Оптимизация параметров гетероструктуры CdHgTe/HgTe с одиночной квантовой ямой для генерации плазмон-фононов

© В.Я. Алешкин, А.О. Рудаков, А.А. Дубинов

Институт физики микроструктур Российской академии наук, 603087 д. Афонино, Нижегородская обл., Кстовский район, Россия

E-mail: aleshkin@ipmras.ru

Поступила в Редакцию 5 мая 2023 г. В окончательной редакции 5 июня 2023 г. Принята к публикации 5 июня 2023 г.

Работа посвящена выбору оптимальной ширины запрещенной зоны квантовой ямы для генерации двумерных плазмон-фононов в гетероструктурах CdHgTe/HgTe. Показано, что оптимальной эффективной шириной запрещенной зоны является ширина, немного превосходящая энергию продольного оптического фонона в барьере.

Ключевые слова: гетероструктуры CdHgTe/HgTe с квантовыми ямами, генерация двумерных плазмонфононов, оптимальная ширина запрещенной зоны.

DOI: 10.21883/FTP.2023.04.55892.06k

1. Введение

Одной из актуальных задач физики полупроводников является создание компактного источника излучения дальнего ИК диапазона. В настоящее время распространенными источниками излучения, работающими в данной спектральной области, являются квантовокаскадные лазеры [1]. Также, одними из устройств, которые покрывают этот спектральный диапазон, являются лазеры на основе халькогенидов свинца. Они работают на длинах волн до 50 мкм [2]. В силу особенностей материала этих лазеров данные лазеры пока не нашли коммерческого применения. Другим возможным способом генерации излучения в интересующем нас спектральном диапазоне является генерация двумерных плазмон-фононов в гетероструктурах HgTe/CdHgTe c узкозонными квантовыми ямами (КЯ) [3], технология роста которых методом молекулярно-лучевой эпитаксии хорошо отработана в настоящее время [4,5].

Привлекательными сторонами генерации плазмонфононов являются большие коэффициенты межзонного усиления (> $10^4 \, \text{сm}^{-1}$) [3] и отсутствие необходимости создания волноводов.

Области остаточных лучей материала КЯ и барьера в рассматриваемой структуре перекрываются. В этом случае спектр плазмон-фононов представляет собой две ветви — высокочастотную и низкочастотную, образующиеся за счет взаимодействия с оптическими фононами КЯ и барьера. Низкочастотная ветвь ведет себя пропорционально \sqrt{q} при малых волновых векторах и стремится к частоте поперечного оптического фонона в КЯ при увеличении волнового вектора. Высокочастотная ветвь начинается с энергии продольного оптического фонона в барьере [6]. Такие гибридные возбуждения будем далее называть плазмон-фононами, следуя терминологии в задаче 6.10 книги [7]. В структурах, которые будут рассматриваться, роль барьера играет твердый раствор $Cd_{0.7}Hg_{0.3}$ Те. В нем имеется два продольных фонона (CdTe-подобный и HgTe-подобный). Максимальная энергия продольного оптического фонона в барьерах $Cd_{0.7}Hg_{0.3}$ Те равна ~ 20 мэВ (CdTe-подобный фонон) [8,9].

Известно, что в том случае, когда ширина запрещенной зоны становится меньше частоты продольного оптического фонона в барьере и КЯ, становится возможна быстрая рекомбинация с участием оптических фононов, препятствующая созданию инверсной населенности зон [10]. Для исключения рекомбинации с участием фононов необходимо, чтобы ширина запрещенной зоны КЯ была больше энергии продольных оптических фононов в барьере и КЯ. Поэтому будем рассматривать КЯ с параметрами, при которых ширина запрещенной зоны больше энергии продольного оптического фонона в барьере и КЯ. Также необходимо, чтобы расстояние между подзонами размерного квантования валентной зоны было больше ширины запрещенной зоны. Это позволит исключить поглощение плазмон-фононов в интересующем нас диапазоне, возникающее в результате межподзонных переходов электронов в валентной зоне.

При создании инверсной населенности зон усиление плазмон-фононов становится возможным, если энергия плазмон-фононов начинает превышать величину эффективной ширины запрещенной зоны $E_{geff}(q)$ [3]. Под этой величиной понимается минимальная энергия плазмонфонона при данном волновом векторе q, обладая которой он может быть испущен при межзонном переходе электрона. В тех КЯ, ширина запрещенной зоны которых больше энергии продольного оптического фонона в барьере, возможно реализовать усиление плазмон-фононов только высокочастотной ветви. Поэтому далее мы не будем рассматривать плазмон-фононы низкочастотной ветви.

Закон дисперсии плазмон-фононов сильно зависит от концентрации неравновесных носителей. Уменьшение концентрации приводит к уменьшению фазовой скорости плазмон-фонона (т.е. при заданном волновом векторе плазмон-фонона его частота уменьшается). При превышении некоторой концентрации неравновесных носителей начинает выполняться закон сохранения энергииимпульса при межзонных переходах электронов с испусканием плазмон-фонона [6]. В условиях инверсной населенности, при концентрациях, больших чем указанная концентрация, возможно усиление плазмон-фононов. Концентрация носителей, при которой начинается усиление плазмон-фононов называется пороговой концентрацией. Уменьшение ширины запрещенной зоны КЯ приводит к тому, что пересечение закона дисперсии плазмон-фонона и $E_{geff}(q)$ происходит при меньших концентрациях носителей. Таким образом, уменьшение эффективной ширины запрещенной зоны позволяет уменьшить концентрацию неравновесных носителей, превышая которую становится возможным усиление и генерация плазмон-фононов, при наличии инверсной населенности зон.

Ранее в работах [11,12] изучались различные свойства плазмон-фононов в структурах HgTe/CdHgTe с КЯ шириной 5 нм. Это соответствует ширине запрещенной зоны 35 мэВ. Однако вопрос оптимизации параметров структуры для генерации плазмон-фононов не рассматривался. В настоящей работе мы сделали попытку восполнить этот пробел. Нами показано, что уменьшение ширины запрещенной зоны КЯ с 35 до 25 мэВ приводит к существенному уменьшению пороговых концентраций носителей в структурах с одиночной КЯ.

2. Метод расчета

2.1. Спектр плазмон-фононов

Рассмотрим структуру, состоящую из одиночной КЯ НgTe, окруженную барьерами из твердого раствора Cd_xHg_{1-x} Те с содержанием кадмия x = 0.7. Барьеры такого состава часто используются в подобных структурах для генерации электромагнитных волн интересующего нас диапазона [13,14]. Мы полагаем, что в плоскости КЯ распространяется плазмон-фонон с волновым вектором q и частотой ω . Плазмон-фононы, которые могут распространяться в рассматриваемых структурах, имеют длину волны, много большую, по сравнению с шириной КЯ. Поэтому при изучении характеристик плазмон-фононов мы будем характеризовать КЯ двумерной поляризуемостью, которая складывается из поляризуемости свободных носителей заряда, поляризуемости, обусловленной колебаниями решетки КЯ и электронами заполненных зон. В рамках приближения случайных фаз выражение для двумерной поляризуемости носителей заряда с учетом частоты столкновений неравновесных носителей можно представить выражением [6]:

$$\chi(\omega, \mathbf{q}) = \frac{e^2}{(2\pi)^2 q^2} \times \sum_{s,s'} \int d^2k \, \frac{\left[f_s(\mathbf{k}) + f_{s'}(\mathbf{k} + \mathbf{q})\right] \left| \int dz \psi^*_{\mathbf{k} + \mathbf{q},s'} \psi_{\mathbf{k},s} \right|}{\varepsilon_{s'}(\mathbf{k} + \mathbf{q}) - \varepsilon_s(\mathbf{k}) - \hbar\omega(\mathbf{q}) - i\hbar\nu}, \quad (1)$$

где е — заряд электрона, $f(\mathbf{k})$ — функция распределения для неравновесных носителей, ν — частоты релаксации фазы недиагональных элементов матрицы плотности, $\psi_{\mathbf{k}}$ — волновая функция электрона с волновым вектором \mathbf{k} , координата z направлена перпендикулярно плоскости КЯ. Суммирование ведется по индексам s и s', которые описывают номер подзоны и спиновые состояния. Неравновесные носители в зонах будем описывать статистикой Ферми–Дирака с эффективной температурой $T_{\rm eff}$.

Как видно из (1), для нахождения поляризуемости, связанной с носителями заряда, необходимо вычислить энергии электронов и их волновые функции. Для их вычисления использовалась модель Кейна с учетом деформационных эффектов [15]. При расчете энергий и волновых функций мы полагаем, что КЯ выращена в плоскости (013) и температура решетки равна 4.2 К. Мы пренебрегаем снятием спинового вырождения за счет отсутствия центра инверсии и понижения симметрии на гетерогранице. Влияние этого эффекта на характеристики плазмон-фононов мало. Уменьшить ширину запрещенной зоны в КЯ при фиксированном составе барьеров и температуре решетки можно, увеличивая ширину КЯ. В этой работе мы проведем сравнение характеристик плазмон-фононов в структурах с КЯ шириной 5 и 5.3 нм. Рассчитанные спектры электронов в КЯ НgTe шириной 5 и 5.3 нм приведены на рис. 1. Ширина запрещенной зоны КЯ шириной 5.3 нм равна 25 мэВ. Отметим, что это значение немного больше энергии продольного оптического фонона в барьере.

При вычислении поляризуемости по формуле (1) нами учтено 6 подзон: первая подзона зоны проводимости, первая и вторая подзоны валентной зоны (каждая из подзон двукратно вырождена по спину). Двумерная поляризуемость КЯ, связанная с фононами в КЯ и электронами заполненных зон, определяется выражением:

$$\chi_{\rm ph}(\omega) = \kappa(\omega) d/4\pi$$

где $\kappa(\omega)$ — вклад в диэлектрическую проницаемость КЯ, обусловленный электронами заполненных зон и фононами в КЯ; d — ширина КЯ. Таким образом, полная поляризуемость КЯ имеет вид: $\chi_{tot}(\omega, \mathbf{q}) = \chi(\omega, \mathbf{q}) + \chi_{ph}(\omega)$. Вклад в диэлектрическую проницаемость HgTe, связанный с колебаниями решетки и электронами заполненных зон в случае низких температур, определяется

Рис. 1. Электронный спектр в КЯ HgTe, окруженной барьерами Cd_{0.7}Hg_{0.3}Te. Температура решетки равна 4.2 К. Синие штриховые кривые соответствуют спектру в КЯ шириной 5 нм; красные кривые — в КЯ шириной 5.3 нм. (Цветной вариант рисунка представлен в электронной версии статьи).

выражением [16]:

$$\kappa(\omega) = \kappa_{\infty} + \frac{F\omega_{TO}^2}{\omega_{TO}^2 - \omega^2 - i\gamma\omega},$$
(2)

где F — сила осциллятора, ω_{TO} — частота поперечного оптического фонона в КЯ, γ — частота затухания фононов, κ_{∞} — диэлектрическая проницаемость, связанная с электронами удаленных зон. В величину κ_{∞} не дают вклад переходы электронов между зоной проводимости и валентной зоной. Частотная зависимость диэлектрической проницаемости материала барьеров $\kappa_B(\omega)$ взята из работы [17].

Формула (1) получена для случая, когда частоты и волновые вектора плазмон-фонона действительные. Однако если рассматривается распространение плазмонфонона с действительной частотой ω в среде с затуханием, то компоненты его волнового вектора являются комплексными величинами. Для того чтобы волновой вектор плазмон-фонона, распространяющегося в плоскости КЯ, был действительным, будем рассматривать распространение плазмон-фонона в "идеальной среде". В этом случае мы искусственно добавляем в КЯ сторонний источник, компенсирующий затухание (усиление) плазмон-фонона в КЯ. Мы полагаем, что двумерная поляризуемость данного источника чисто мнимая и противоположна по знаку мнимой части поляризуемости КЯ, т.е. $\chi_{OW}^{\text{source}} = -i \operatorname{Im} [\chi_{\text{tot}}(\omega, \mathbf{q})].$ Кроме того, мы вводим источник, который компенсирует затухание волны и в барьере, добавив сторонний источник в барьер. Его объемная поляризуемость также чисто мнимая и противоположна по знаку мнимой части поляризуемости барьеров, т.е $\chi_B^{\text{source}} = -i \operatorname{Im} \left[\kappa_B(\omega) / 4\pi \right]$. С учетом сделанных утверждений полная поляризуемость КЯ определяется выражением $\chi_{\text{tot}}^{id.med}(\omega, \mathbf{q}) = \text{Re}\left[\chi_{\text{tot}}(\omega, \mathbf{q})\right]$, а диэлектрическая проницаемость барьеров — $\kappa_B^{id.med}(\omega) = \text{Re}\left[\kappa_B(\omega)\right]$. Дисперсионное уравнение для плазмон-фононов в структуре с одной КЯ в "идеальной среде" имеет вид

$$1 + 2\pi \frac{\operatorname{Re}\left[\chi_{\operatorname{tot}}(\omega, \mathbf{q})\right]}{\operatorname{Re}\left[\kappa_{B}(\omega)\right]} Q = 0$$
(3)

где

$$Q^2 = q^2 - \frac{\omega^2}{c^2} \operatorname{Re}\left[\kappa_B(\omega)\right].$$

Возникает вопрос о том, насколько справедливо данное приближение. Для анализа справедливости данного приближения можно сравнить решения, полученные из уравнения (3), и точные решения уравнения (3), полученные в отсутствие пространственной дисперсии поляризуемости. Данные решения хорошо согласуются в случае, когда Re [q] > Im [q].

Решения дисперсионного уравнения (3) для высокочастотных плазмон-фононных мод в рассматриваемых структурах приведены на рис. 2 при двух эффективных температурах неравновесных носителей. При расчете спектров плазмон-фононов мы пренебрегли равновесной концентрацией электронов и дырок в зонах и полагали концентрацию неравновесных электронов, равной концентрации неравновесных дырок. Концентрация неравновесных носителей, использованная при расчете спектров плазмон-фононов, чуть выше пороговой (т.е. выбраны такие концентрации, уменьшение которых на 10^{10} см⁻² приведет к отсутствию усиления).

Из рис. 2 видно, что увеличение ширины КЯ с 5 до 5.3 нм приводит к уменьшению эффективной ширины запрещенной зоны $E_{\text{geff}}(q)$. Уменьшение $E_{\text{geff}}(q)$ приводит к уменьшению пороговой концентрации неравновесных носителей. Несмотря на то что фазовая скорость плазмон-фонона ($v_{\rm ph} = \omega/q$) уменьшается при уменьшении концентрации носителей, пересечение с зависимостью $E_{geff}(q)$ происходит при меньших волновых векторах плазмон-фонона (красная кривая на рис. 2). Уменьшение пороговой концентрации неравновесных носителей приводит к тому, что в более узкозонной КЯ возможна генерация плазмон-фононов с меньшими энергиями и волновыми векторами при меньших концентрациях неравновесных носителей. В силу того что высокочастотная плазмон-фононная ветвь спектра начинается с конечной частоты, плазмон-фононы с малыми волновыми векторами имеют большую фазовую скорость (т.е. показатель преломления этих волн меньше, чем показатель преломления волн, которые можно усиливать в более широкозонной структуре).

Одной из проблем, затрудняющей детектирование плазмон-фононов, является вывод данной волны из структуры. Коэффициент отражения этих волн от края структуры велик из-за большого эффективного показателя преломления плазмон-фонона. Коэффициент отражения плазмон-фононов от края структуры тем больше, чем больше эффективный показатель преломления.

Рис. 2. Спектры плазмон-фононов высокочастотных ветвей, рассчитанные для двух эффективных температур неравновесных носителей T_{eff} : a — соответствует $T_{\text{eff}} = 4.2 \text{ K}$, b — соответствует $T_{\text{eff}} = 77 \text{ K}$. Черными штриховой и сплошной линиями показаны зависимости $E_{\text{seff}}(q)$ при ширине КЯ 5 и 5.3 нм соответственно.

ł

В структуре с КЯ шириной 5 нм эффективный показатель преломления в точке пересечения закона дисперсии плазмона с $E_{\text{geff}}(q)$ равен 395, а в структуре с КЯ шириной 5.3 нм — 64. Таким образом, коэффициент отражения плазмонов от границы узкозонной структуры с воздухом меньше, чем аналогичная величина для широкозонной структуры. Одним из способов вывода плазмон-фононов из структуры является вывод с использованием решетки, созданной на поверхности структуры, параллельной плоскости КЯ. Решетка необходима для выполнения закона сохранения импульса для фотона и плазмона [18]. Период такой решетки пропорционален $2\pi/q$. Для вывода плазмон-фононов с малыми волновыми векторами требуется решетка с большим периодом. Например, для вывода плазмон-фононов из структуры с КЯ шириной 5.3 нм понадобится решетка с периодом ~ 0.6 мкм, а для вывода плазмона из структуры с КЯ шириной 5 нм понадобится решетка с периодом ~ 0.06 мкм, что более сложно реализовать.

2.2. Коэффициент усиления плазмон-фононов

Коэффициент поглощения плазмон-фононов представляет собой отношение разности поглощаемой и выделяемой плотности мощностей при распространении плазмон-фонона в структуре к потоку энергии плазмонфонона на единице длины. Поглощение мощности происходит за счет друдевских потерь, потерь на фононах в КЯ и барьерах, в результате межподзонных переходов электронов в валентной зоне, межзонных переходов электронов из валентной зоны в зону проводимости, а также за счет затухания Ландау (внутризонного поглощения плазмонов электронами). Выделение мощности происходит за счет переходов электронов из зоны проводимости в валентную зону. Суммарная плотность мощности, поглощаемая КЯ, равна:

$$P_{QW}(\omega, \mathbf{q}) = 2|E_0|^2 \omega \operatorname{Im} \left[\chi_{\text{tot}}(\omega, \mathbf{q}) \right], \qquad (4)$$

где E_0 — величина компоненты электрического поля, лежащая в плоскости КЯ.

Мощность, поглощаемая единицей площади барьера за счет потерь на фононах, равна:

$$P_B(\omega) = 2|E_0|^2 \omega \operatorname{Im}\left[\frac{\kappa_B(\omega)}{4\pi Q} \left(1 + q^2/Q^2\right)\right].$$
(5)

Используя выражение для вектора Пойнтинга, можно получить выражение для потока энергии плазмонфононов в структуре с одной КЯ:

$$I(\omega, \mathbf{q}) = \frac{\omega q}{2\pi Q^3} \operatorname{Re} \left[\kappa_B(\omega) \right] |E_0|^2.$$
 (6)

Разделив на (6) сумму (4) и (5), получаем выражение для коэффициента поглощения плазмон-фононов:

$$\alpha(\omega, \mathbf{q}) = \frac{4\pi Q^3}{q \operatorname{Re}\left[\kappa_B(\omega)\right]} \operatorname{Im}\left[\chi_{\operatorname{tot}}(\omega, \mathbf{q}) + \frac{\kappa_B(\omega)}{4\pi Q} \left(1 + \frac{q^2}{Q^2}\right)\right].$$
(7)

В области частот, где данная величина отрицательная, плазмон-фонон усиливается. Удобнее рассматривать величину $G(\omega, \mathbf{q}) = -\alpha(\omega, \mathbf{q})$, называемую коэффициентом модового усиления.

Зависимости коэффициента усиления от частоты, рассчитанные с использованием формулы (7), приведены на рис. 3. Концентрации неравновесных носителей, при которых найдены спектры коэффициентов модового усиления плазмон-фононов, приведенные на рис. 3, чуть больше пороговых и равны для структуры с шириной КЯ 5 нм $n = 1.74 \cdot 10^{11}$ см⁻² при $T_{\rm eff} = 4.2$ К и $n = 3.49 \cdot 10^{11}$ см⁻² при $T_{\rm eff} = 77$ К. Для структуры с шириной КЯ 5.3 нм концентрации равны $n = 0.6 \cdot 10^{11}$ см⁻² при $T_{\rm eff} = 4.2$ К и $n = 1.9 \cdot 10^{11}$ см⁻² при $T_{\rm eff} = 77$ К.

Рис. 3. Спектры усиления плазмон-фононов, вычисленные для двух эффективных температур неравновесных носителей в структурах с КЯ шириной 5 и 5.3 нм: *a* — соответствует *T*_{eff} = 4.2 K, *b* — соответствует *T*_{eff} = 77 K.

Из рис. З видно, что при уменьшении эффективной ширины запрещенной зоны с 35 до 25 мэВ становится возможным усиливать более длинноволновые плазмонфононы. Кроме того, при увеличении ширины КЯ существенно уменьшаются пороговые концентрации неравновесных носителей.

Увеличение T_{eff} приводит к увеличению пороговой концентрации. Это можно объяснить тем, что при повышении эффективной температуры неравновесных носителей увеличится электронная заселенность состояний над квазиуровнями Ферми. Вследствие непараболичности электронного спектра плотность электронных состояний увеличивается с ростом энергии электрона в зоне проводимости и уменьшается в валентной зоне. Это приведет к уменьшению разности квазиуровней Ферми при повышении T_{eff} при фиксированной концентрации носителей. Следовательно, уменьшится число межзонных переходов электронов, дающих вклад в усиление плазмон-фононов. К такому же следствию приводит и уменьшение заселенности электронных состояний под квазиуровнями Ферми с ростом эффективной температуры неравновесных носителей. Кроме того, увеличение эффективной температуры неравновесных носителей приведет к увеличению затухания Ландау. Это объясняется тем, что при повышении температуры над квазиуровнем Ферми в зоне проводимости появится больше электронов, способных участвовать в процессе внутризонного поглощения плазмон-фононов. Поэтому пороговая концентрация растет с увеличением температуры.

3. Заключение

В работе проведено сравнение характеристик плазмон-фононов высокочастотных ветвей в гетероструктурах с квантовыми ямами с шириной запрещенной зоны 35 и 25 мэВ, выращенных на плоскости (013). Показано, что уменьшение ширины запрещенной зоны до 25 мэВ приводит к трехкратному уменьшению пороговой концентрации неравновесных носителей при эффективной температуре неравновесных носителей 4.2 К и двукратному — при 77 К. Плазмон-фононы высокочастотной ветви с малыми волновыми векторами имеют меньший коэффициент отражения от края структуры по сравнению с плазмон-фононами с большими волновыми векторами. Увеличение эффективной температуры неравновесных носителей приводит к увеличению пороговой концентрации.

Отметим, что спектр плазмон-фононов в рассмотренных структурах в основном определяется электронами, поскольку они обладают большей подвижностью по сравнению с дырками. Спектры электронов в зоне проводимости структур, выращенных на плоскостях (001) и (013) и имеющих одинаковую ширину запрещенной зоны, отличаются слабо. Поэтому выводы, полученные в этой работе об оптимальной ширине запрещенной зоны ~ 25 мэВ для генерации плазмон-фононов справедливы и для структур, выращенных на плоскости (001).

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 22-12-00310).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M.S. Vitiello, G. Scalari, B. Williams, P. De Natale. Opt. Express, 23, 5167 (2015).
- [2] K.V. Maremyanin, A.V. Ikonnikov, L.S. Bovkun, V.V. Rumyantsev, E.G. Chizhevskii, I.I. Zasavitskii, V.I. Gavrilenko. Semiconductors, 52, 1590 (2018).

- [3] K. Kapralov, G. Alymov, D. Svintsov, A. Dubinov. J. Phys.: Condens. Matter, **32**, 065301 (2019).
- S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, S. Ganichev, J. Electron. Mater., 39, 918 (2010).
- [5] N. Mikhailov, R. Smirnov, S. Dvoretsky, V. Sidorov, Y.G. Sidorov, V. Shvets, E. Spesivtsev, S. Rykhlitski. Int. J. Nanotechnol., 3, 120 (2006).
- [6] V.Ya. Aleshkin, A.A. Dubinov, V.I. Gavrilenko, F. Teppe. J. Optics, 23, 115001 (2021).
- [7] Ю. Петер, М. Кардона. Основы физики полупроводников (М., Физматлит, 2002).
- [8] J. Baars, F. Sorger. Solid State Commun., 10, 875 (1972)
- [9] D.N. Talwar, M. Vandevyver. J. Appl. Phys., 56, 1601 (1984)
- [10] В.Я. Алешкин, А.А. Дубинов, В.И. Гавриленко, С.Г. Павлов, Н.-W. Hubers. ФТТ, 64, 173 (2022).
- [11] V.Ya. Aleshkin, G. Alymov, A.A. Dubinov, V.I. Gavrilenko, F. Teppe, J. Phys. Commun., 4, 115012 (2020).
- [12] V.Ya. Aleshkin, A.A. Dubinov, V.I. Gavrilenko, F. Teppe. Appl. Optics, 60, 8991 (2021).
- [13] S.V. Morozov, V.V. Rumyantsev, M.S. Zholudev, A.A. Dubinov, V.Ya. Aleshkin, V.V. Utochkin, M.A. Fadeev, K.E. Kudryavtsev, N.N. Mikhailov, S.A. Dvoretskii, V.I. Gavrilenko, F. Teppe. ACS Photonics, 8, 3526 (2021).
- [14] V.V. Rumyantsev, A.A. Dubinov, V.V. Utochkin, M.A. Fadeev, V.Ya. Aleshkin, A.A. Razova, N.N. Mikhailov, S.A. Dvoretsky, V.I. Gavrilenko, S.V. Morozov. Appl. Phys. Lett., **121**, 182103 (2022).
- [15] M. Zholudev, F. Teppe, M. Orlita, C. Consejo, J. Torres, N. Dyakonova, M. Czapkiewicz, J. Wróbel, G. Grabecki, N. Mikhailov, S. Dvoretskii. Phys. Rev. B, 86, 205420 (2012).
- [16] M. Grynberg, R. Le Toullec, M. Balkanski. Phys. Rev. B, 9, 517 (1974).
- [17] J. Polit. Bull. Polish Acad. Sci. Techn. Sci., 59, 331 (2011).
- [18] G. Fasol, N. Mestres, H.P. Hughes, A. Fischer, K. Ploog. Phys. Rev. Lett., 56, 2517 (1986).

Редактор Г.А. Оганесян

Optimization of the single quantum well CdHgTe/HgTe heterostructure parameters for the plasmon-phonons generation

V.Ya. Aleshkin, A.O. Rudakov, A.A. Dubinov

Institute for Physics of Microstructures of the Russian Academy of Sciences, 603087 Afonino, Nizhny Novgorod region, Kstovsky district, Russia

Abstract Devoted to the choice of the optimal quantum well band gap for the generation of two-dimensional plasmon phonons in CdHgTe/HgTe heterostructures. It is shown that the optimal effective band gap is a band gap that slightly exceeds the energy of a longitudinal optical phonon in the barrier.