Переход между законами Мотта и Аррениуса в температурных зависимостях сопротивлений сильно легированных бором дельта-слоев в искусственном алмазе

© В.А. Кукушкин^{1,2,3}, М.А. Лобаев¹, А.Л. Вихарев¹, А.М. Горбачев^{1,2}, Д.Б. Радищев¹, Е.А. Архипова¹, М.Н. Дроздов¹, Ю.В. Кукушкин², В.А. Исаев¹, С.А. Богданов¹

¹ Институт прикладной физики Российской академии наук,

603950 Нижний Новгород, Россия

² Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 603022 Нижний Новгород, Россия

³ Федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный педагогический университет имени Козьмы Минина", 603005 Нижний Новгород, Россия

E-mail: vakuk@ipfran.ru

Поступила в Редакцию 5 мая 2023 г. В окончательной редакции 19 июня 2023 г. Принята к публикации 20 июня 2023 г.

Экспериментальные температурные зависимости сопротивлений, близких к порогу фазового перехода в состояние с металлической проводимостью тонких (1-3 нм) сильно легированных бором δ -слоев в химически осажденном из газовой фазы алмазе в широком диапазоне температур от ~ 100 до ~ 500 K, можно описать двумерным законом Мотта ("перескоки" дырок между локализованными состояниями с зависящей от температуры средней длиной "прыжка") в области низких температур и законом Аррениуса ("перескоки" дырок между ближайшими локализованными состояниями) в области высоких температур. Переход между ними происходит при 230–300 К. Потенциалы локализованных состояний дырок — дальнодействующие, например кулоновские, а статические диэлектрические проницаемости δ -слоев в несколько раз больше, чем у нелегированного химически осажденного из газовой фазы алмаза.

Ключевые слова: CVD-алмаз, закон Аррениуса, закон Мотта, легированные δ-слои, "прыжковая" проводимость, фазовый переход изолятор—металл.

DOI: 10.21883/FTP.2023.04.55895.10k

1. Введение

Тонкие (толщиной в несколько постоянных кристаллической решетки) сильно легированные слои (так называемые δ -слои) в алмазе, полученном методом химического осаждения из газовой фазы (CVD) [1-8], считаются перспективным инструментом увеличения подвижности носителей заряда. Высокие значения последней необходимы для различных электронных приложений, например для создания быстродействующих полевых транзисторов на основе CVD-алмаза [9,10]. Увеличение подвижности носителей заряда в таких слоях по сравнению со случаем однородного легирования происходит за счет квантового эффекта их частичного проникновения из потенциальной ямы, образованной их родительскими ионизированными примесными атомами в б-слое, в окружающий этот слой нелегированный алмаз. В результате их рассеяние на этих атомах уменьшается, что ведет к возрастанию их подвижности. Однако во многих экспериментах с легированными бором *б*-слоями в CVD-алмазе такого увеличения подвижности дырок не наблюдалось [8,11]. Следовательно, необходимо дальнейшее экспериментальное и теоретическое исследование проводимости таких слоев, особенно влияния на нее их толщин.

Цель настоящей работы — измерение зависимостей сопротивления нескольких сильно легированных бором (с концентрацией, близкой к порогу фазового перехода в состояние с металлическим типом проводимости) δ -слоев в CVD-алмазе в широком диапазоне температур от ~ 100 до ~ 500 К и их моделирование с помощью теорий "прыжковой" проводимости и перколяции. Для этого в следующем разделе рассматриваются два подхода к такому моделированию, применимые в диапазонах низких и высоких температур. В разд. 3 результаты этих подходов сравниваются с экспериментальными данными и из условия их наилучшего соответствия делаются выводы о внутренних характеристиках сильно легированных бором δ -слоев в CVD-алмазе. В заключении подытожены основные результаты работы.

2. Методика расчета температурных зависимостей сопротивлений сильно легированных бором дельта-слоев в CVD-алмазе

Пусть тонкий сильно легированный бором δ -слой в CVD-алмазе имеет толщину d (полная ширина распределения концентрации атомов бора по половине от ее

пикового значения в центре слоя) порядка нескольких нанометров и пиковая концентрация атомов бора N_a в нем близка к 10^{21} см⁻³, но ниже порога фазового перехода изолятор—металл [12] (фактические параметры δ -слоев будут приведены в следующем разделе). Этот δ -слой находится между толстыми преднамеренно не легированными слоями CVD-алмаза.

Во-первых, рассмотрим интервал достаточно низких температур (его верхняя граница будет определена из анализа экспериментальных данных, см. далее), где "прыжки" дырок происходят в основном между локализованными состояниями с энергиями, близкими к химическому потенциалу μ [13]. В этой области энергий плотность локализованных состояний мала, но, несмотря на низкие температуры, примерно половина из них занята дырками, а другая половина пуста. В результате в этих состояниях есть некоторое количество дырок и они могут "перескакивать" из одних состояний в другие без нарушения принципа Паули, что и обеспечивает проводимость.

Пусть характерный масштаб волновых функций, соответствующих этим состояниям, равен *l*. В теории "прыжковой" проводимости [13] обычно предполагается, что среднее расстояние между локализованными состояниями больше, чем 2*l*, так что волновая функция дырки, занимающей некоторое состояние, вблизи другого состояния пропорциональна $\exp(-r/l)$, где r — расстояние между двумя этими состояниями. Тогда вероятность перехода дырки из занятого состояния *i* с энергией e_i , $e_i < \mu$, и радиус-вектором \mathbf{r}_i в незанятое состояние *j* с энергией e_j , $e_j > \mu$, и радиус-вектором \mathbf{r}_j пропорциональна

$$\exp\left(-\frac{2r_{ij}}{l}-\frac{e_j-e_i}{k_{\rm B}T}\right),\,$$

где $r_{ij} \equiv |\mathbf{r}_i - \mathbf{r}_j|$ — расстояние между этими состояниями, T — абсолютная температура, $k_{\rm B}$ — постоянная Больцмана [13].

В теории "прыжковой" проводимости [13] показано, что сопротивление образца *R* пропорционально

$$\exp\left(\frac{2r_{ij}}{l}+\frac{e_j-e_i}{k_{\rm B}T}\right),\,$$

где r_{ij} , а также $e_j - e_i$ соответствуют "оптимальному прыжку", т.е. "прыжку", для которого показатель степени экспоненты,

$$\frac{2r_{ij}}{l} + \frac{e_j - e_i}{k_{\rm B}T},\tag{1}$$

минимален. Этот минимум находится с учетом того, что длина "прыжка" r_{ij} связана с энергиями соответствующих состояний e_i и e_j формулой $r_{ij} \approx N^{-1/2}(e_i, e_j)$, где $N(e_i, e_j)$ — двумерная плотность локализованных состояний с энергиями, лежащими в интервале от e_i до e_j [13]. Использование именно двумерной, а не трехмерной плотности состояний объясняется тем, что

для "оптимального прыжка" *r_{ij}* больше или порядка толщины δ-слоя *d* (см. следующий раздел).

Чтобы найти $N(e_i, e_j)$, заметим, что, когда вся дырочная система находится в основном квантовом состоянии (т. е. абсолютная температура равна нулю), локализованное состояние *i* занято, а локализованное состояние *j* не занято, лишь если выполняется неравенство [13]

$$e_j - u(r_{ij}) - e_i > 0.$$
 (2)

Здесь $u(r_{ij})$ — потенциальная энергия электростатического взаимодействия дырок в локализованных состояниях *i* и *j*. Происхождение этого условия связано с тем, что энергия e_j не занятого локализованного состояния *j* содержит вклад электростатической энергии дырки в занятом локализованном состоянии *i*. Поэтому когда дырка "прыгает" из локализованного состояния *i* в локализованное состояние *j*, ее энергия изменяется от e_i до $e_j - u(r_{ij})$. Когда вся дырочная система находится в основном квантовом состоянии, это изменение должно быть положительным, иначе в этом состоянии было бы занятым локализованное состояние *j*, а локализованное состояние *i* — не занятым.

Для конкретизации формы $u(r_{ij})$ следует учесть, что вблизи фазового перехода изолятор—металл статическая диэлектрическая проницаемость δ -слоя ε_d намного больше, чем статическая диэлектрическая проницаемость $\varepsilon \approx 5.7$ окружающего его преднамеренно не легированного CVD-алмаза [12]. В таком случае энергия кулоновского взаимодействия дырок может быть представлена формулой

$$u(r) \approx \frac{e^2}{\varepsilon_{\text{eff}}r},$$
 (3)

где e — элементарный заряд, $\varepsilon_{\rm eff}$ — эффективная статическая диэлектрическая проницаемость, $\varepsilon < \varepsilon_{\rm eff} < \varepsilon_d$. Подставляя (3) в (2), получаем

$$N(e_i, e_j) < \left[\frac{(e_j - e_i)\varepsilon_{\text{eff}}}{e^2}\right]^2.$$
(4)

Поскольку $N(e_i, e_j)$ должна быть положительной, неравенство (4) означает наличие так называемой кулоновской щели в плотности состояний [13], т.е. $N(e_i, e_j) \rightarrow 0$ при $e_j \rightarrow e_i \rightarrow \mu$. В [13] показано, что в этом случае $N(e_i, e_j)$ порядка правой части (4), т.е.

$$N(e_i, e_j) = \left[\frac{(e_j - e_i)\varepsilon_{\text{eff}}}{\pi e^2}\right]^2.$$
 (5)

Тогда, минимизируя (1),

$$\frac{2N^{-1/2}(e_i,e_j)}{l} + \frac{e_j - e_i}{k_{\rm B}T}$$

относительно $e_j - e_i$, легко получить, что для "оптимального прыжка"

$$e_j - e_i = \sqrt{rac{2\sqrt{\pi}e^2k_{
m B}T}{arepsilon_{
m eff}l}}$$
и $r_{ij} = \sqrt{rac{\sqrt{\pi}e^2l}{2arepsilon_{
m eff}k_{
m B}T}},$

т.е. длина такого "прыжка" зависит от температуры (конкретно, обратно пропорциональна квадратному корню из температуры, двумерный закон Мотта [12]). Подставляя это в (1), получаем, что

$$R \propto \exp\left[\left(\frac{T_0}{T}\right)^{1/2}\right],$$
 (6)

где

$$T_0 = \frac{8\sqrt{\pi}e^2}{k_{\rm B}l\varepsilon_{\rm eff}}.$$
(7)

Известно, что вблизи фазового перехода изоляторметалл длина локализации l растет пропорционально $\sqrt{\varepsilon_d} \sim \sqrt{\varepsilon_{\text{eff}}}$ [12,14]. Поэтому в дальнейшем будем предполагать, что $l \approx r_{\text{B}}\sqrt{\varepsilon_{\text{eff}}/\varepsilon}$, т. е. будем считать, что локализованные состояния дырок в преднамеренно не легированном CVD-алмазе связаны с обычными акцепторными состояниями вблизи отрицательно заряженных ионов бора, а локализованные состояния дырок в сильно легированном δ -слое образованы кластерами таких ионов с размерами порядка l. Здесь $r_{\text{B}} = \hbar^2 \varepsilon / (e^2 m_h) \approx 7.2 \text{ Å}$ радиус Бора для локализованных состояний дырок вблизи отрицательно заряженных ионов бора в преднамеренно не легированном CVD-алмазе, \hbar — постоянная Планка, $m_h = 0.4m_e$ — средняя эффективная масса дырки [15], m_e — масса свободного электрона.

Во-вторых, рассмотрим интервал достаточно высоких температур (его нижняя граница примерно совпадает с верхней границей рассмотренного выше интервала достаточно низких температур и, как и последняя, будет определена из анализа экспериментальных данных, см. далее), когда "прыжковая" проводимость δ-слоя в основном обусловлена "прыжками" дырок между локализованными состояниями с энергиями, близкими к энергии изолированного акцепторного состояния [13]. В этой области энергий плотность состояний велика, но лишь экспоненциально малая их часть занята дырками (в случае коэффициента компенсации, близкого к единице) или лишь экспоненциально малая их часть не занята дырками (в случае коэффициента компенсации, близкого к нулю). В обоих случаях сопротивление б-слоя определяется "прыжками" дырок между ближайшими локализованными состояниями и обратно пропорционально этой части [13], т.е.

$$R \propto \exp\left(\frac{|\mu|}{k_{\rm B}T}\right),$$
 (8)

где μ — химический потенциал, отсчитываемый от энергии изолированного акцепторного состояния вниз. В случае близкого к едингице коэффициента компенсации $\mu < 0$, тогда как в случае малого коэффициента компенсации $\mu > 0$. Таким образом, *R* имеет вид формулы Аррениуса [13],

$$R \propto \exp\left(rac{E_a}{k_{
m B}T}
ight),$$

с не зависящей от температуры энергией активации $E_a = |\mu|$. Согласно [13], в обоих случаях

$$|\mu| \approx \frac{e^2 N_a^{1/3}}{\varepsilon_{\rm eff} (1-c)^{1/3}},$$
 (9)

где c — коэффициент компенсации, $c \equiv N_d/N_a$, N_d — концентрация доноров.

3. Методика эксперимента и сравнение экспериментальных и теоретических температурных зависимостей сопротивлений сильно легированных бором дельта-слоев в СVD-алмазе

Для установления температурных зависимостей предэкспоненциальных факторов в (6) и (8) необходимо провести сравнение результатов теоретических моделей с экспериментальными данными. На рисунке представлены экспериментальные зависимости сопротивлений R δ -слоев от температуры для структур S42, S45, S082 и S085. Измерения проводились как на δ-слоях, выращенных непосредственно на поверхности нелегированной CVD алмазной пленки (например, структура S42, толщина пленки 3 мкм, омические контакты к δ-слою Ti/Mo/Au), так и на заглубленных в этой пленке слоях (например, структура S45, толщина пленки 220 нм, глубина залегания в ней δ-слоя 20 нм, омические контакты Ti/Al для уменьшения контактного сопротивления выполнялись к дополнительному выращенному на поверхности пленки сильно легированному бором δ-слою с параметрами, аналогичными параметрам заглубленного слоя, но протравленному в области между контактами для предотвращения протекания по нему тока от контакта к контакту). Измерения выполнялись методом Вандер-Пау. Для структур с заглубленными б-слоями проводилась проверка того, что проводимость определяется действительно этими слоями (выполнялись тестовые измерения сопротивлений после протравливания структур между контактами на глубины, превышающие глубины залегания б-слоев, и эти сопротивления оказывались в 10⁴-10⁵ раз выше, чем сопротивления тех же структур до протравливания).

Температурные зависимости сопротивлений δ -слоев на рисунке являются достаточно сильными, что свидетельствует о не металлическом типе их проводимости и ее обусловленности "перескоками" дырок между локализованными состояниями.

Рассмотрим область низких температур (6). Согласно теории Миллера—Абрахамса и теории перколяции [13], в двумерной ситуации (когда сопротивление δ -слоя порядка сопротивления прямоугольного параллелепипеда с высотой d и шириной и длиной, равными радиусу корреляции критической подсети) температурная зависимость предэкспоненциального фактора в (6) имеет вид

Экспериментальная температурная зависимость сопротивления δ -слоя R (сплошная кривая) и ее низкотемпературное (10) (штриховая кривая I) и высокотемпературное (11) (штриховая кривая 2) теоретические приближения для структур S42 (a), S45 (b), S082 (c) и S085 (d). Размеры всех структур (длина×ширина×толщина) $3.5 \times 3.5 \times 0.5$ мм.

T^{3/2}, если волновая функция локализованного состояния дырки спадает как $\exp(-r/l)$, или $T^{-1/2}$, если она спадет как $r^{-1} \exp(-r/l)$. Первый случай характерен для дальнодействующих, например кулоновских, потенциалов локализованных состояний дырок, тогда как второй для короткодействующих, например экранированных, потенциалов таких состояний [16]. Расчеты показывают, что во втором случае наилучшее соответствие низкотемпературным экспериментальным данным получается при сравнительно небольших $T_0 \sim 10^3$ К. Согласно (7), такие T_0 требуют больших $\varepsilon_{\rm eff} \sim 150$. Тогда, чтобы получить из (9) |µ|, наилучшим образом обеспечивающий соответствие высокотемпературным экспериментальным данным, необходимо принимать коэффициент компенсации очень близким к единице, что представляется нереалистичным. Поэтому в дальнейшем будет считаться, что в области низких температур предэкспоненциальный множитель в (6) изменяется с температурой как $T^{3/2}$. Это означает, что потенциалы локализованных состояний дырок являются дальнодействующими, например кулоновскими.

В области высоких температур (8) в случае дальнодействующих потенциалов, согласно теории Миллера– Абрахамса и теории перколяции [13,14], в двумерной (и трехмерной) ситуации предэкспоненциальный множитель в температурной зависимости сопротивления прямо пропорционален температуре *T*. Таким образом, в области низких температур сопротивление δ -слоя аппроксимируется формулой

$$R = R(T_{\text{low}}) \left(\frac{T}{T_{\text{low}}}\right)^{3/2} \exp\left[\left(\frac{T_0}{T}\right)^{1/2}\right] / \exp\left[\left(\frac{T_0}{T_{\text{low}}}\right)^{1/2}\right],$$
(10)

где $R(T_{\text{low}})$ — сопротивление δ -слоя на нижней границе T_{low} низкотемпературного диапазона и T_0 дается (7). В области высоких температур оно определяется выражением

$$R = R(T_{\text{high}}) \frac{T}{T_{\text{high}}} \exp\left(\frac{|\mu|}{k_{\text{B}}T}\right) / \exp\left(\frac{|\mu|}{k_{\text{B}}T_{\text{high}}}\right), \quad (11)$$

где $R(T_{high})$ — сопротивление δ -слоя на верхней границе T_{high} высокотемпературного диапазона и $|\mu|$ дается (9).

В таблице приведены экспериментально измеренные параметры d, N_a , $R(T_{low})$ и $R(T_{high})$, а также теоретически вычисленные параметры T_{low} , T_{high} , T_0 , ε_{eff} , l и c, обеспечивающие наилучшее соответствие низкотемпературной (10) и высокотемпературной (11) теоретических аппроксимаций экспериментальным данным для образцов CVD-алмазов S42, S45, S082 и S085 с δ -слоями. Эти аппроксимации также представлены на рисунке.

Из таблицы видно, что параметры структур S45, S082 и S085 (как экспериментальные, так и теоретические)

Образец	<i>d</i> , нм	N_a , cm ⁻³	$T_{\rm low},{ m K}$	$R(T_{\text{low}})$, Ом	$T_{\rm high},{ m K}$	$R(T_{high})$, Ом	<i>T</i> ₀ , K	$\epsilon_{ m eff}$	<i>l</i> , нм	с
S42 S45 S082 S085	1 2 3.3 2 3	$9 \cdot 10^{20} \\ 7 \cdot 10^{20} \\ 2 \cdot 10^{20} \\ 8 \cdot 10^{20}$	119.7 98.5 150 91	$\begin{array}{c} 2.46 \cdot 10^8 \\ 1.11 \cdot 10^6 \\ 4.25 \cdot 10^6 \\ 6.77 \cdot 10^5 \end{array}$	450 500 480 449 9	$1.66 \cdot 10^{4} \\ 4.29 \cdot 10^{4} \\ 1.07 \cdot 10^{3} \\ 2.41 \cdot 10^{4}$	$5 \cdot 10^4$ $6 \cdot 10^3$ $5 \cdot 10^3$ $6 \cdot 10^3$	6.27 25.8 28.3 25.8	0.76 1.5 1.6 1.5	0.1 0.95 0.9983 0.88

Экспериментально измеренные и теоретически вычисленные параметры образцов

достаточно близки. Эти структуры характеризуются большой степенью компенсации порядка 90% и большими $\varepsilon_{\rm eff}$, что указывает на то, что сильно легированные бором δ -слои в них находятся вблизи порога фазового перехода изолятор—металл. В отличие от них структура S42 слабо компенсирована ($\sim 10\%$), имеет $\varepsilon_{\rm eff}$, близкую к статической диэлектрической проницаемости ε нелегированного алмаза, что указывает на то, что она довольно далека от порога этого перехода. Вероятно, это связано с тонкостью δ -слоя в этой структуре, хотя пиковая концентрация атомов бора в нем даже больше, чем в структурах S45, S082 и S085.

Из рисунка видно, что переход из низкотемпературной области (10) в высокотемпературную (11) для структуры S42 происходит при $T \sim 230$ K, для структуры S45 — при $T \sim 300$ K, для структуры S082 — при $T \sim 200$ K, а для структуры S085 — при $T \sim 250$ K.

Расчеты показывают, что "оптимальная" длина прыжка r_{ij} в диапазоне низких температур превышает 2.5*d* в структуре S42 и порядка *d* в структурах S45, S082 и S085. Это оправдывает использование приведенной выше двумерной плотности состояний. Кроме того, для всех структур оптимальная длина "прыжка" r_{ij} в области низких температур в несколько раз больше среднего расстояния между атомами бора, так что такие "прыжки" действительно могут иметь место, что также оправдывает использованный теоретический подход.

4. Заключение

Таким образом, показано, что экспериментальные температурные зависимости сопротивлений выращенных в преднамеренно не легированном CVD-алмазе сильно легированных бором (с пиковыми концентрациями атомов бора, близкими к 10^{21} см⁻³) δ -слоев с толщинами ~ 1–3 нм и неметаллическим (т.е. имеющим место ниже порога фазового перехода изолятор-металл) типом проводимости в широком диапазоне температур от ~ 100 до ~ 500 К могут быть объяснены "прыжковой" проводимостью дырок, находящихся в локализованных состояниях в примесной зоне энергий. Для температур, меньших 230–300 К (в зависимости от образца), они описываются двумерным законом Мотта (который обусловлен "прыжками" дырок между локализованными состояниями с зависящей от температуры — обратно пропорциональной квадратному корню из нее — средней длиной "прыжка"). Для более высоких температур они описываются законом Аррениуса (который обусловлен "прыжками" дырок между ближайшими локализованными состояниями). Потенциалы локализованных состояний, вероятно, являются дальнодействующими, например кулоновскими. Статические диэлектрические проницаемости δ -слоев должны быть в несколько раз больше, чем у преднамеренно не легированного CVDалмаза, из-за их близости к порогу фазового перехода изолятор—металл.

Полученные результаты помогают лучше понять физику дырочной "прыжковой" проводимости в сильно легированных бором δ -слоях CVD-алмаза непосредственно ниже порога их фазового перехода в состояние с металлическим типом проводимости. Однако необходимы дальнейшие экспериментальные и теоретические исследования этого явления.

Финансирование работы

Работа выполнена при поддержке Федерального государственного бюджетного научного учреждения "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (проект № FFUF-2021-0003).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Fiori, T.N. Tran Thi, G. Chicot, F. Jomard, F. Omne's, E. Gheeraert, E. Bustarret. Diamond Relat. Mater., 24, 175 (2012).
- [2] D. Araujo, M.P. Alegre, J.C. Pinero, A. Fiori, E. Bustarret, F. Jomard. Appl. Phys. Lett., 103, 042104 (2013).
- [3] A. Fiori, F. Jomard, T. Teraji, S. Koizumi, J. Isoya, E. Gheeraert, E. Bustarret. Appl. Phys. Express, 6, 045801 (2013).
- [4] A. Fiori, F. Jomard, T. Teraji, G. Chicot, E. Bustarret. Thin Sol. Films, 557, 222 (2014).
- [5] P.N. Volpe, N. Tranchant, J.C. Arnault, S. Saada, F. Jomard, P. Bergonzo. Phys. Status Solidi RRL, 6, 59 (2012).
- [6] H. Shiomi, Y. Nishibayashi, N. Toda, S. Shikata. IEEE Electron Dev. Lett., 16, 36 (1995).

- [7] J.E. Butler, A. Vikharev, A. Gorbachev, M. Lobaev, A. Muchnikov, D. Radischev, V. Isaev, V. Chernov, S. Bogdanov, M. Drozdov, E. Demidov, E. Surovegina, V. Shashkin, A. Davidov, H. Tan, L. Meshi, A.C. Pakpour-Tabrizi, M.-L. Hicks, R.B. Jackman. Phys. Status Solidi RRL, **11**, 1600329 (2017).
- [8] M.A. Lobaev, A.L. Vikharev, A.M. Gorbachev, D.B. Radishev, E.A. Arkhipova, M.N. Drozdov, V.A. Isaev, S.A. Bogdanov, V.A. Kukushkin. Nanosystems: Physics, Chemistry, Mathematics, 13, 578 (2022).
- [9] A. Aleksov, A. Vescan, M. Kunze, P. Gluche, W. Ebert, E. Kohn, A. Bergmaier, G. Dollinger. Diamond Relat. Mater., 8, 941 (1999).
- [10] H. El-Hajj, A. Denisenko, A. Kaiser, R.S. Balmer, E. Kohn. Diamond Relat. Mater., 17, 1259 (2008).
- [11] G. Chicot, A. Fiori, P.N. Volpe, T.N. Tran Thi, J.C. Gerbedoen, J. Bousquet, M.P. Alegre, J.C. Pinero, D. Araujo, F. Jomard, A. Soltani, J.C. De Jaeger, J. Morse, J. Hartwig, N. Tranchant, C. Mer-Calfati, J.C. Arnault, J. Delahaye, T. Grenet, D. Eon, F. Omnes, J. Pernot, E. Bustarret. J. Appl. Phys., **116**, 083702 (2014).
- [12] N.F. Mott. *Metal-Insulator Transitions* (London-N.Y., Taylor & Francis, 1990).
- [13] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
 [B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors (N.Y., Springer, 1984)].
- [14] А.И. Ларкин, Д.Е. Хмельницкий. ЖЭТФ, 83 (3), 1140 (1982). [А.І. Larkin, D.E. Khmel'nitskii. Sov. Phys. JETP, 56 (3), 647 (1982).]
- [15] M. Willatzen, M. Cardona, N.E. Christensen. Phys. Rev. B, 50, 18054 (1994).
- [16] Л.Д. Ландау, Е.М. Лифшиц. Квантовая Механика. Нерелятивистская теория (М., Наука, 1989). [L.D. Landau, E.M. Lifshitz. Quantum Mechanics: Non-relativistic Theory (N.Y., Elsevier, 2010)].

Редактор Г.А. Оганесян

Crossover between Mott's and Arrhenius' laws in the temperature dependence of resistivity of highly boron-doped delta-layers in artificial diamond

V.A. Kukushkin^{1,2,3}, M.A. Lobaev¹, A.L. Vicharev¹, A.M. Gorbachev^{1,2}, D.B. Radischev¹, E.A. Arkhipova¹, M.N. Drozdov¹, Yu.V. Kukushkin², V.A. Isaev¹, S.A. Bogdanov¹

¹ Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
² Nizhny Novgorod State University named after N.I. Lobachevsky, 603022 Nizhny Novgorod, Russia
³ Federal State Budgetary Educational Establishment of Higher Education "Nizhny Novgorod State Pedagogical University named after Kozma Minin", 603005 Nizhny Novgorod, Russia

Abstract Experimental temperature dependence of the resistivity of thin (1-3 nm) highly boron-doped (close to the threshold of the phase transition into a state with a metallic-type conductivity) delta-layers in chemically vapor deposited (CVD) diamond in a broad temperature range from ~ 100 to ~ 500 K can be described by Mott's two-dimensional law (hole "hops" between localized states with a temperature-dependent average "hop" length) in a low temperature region and Arrhenius' law (hole "hops" between the nearest localized states) in a high temperature region. The crossover between them takes place at 230–300 K. The potentials of hole localized states are of a long-range, e.g. Coulomb's, type, the static dielectric permittivities of delta-layers are by several times larger than those of undoped CVD diamond.