the Oriel spectrum and curve 2 shows how the incident light spectrum is modified when the blue filter is used. Curves with
symbols 3–5 are the absorption: 3 — of the QDs in acrylic, 4 — of the red dye in perspex and 5 — of the green dye in perspex.

could only diverge by 5 degrees and corrections from
normal incidence were negligible. The uniformity of the
lamp illumination was checked and found to vary by less
than 5% over the plane where the top surface of the test
slab was positioned.

The quantum efficiency (QE) of the 2.65× 2.65 mm Si
photodetector and the 3× 3 mm GaAs photodetector was
determined with the apparatus in Fig. 3 by taking the ratio
of a scan with the photodetector and a reference scan
with the Newport 818-UV silicon detector corrected for
its known QE. In order to calculate the predicted short-
circuit currents it is necessary to correct for the angular
dependence of the QE of the photodetector since the
luminescence escapes at all angles over the hemisphere
from each surface. The 2.65× 2.65 mm Si photodetector
was supplied with a correction curve and it would have
been preferable to use this photodetector for all the
measurements. However, it was not available at the time of
the measurements on the mirrored red slab and these could
not be repeated owing to poor adhesion of the evaporated
aluminium mirrors. Therefore the same angular corrections
were applied to the predictions of the short-circuit current
from the 3× 3 mm GaAs photodetector, leading to a greater
uncertainty in these predictions.

The Oriel lamp spectrum and effect of the blue filter are
illustrated together with the absorption coefficient, Nσa , of
the three materials in Fig. 9. It is very encouraging that all
the measurements agree so well with the predictions given
that the materials absorb strongly in different regions of the

lamp spectrum and have very different losses owing to the
high Qe of the dyes and relatively low Qe of the QDs. Our
confidence in the model is also increased by the agreement
with experiment for the slab with mirrored surfaces and
the continued agreement when the spectrum of the light
incident on the test slab is altered by a blue filter.

6. Conclusions

We have developed a self-consistent thermodynamic
model for planar solar concentrators which allows for
overlap of the incident radiation with the luminescence, for
reflections at the surfaces, for re-absorption and for absorp-
tion losses in the

”
transparent“ host material. Our 3D flux

model was derived by applying the method of Schwarzschild
and Milne to Chandrasekhar’s general radiative transfer
equation coupled to a detailed balance condition. We can
predict the efficiencies of luminescent concentrators using
only the absorption properties of the slab, its refractive
index, and the quantum efficiency Qe of the luminescence.
The QD size distribution can be chosen to optimise the
red-shift and minimise the overlap between absorption and
luminescence which is a significant advantage for the QDC
compared with the dye concentrator. Our results show
that the 3D flux model can predict both the red-shift and
profile of the luminescence as well as the total flux escaping
each surface of a slab providing a tool for optimisation of
the QDC.
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