05,13

Спиновый угол Холла в гетероструктурах иридат/манганит

© К.И. Константинян¹, Г.Д. Ульев^{1,2}, Г.А. Овсянников¹, В.А. Шмаков¹, А.В. Шадрин^{1,3}, Ю.В. Кислинский¹

¹ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия

² Национальный исследовательский университет "Высшая школа экономики",

Москва, Россия

³ Московский физико-технический институт (Национальный исследовательский университет),

Долгопрудный, Россия

E-mail: karen@hitech.cplire.ru

Поступила в Редакцию 17 апреля 2023 г. В окончательной редакции 17 апреля 2023 г. Принята к публикации 11 мая 2023 г.

Представлены результаты экспериментального определения спинового угла Холла θ_{SH} в гетероструктуре SrIrO₃/La_{0.7}Sr_{0.3}MnO₃ с нанометровой толщиной пленок. Определенная из продольного магнетосопротивления величина спинового угла Холла составила $\theta_{SH}^L \approx 0.04 \pm 0.01$, а из поперечного $\theta_{SH}^T \approx 0.35 \pm 0.06$. При понижении температуры от комнатной до T = 165 К величина поперечного магнетосопротивления спадала, а при T < 150 К не обнаруживалась в пределах ошибки измерений. Для сравнения были проведены измерения одиночной пленки SrIrO₃, на которой магнетосопротивление отсутствовало.

Ключевые слова: спиновый угол Холла, спиновое магнетосопротивление, спин-орбитальное взаимодействие, тонкопленочная гетероструктура, иридат стронция, манганит.

DOI: 10.21883/FTT.2023.07.55841.13H

1. Введение

Преобразование зарядового тока I_Q в спиновый ток I_S в F/N структурах (F-ферромагнетик, N-металл) за счет прямого спинового эффекта Холла (ПСЭХ) и обратный процесс — преобразование ортогонально направленного I_S в I_Q за счет обратного спинового эффекта Холла (ОСЭХ) характеризуется спиновым углом Холла θ_{SH} [1]:

$$I_{Q} = \theta_{\rm SH} \, \frac{2e}{\hbar} \, [\mathbf{n} \times I_{S}], \tag{1}$$

где *е* — заряд электрона, \hbar — постоянная Планка, **n** единичный вектор спинового момента в направлении из ферромагнетика F в металл N. Известны работы (см., например, [2,3] и ссылки в них), в которых параметр $\theta_{\rm SH}$ оценивался для F/N структур, образованных из железо-иттриевого граната (YIG), пермаллоя, кобальт содержащего ферромагнетика и "тяжелого" металла (например, Pt, Ta, W), в условиях, когда прецессия намагниченности и генерация спинового тока I_S обеспечивалась спиновой накачкой при ферромагнитном резонансе (Φ MP). В то же время, величину θ_{SH} можно извлечь из измерений спинового магнетосопротивления (SMR) [3], снимая угловые зависимости SMR [4] F/Nструктур. При замене металла на оксид SrIrO₃ (SIO), обладающим высокой энергией спин-орбитального взаимодействия $E_{\rm SO} \sim 0.4 \, {\rm eV}$ [5], сообщалось об увеличении параметра $\theta_{\rm SH}$ [6–8]. Такие работы проводилось большей частью на структурах, полученных ex situ, например, SrIrO₃/Py [6,7], SrIrO₃/Co_{1-x}Tb_x [8], в то же время, свойства границы раздела N материала с ферромагнетиком

имеют важное значение. В настоящее время большое внимание уделяется оксидным гетероструктурам с эпитаксиальной границей раздела между ферромагнетиком и немагнитным материалом [4,9]. В данной работе сообщается об экспериментальном исследовании тонкопленочной гетероструктуры SrIrO₃/La_{0.7}Sr_{0.3}MnO₃ с *in situ* нанесенными пленками SIO и LSMO (La_{0.7}Sr_{0.3}MnO₃). Изготовленная с помощью фотолитографии геометрия образца позволяла проводить измерения как "продольного", так и "поперечного" магнетосопротивления SMR.

2. Гетероструктуры и методика измерений

Тонкие пленки SIO (толщиной единиц nm) и LSMO (десятков nm) осаждались на монокристаллические подложки (110) NdGaO₃(NGO) с помощью радиочастотного магнетронного распыления при высокой температуре в атмосфере кислорода [4]. Наблюдался эпитаксиальный рост пленок "куб на куб": (001)SIO||(001)LSMO||(110)NGO и [100]SIO||[100]LSMO||[001]NGO.

На рис. 1 показана геометрия образца на основе гетероструктуры SIO/LSMO и направление задания тока *I* в пленку SIO и внешнего магнитного поля *H*. Измерения SMR проводились малошумящим фазочувствительным частотно-избирательным усилителем на частоте F = 1.072 kHz, время накопления выходного сигнала (постоянная интегрирования) $\tau = 30$ ms. Магнитное поле *H* задавалось катушками Гельмгольца управляемым двухполярным источником задания тока до

Рис. 1. Топология образца на основе гетероструктуры SrIrO₃/La_{0.7}Sr_{0.3}MnO₃ на подложке (110)NdGaO₃, типичные значения толщин: $d_{SIO} = 10$ nm, $d_{LSMO} = 30$ nm. Ширина гетероструктуры $100 \,\mu$ m, расстояние между выводами напряжения составляли значение 1.5 mm.

 $I_H = 3-5 \, \text{A}$, позволяющим пошагово изменять поле *H* от 0 до $+H_{\max}$ и обратно до $-H_{\max}$ с возвратом к H = 0, шаг $\Delta H = H_{\text{max}}/N$ варьировался N = 200-1500. Величина сопротивления R(H) регистрировалась автоматизированной системой записи параметров H, V1 или V2 и температуры T. Угловые зависимости SMR проводились вращением подложки в плоскости X-Y, изменяя угол ϕ между направлением задания тока *I* и внешним магнитным полем Н. Для определения "продольного" сопротивления $R_L = V_1/I$ напряжение V_1 снималось вдоль направления задания тока I (вывод V_1); для "поперечного" $R_T = V_2/I$ — с выводов V_2 (см. рис. 1). Оцифровка выходного аналогового сигнала проводилась по *n* = 400 отсчетам, позволяющая извлечь полезный сигнал, применяя радиофизические методы обработки шумовых сигналов [10]. Для увеличения отношения сигнал/шум измерялись m = 1 - 10 зависимостей R(H)по каждому углу ϕ .

3. Результаты измерений и обсуждение

На рис. 2 приведены зависимости от поля H изменения сопротивления $\Delta R = R(H) - R(H = 0)$, нормированные на $R_0 = R(H = 0)$, для поперечного SMR $\Delta R_T/R_0^T$ (рис. 2, *a*), продольного $\Delta R_L/R_0^L$ (рис. 2, *b*) гетерострук-

туры SIO/LSMO, а также $\Delta R/R_0$ для одиночной пленки SIO, изготовленной отдельно на подложке NdGaO₃ (рис. 2, *c*). Все зависимости на рис. 2 получены при комнатной температуре $T \approx 300$ К. Снимались серии зависимостей $\Delta R_T/R_0^T$ и $\Delta R_L/R_0^L$ от угла φ между магнитным полем *H* и током I = 0.5 mA. На рис. 2, *a* и рис. 2, *b* приведены зависимости продольного и поперечного SMR от магнитного поля для двух углов φ , соответствующих максимальному и минимальному изменению сопротивления. У одиночной пленки SIO магнетосопротивление отсутствовало (см. рис. 2, *c*), про анизотропное магнетосопротивление пленки LSMO нами сообщалось в работе [4].

Для определения θ_{SH} через зависящие от угла φ параметры $\Delta R_L(H)$ и $\Delta R_T(H)$ (см. рис. 3) использовались выражения (2)–(4) [3]:

$$\left(\frac{\Delta R_L}{R_0}\right) = -\theta_{\rm SH}^2 \, \frac{2\lambda_{\rm SIO}}{d_{\rm SIO}} + \frac{1}{2} \, r_1 (1 + \cos 2\varphi), \qquad (2)$$

$$r_{1} = \theta_{\rm SH}^{2} \frac{\lambda_{\rm SIO}}{d_{\rm SIO}} \operatorname{Re} \frac{2\lambda_{\rm SIO}\rho_{\rm SIO}(\operatorname{Re} G^{\uparrow\downarrow} + i\operatorname{Im} G^{\uparrow\downarrow})}{1 + 2\lambda_{\rm SIO}\rho_{\rm SIO}(\operatorname{Re} G^{\uparrow\downarrow} + i\operatorname{Im} G^{\uparrow\downarrow})}, \quad (3)$$

$$\left(\frac{\Delta R_T}{R_0}\right) = \frac{r_1}{2}\sin 2\varphi,\tag{4}$$

где $d_{\rm SIO}$ — толщина, $\rho_{\rm SIO}$ — удельное сопротивление и $\lambda_{\rm SIO}$ — длина спиновой диффузии пленки SIO. Для оценки величины реальной части спиновой проводимости границы (spin mixing

Рис. 2. Нормированные на $R_0 = R(H = 0)$ зависимости изменения сопротивления $\Delta R/R_0$ от поля H при T = 300 К: a — поперечное $\Delta R_T/R_0$ гетероструктуры SIO/LSMO, зависимость снята при угле $\varphi = 140^\circ$ (I) и $\varphi = 210^\circ$ (2); b — продольное $\Delta R_L/R_0$ зависимость при $\varphi = 100^\circ$ (I) и $\varphi = 200^\circ$ (2). c — $\Delta R/R_0$ для одиночной пленки SIO. При изменении угла φ значение $\Delta R = 0$ не менялось.

conductance) использовалось упрощенное соотношение $\operatorname{Re} g^{\uparrow\downarrow} = \operatorname{Re} G^{\uparrow\downarrow}/(h/e^2) \approx (h/e^2)/(\rho_{\mathrm{SIO}}\lambda_{\mathrm{SIO}})$ [11–13]. Для оценки Im $g^{\uparrow\downarrow}$ использовался подход [11,13]. При $\lambda_{\text{SIO}} = 1 \text{ nm}$ [14], $\rho_{\text{SIO}} = 3 \cdot 10^{-4} \,\Omega \cdot \text{сm}$, получаем $\operatorname{Re}g^{\uparrow\downarrow} \approx 9 \cdot 10^{18} \,\mathrm{m}^{-2}$, что по порядку величины совпадает с полученному в [14]. Для оценки мнимой части спиновой проводимости Im $G^{\uparrow\downarrow}$ были использованы результаты [11], что дало значение $\text{Im}\,g^{\uparrow\downarrow} \approx 10^{19}\,\text{m}^{-2}$ для случая SIO/LSMO гетероструктуры с намагниченностью LSMO пленки $M = 370 \, \text{G}$. Оценка минимального значения $\operatorname{Im} G^{\uparrow\downarrow}$ оказалась соразмерной с величиной ReG¹ для рассмотренного здесь случая с $d_{\text{SIO}} = 10 \,\text{nm}, \ d_{\text{LSMO}} = 30 \,\text{nm}.$ Это указывает, что при определении спинового угла Холла гетероструктуры следует учитывать вклад Im $G^{\uparrow\downarrow}$. При определении $heta_{
m SH}$ из измерений $\Delta R_L(\phi)$ LSMO пленка дает вклад из-за наличия анизотропного магнетосопротивления $R_{\rm AMR} \sim (\Delta R_{\rm AMR}/R_0) \cos 2\varphi$. В результате, измеряемая величина SMR в продольном случае содержит две компоненты ΔR_L от SMR и R_{AMR} [4,11]. Согласно [15] AMR для LSMO пленки и величины R₀ в продольном и в поперечном случаях заметно отличаются, что в случае гетероструктуры SIO/LSMO проявилось на отношении $R_0^L/R_0^T = 26.5$ при температуре близкой к комнатной. Следует учесть, что помимо влияния AMR пленки LSMO на измеряемую величину SMR в SIO/LSMO, между слоями SIO и LSMO образуется шунтирующий переходной слой [16], понижающий амплитуду $\Delta R/R_0$. Из-за большого отличия $R_0^L \gg R_0^T$ влияние шунтирую-

Рис. 3. Угловые зависимости нормированных значений SMR снятые для поля $H_{\text{max}} = 100$ Ое при T = 300 K, эксперимент — квадратные символы, аппроксимация — сплошная линия $\sim \sin 2\varphi$. a — поперечное $\Delta R_L/R_0$, b — продольное $\Delta R_L/R_0$. Ошибка измерений для продольного случая приведена на рисунке, для продольного SMR ошибка меньше размера символов.

Рис. 4. Температурная зависимость нормированного поперечного SMR $\Delta R_T/R_0$. Кривая *I* соответствует углу $\varphi = 210^\circ$ при котором $\Delta R_T/R_0$ максимальна, кривая *2* снята при $\varphi = 275^\circ$. На вставке приведены температурные зависимости продольного и поперечного сопротивлений при H = 0.

щего слоя больше сказывается в продольном случае и амплитуда изменения $\Delta R_L/R_0^L$ от φ (см. рис. 3) оказалась значительно меньше, чем в поперечной конфигурации $\Delta R_T/R_0$. Оценка спинового угла Холла из поперечного SMR, используя выражение (4) из амплитуды $\Delta R_T/R_0$ при sin 2φ , приведенной на рис. 3, *a*, дает $\theta_{SH}^T \approx 0.35 \pm 0.06$. Из продольного магнетосопротивления (рис. 3, *b*) с учетом вклада анизотропного магнетосопротивления от LSMO пленки [4] получаем на порядок меньшее значение $\theta_{SH}^L \approx 0.04 \pm 0.01$.

При охлаждении гетероструктуры SIO/LSMO до температуры жидкого азота $T = 77 \, \text{K}$ величина SMR уменьшалась. На рис. 4 приведена температурная зависимость нормированного поперечного SMR для двух случаев, когда $\Delta R_T/R_0$ при T = 300 К максимален при $\varphi = 210^\circ$ и минимален при $\phi = 275^{\circ}$. При низких температурах (T < 150 K) ошибка измерений (на рисунке не приведена) не позволяла извлечь достоверные данные. При $T = 77 \, \text{K}$ ни поперечного, ни продольного SMR обнаружить не удавалось. Температурные зависимости продольного R_L и поперечного R_T сопротивлений гетероструктуры SIO/LSMO, снятые при H = 0 приведена на вставке. В целом, характер температурной зависимости $\Delta R_T/R_0$ схож с $R_T(T)$, однако исходя из теории [3] температурное изменение проводимости пленки $ho_{
m SIO}$ не объясняет спад $\Delta R_T/R_0$ с понижением температуры. Известно, что намагниченность *М* пленки LSMO с понижением температуры растет, но как это сказывается на параметре r_1 (3) не ясно. Заметим, температурные зависимости характеристик SMR, длины спиновой диффузии, спинового угла Холла рассматривались в работах [17-19] на структурах, отличных от рассматриваемых в данной работе, а также и для случая изменения спинового момента в SIO/LSMO [20] под влиянием токовых импульсов.

4. Заключение

Из угловых зависимостей поперечного и продольного спинового магнетосопротивления получены оценки спинового угла Холла θ_{SH} при T = 300 K для тонкопленочной гетероструктуры SrIrO₃/La_{0.7}Sr_{0.3}MnO₃, эпитаксиально осажденной на подложку NdGaO₃. Обнаружено, что амплитуда углового изменения поперечного магнетосопротивления существенно превышает продольного, на величину которого сказывается, скорее всего, шунтирующее влияние анизотропного магнетосопротивления и сопротивление границы раздела между пленками SrIrO₃ и La_{0.7}Sr_{0.3}MnO₃. С понижением температуры ниже комнатной величина поперечного спинового магнетосопротивления уменьшается.

Благодарности

Авторы благодарны А.А. Климову, Т.А. Шайхулову, Е.А. Калачеву за помощь в проведении эксперимента и полезные обсуждения.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 23-49-10006). В работе использовалось оборудование Уникальной научной установки #352529 "Криоинтеграл" (соглашение № 075-15-2021-667 Минобрнауки России).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- E. Saitoh, M. Ueda, H. Miyajima, S. Tatara. Appl. Phys. Lett. 88, 182509 (2006).
- [2] J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth. Rev. Mod. Phys. 87, 1213 (2015).
- [3] Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, Sebastian T.B. Goennenwein, E. Saitoh, Gerrit E.W. Bauer. J. Phys.: Condens. Matter 28, 103004 (2016).
- [4] К.И. Константинян, Г.А. Овсянников, А.В. Шадрин, В.А. Шмаков, А.М. Петржик, Ю.В. Кислинский, А.А. Климов. ФТТ 64, 10, 1429 (2022).
- [5] L. Zhang, B. Pang, Y.B. Chen, Y. Chen. Critical Rev. Solid State Mater. Sci. 43, 5, 367 (2018)
- [6] T. Nan, T.J. Anderson, J. Gibbons, K. Hwang, N. Campbell, H. Zhou, Y.Q. Dong, G.Y. Kim, D.F. Shao, T.R. Paudel, N. Reynolds, X.J. Wang, N.X. Sun, E.Y. Tsymbal, S.Y. Choi, M.S. Rzchowski, Y.B. Kim, D.C. Ralph, C.B. Eom. Proc. Nat. Acad. Sci. USA **116**, 16186 (2019).

- [7] A.S. Everhardt, M. Dc, X. Huang, S. Sayed, T.A. Gosavi, Y. Tang, C.-C. Lin, S. Manipatruni, I.A. Young, S. Datta, J.-P. Wang, R. Ramesh. Phys. Rev. Mater. 3, 051201 (2019).
- [8] H. Wang, K.-Y. Meng, P. Zhang, J.T. Hou, J. Finley, J. Han, F. Yang, L. Liu. Appl. Phys. Lett. **114**, 232406 (2019).
- [9] X. Huang, S. Sayed, J. Mittelstaedt, J. Mittelstaedt, S. Susarla, S. Karimeddiny, L. Caretta, H. Zhang, V.A. Stoica, T. Gosavi, F. Mahfouzi, Q. Sun, P. Ercius, N. Kioussis, S. Salahuddin, D.C. Ralph, R. Ramesh. Adv. Mater. 2008269 (2021).
- [10] Н.А. Есепкина, Д.В. Корольков, Ю.В. Парийский. Радиотелескопы и радиометры. Наука, М. (1973) 416 с.
- [11] Г.А. Овсянников, К.И. Константинян, Е.А. Калачев, А.А. Климов. Письма в ЖТФ 48, 12, 44 (2022).
- [12] Ya. Tserkovnyak, A. Brataas, G.E.W. Bauer. Phys. Rev. Lett. 88, 117601 (2002).
- [13] J. Dubowik, P. Graczyk, A. Krysztofik, H. Głowinski, E. Coy, K. Załeski, I. Goscianska. Phys. Rev. Appl. 13, 054011 (2020).
- [14] S. Crossley, A.G. Swartz, K. Nishio, H.Y. Hwang. Phys. Rev. B 100, 115163 (2019).
- [15] T. Li, L. Zhang, X. Hong. J. Vac. Sci. Technol. A 40, 010807 (2022).
- [16] G.A. Ovsyannikov, T.A. Shaikhulov, K.L. Stankevich, Yu. Khaydukov, N.V. Andreev. Phys. Rev. B 102, 144401 (2020).
- [17] S.R. Marmion, M. Ali, M. McLaren, D.A. Williams, B.J. Hickey. Phys. Rev. B 89, 220404(R) (2014).
- [18] Y. Wang, P. Deorani, X. Qiu, J.H. Kwon, H. Yang. Appl. Phys. Lett. 105, 152412 (2014).
- [19] H. Wang, K.-Y. Meng, P. Zhang, J.T. Hou, J. Finley, J. Han, F. Yang, L. Liu. Appl. Phys. Lett. **114**, 232406 (2019).
- [20] L. Liu, G. Zhou, X. Shu, C. Li, W. Lin, L. Ren, C. Zhou, T. Zhao, R. Guo, Q. Xie, H. Wang, J. Zhou, P. Yang, SJ. Pennycook, X. Xu, J. Chen. Phys. Rev. B 105, 144419 (2022).

Редактор Д.В. Жуманов