01,03,12

Магнитные композиты на основе эпоксидной смолы с магнитными микро- и наночастицами оксида железа: фокус на магнитное детектирование

© Г.Ю. Мельников, В.Н. Лепаловский, А.П. Сафронов, И.В. Бекетов, А.В. Багазеев, Д.С. Незнахин, Г.В. Курляндская

Уральский федеральный университет, Екатеринбург, Россия E-mail: grisha2207@list.ru

Поступила в Редакцию 17 апреля 2023 г. В окончательной редакции 17 апреля 2023 г. Принята к публикации 11 мая 2023 г.

Представлены результаты исследования и сравнительного анализа структуры и магнитных свойств микро- и наночастиц оксида железа и композитов на основе эпоксидной смолы при различной массовой концентрации магнитных частиц (0, 5, 10, 30%). Сравнивались коммерческие микрочастицы Alfa Aesar и наночастицы, полученные методом электрического взрыва проволоки, позволяющим получать болыше партии наночастиц с заданными параметрами дисперсности в зависимости от выбранных технологических параметров. Проведено магнитоимпедансное детектирование полей рассеяния полученных композитов в виде цилиндров с использованием полоскового многослойного пленочного элемента [FeNi/Cu]₅/Cu/[FeNi/Cu]₅. Показана возможность определения положения наполненных магнитных композитов при различной массовой концентрации магнитных микро- или наночастиц с различными параметрами дисперсности ансамбля с помощью магнитоимпедансного детектирования.

Ключевые слова: магнитные частицы, наполненные магнитные композиты, магнитоимпедансный эффект, многослойные пленочные структуры.

DOI: 10.21883/FTT.2023.07.55829.22H

1. Введение

Магнитные микро- и наночастицы оксидов железа (МЧ) — хорошо изученные магнетики, интерес к которым продолжает возрастать ввиду их интересных особенностей с точки зрения физики магнитных материалов, технических и биомедицинских приложений [1-3]. Хотя большая часть медицинских приложений ориентирована на ансамбли магнитных наночастиц с очень узким распределением по размерам [2,4], а теоретические расчеты проводятся преимущественно для ансамблей идентичных суперпарамагнитных МЧ [5], на практике получение больших партий таких материалов затруднено [6]. При этом, если на уровне взаимодействия с нормальной клеточной мембраной или здоровой тканью требование узкого распределения по размерам критически важно, то в случае раковых клеток или сосудов, подверженных быстрому росту в процессе ангиогенеза, возможны варианты использования партий с более широким распределением МЧ по размерам, т.к. поры сосудов, снабжающих опухоль могут иметь размеры на порядок больше, чем сосуды в области здоровых тканей [7]. Кроме того, скопления МЧ в биологических образцах часто отражают особенности биологической структуры. Например, было установлено, что при определенных условиях взаимодействия электростатически стабилизированных водных суспензий на

основе МЧ маггемита с мультипотентными мезенхимальными стромальными клетками МЧ аккумулировали в митохондриях в виде больших агрегатов [8]. Поэтому важной задачей биомедицинских приложений является магнитное детектирование модельных агрегатов таких образований.

Частицы магнетита Fe₃O₄ — доступные магнитные материалы, которые могут быть получены в виде больших партий с различными параметрами дисперсности методом электрического взрыва проволоки (ЭВП) [4,9]. На их основе можно создавать магнитные композиты с различными магнитными характеристиками за счет изменения концентрации МЧ [10,11].

Частицы оксида железа применяются в адресной доставке лекарств, например, при тромбозе, где их связывают с лекарством — тромболитиком, а затем доставляют в область тромба, тем самым создавая терапевтически значимую локальную концентрацию, уменьшая побочные эффекты [12]. Повысить эффективность такого метода можно с помощью контроля концентрации магнитных частиц, доставляющих тромболитик в область терапии (тромба). Определение концентрации МЧ можно осуществить с помощью детектора на основе магнитоимпедансного эффекта, благодаря его высокой чувствительности к внешнему магнитному полю. Ранее мы показали эффективность детектирования модельного объекта в виде цилиндрического композита на основе эпоксидной смолы с коммерческими микрочастицами, средние размеры которых превышали 200 nm [11]. Однако для практических биоприложений, требующих доставки в кровотоке, необходимы наночастицы [7], оценка возможностей детектирования которых и будет представлена ниже.

Эпоксидная смола является одним из важных инженерных полимерных материалов, благодаря своей прочности, хорошим тепло- и электроизоляционным свойствам и т.д. На основе эпоксидной смолы можно получать композиционные материалы с различного рода наполнителями по типу нано- и микрочастиц, которые влияют на свойства композита [13,14].

Магнитный импеданс (МИ) — это явление изменения импеданса ферромагнитного проводника под действием внешнего магнитного поля при протекании по нему тока высокой частоты. В многослойных пленочных структурах была получена чувствительность до 300%/Ое [15,16]. Разработка МИ-сенсора для определения концентрации частиц при адресной доставке требует предварительных исследований на модельных образцах с теми же магнитными частицами. В более ранних работах была показана эффективность МИ-детектирования модельных композитов на основе эпоксидной смолы с коммерческими микрочастицами с очень высокой концентрацией МЧ около 30 wt.% [11]. Однако данные относительно возможности детектирования наполненных композитов с меньшими концентрациями либо наночастицами в качестве наполнителя в литературе отсутствуют.

В настоящей работе были исследованы структура и магнитные свойства двух партий МЧ магнетита с различными особенностями дисперсности, полученных методом ЭВП, и эпоксидных композитов на их основе с различным содержанием МЧ в полимерной матрице. С помощью прямоугольного пленочного МИ-элемента $[Fe_{21}Ni_{79}/Cu]_5/Cu/[Fe_{21}Ni_{79}/Cu]_5$ было проведено определение положения магнитных композитов в форме цилиндра в модельной геометрии, имитирующей геометрию тромба в кровеносном сосуде, а также построена калибровочная зависимость МИ-отклика от концентрации частиц в композите. Предложен сравнительный анализ всех полученных характеристик для композитов на основе коммерческих микрочастиц магнетита.

2. Методики измерений и образцы

В работе исследовались три типа частиц: А, С, FC. А — коммерческие микрочастицы (фазы Fe_3O_4 — 94 wt.%, Fe_2O_3 — 1 wt.% и FeO(OH) — 5 wt.%) Alfa Aesar (Ward Hill, MA, USA). С помощью электрофизического метода ЭВП были получены две партии наночастиц с различными параметрами дисперсности: С и FC. Для био- и целого ряда технологических приложений размер и возможность получения заданных параметров дисперсности партии являются критическими параметрами, определяющими возможность создания устройства

или работы по протоколу, установленному регулирующими документами [7]. Метод электрического взрыва проволоки удовлетворяет данным требованиям [9–10].

На основе этих трех партий МЧ (A, C и FC) были синтезированы наполненные магнитные композиты. Они представляли собой эпоксидную смолу с различным массовым содержанием частиц: 0%, 5%, 10%, 30%. В качестве полимерной матрицы для изготовления композитов была использована эпоксидно-диановая смола KDA (Chimex Ltd., Россия). Сначала смолу смешали с отвердителем — триэтилентетрамином (Epital, Россия) в соотношении 6:1 по весу. После этого навески порошков смешивали с жидкой композицией эпоксидной смолы при температуре 25°C в течение 10 min. Затем смесь помещали в форму из полиэтилена для отвердения в течение 2h при 70°С. Магнитные композиты имели форму цилиндров с диаметром 5 mm и высотой 4 mm. Структурные свойства исследовались с помощью рентгенофазового анализа (РФА) и сканирующей электронной микроскопии (СЭМ). В случае композитов, во избежание накопления поверхностного заряда, на поверхность исследуемого образца дополнительно напылялась тонкая проводящая пленка углерода, толщина которой составляла около 20 nm. Удельная поверхность исследовалась с использованием метода БЭТ (метод Брунауэра-Эммита-Теллера). Исследования магнитных свойств композитов были проведены с помощью вибрационного магнетометра 7407 VSM (Lake Shore Cryotronics, CША) при комнатной температуре. Стандартные термомагнитные кривые типа ZFC-FC [9] были измерены на установке СКВИДмагнитометр MPMS XL7.

Следует отдельно пояснить необходимость скрупулезной аттестации структуры и магнитных свойств как МЧ, так и композитов на их основе. При аттестации наноматериалов, в особенности ориентированных на биоприложения, из-за проявления такого явления, как полидисперсность [7], требуется определение одного и того же параметра несколькими независимыми методиками. Так в случае среднего размера частиц, особенно для партий с широким распределением по размерам, сравнительно анализируют данные микроскопии, РФА, БЭТ, а также можно воспользоваться дополнительными магнитными методами. В случае наночастиц магнетита анализ особенностей перехода Вервея [17] с помощью кривых ZFC-FC может быть очень полезен для понимания параметров структуры и размеров частиц ансамбля.

Магнитоимпедансный эффект многослойной пленочной [Fe₂₁Ni₇₉(100 nm)/Cu(3 nm)]₅/ структуры Cu(500 nm)/[Fe₂₁Ni₇₉(100 nm)/Cu(3 nm)]₅ (геометрические размеры $10.0 \times 0.5 \,\text{mm}$) измерялся с помощью анализатора импеданса Agilent HP E 4991 А при комнатной температуре. Внешнее магнитное поле, создаваемое катушками Гельмгольца, прикладывалось влоль длинной стороны образцов (продольный магнитный импеданс). Диапазон частот переменного

Рис. 1. Схема детектирования полей рассеяния наполненных магнитных композитов в виде цилиндра.

тока, проходящего через элемент, находился в интервале частот от 1 MHz до 400 MHz.

МИ-отклик детектировался в конфигурации, востребованной в биоприложениях, а именно — для тестовых экспериментов, имитирующих прохождение тромба по кровеносному сосуду. В качестве объектов, имитирующих тромб в коронарном сосуде, были выбраны магнитные композиты, магнитный сигнал которых детектировался с помощью МИ-элемента. Магнитный композит в виде цилиндра располагался на расстоянии порядка 1.10 ± 0.25 mm над поверхностью элемента и мог передвигаться перпендикулярно его длинной стороне. При этом варьировалось положение центра магнитного композита относительно пленочного элемента по оси ОХ (рис. 1), шаг составлял ± 1 mm.

Для описания результатов МИ-исследований использовали полевую зависимость магнитоимпедансного соотношения (МИ-соотношения): $\Delta Z/Z(H) = 100\% \cdot (Z(H) - Z(H_{\text{max}})/Z(H_{\text{max}})$, где $H_{\text{max}} = 100$ Ое — поле, в котором происходит магнитное насыщение пленочного образца при приложении внешнего магнитного поля вдоль его длинной стороны.

Магнитоимпедансный отклик (МИ-отклик) элемента в присутствии полей рассеяния магнитного композита определялся как $\Delta(\Delta Z/Z) = \Delta Z/Z_{control} - \Delta Z/Z_{position}$, где $\Delta Z/Z_{control}$ — МИ-соотношение, измеренное в присутствии контрольного образца, $\Delta Z/Z_{position}$ — МИ-соотношение, в присутствии композита в определенном положении. Чувствительность к внешнему магнитному полю определялась как $S = (\Delta Z/Z(H_1)) - \Delta Z/Z(H_2)/(H_1 - H_2)$, где H_1 и H_2 находятся в диапазоне линейной зависимости МИ-соотношения от магнитного поля.

3. Результаты и их обсуждение

По результатам рентгенофазового анализа, частицы А имеют фазовый состав: 92% Fe₃O₄, 8% α -FeO(OH). Размер зерна, определенный с помощью формулы Шеррера, составляет 240 nm для Fe₃O₄ и 90 nm для α -FeO(OH). Фазовый состав частиц С и FC примерно одинаков: 82% Fe₃O₄, 15% Fe₂O₃, 3% α -Fe. Ранее было показано, что

небольшое количество фазы α -Fe может присутствовать в МЧ магнетита, полученных методом ЭВП (ЭВП-МЧ), в качестве небольших ядер крупных частиц, которые не окислились в процессе получения материала. При этом основной объем данных частиц занимает фаза Fe₃O₄ [18]. Фаза α -Fe составляет малую часть, однако ее вклад в магнитные свойства существенен, т. к. намагниченность насыщения чистого железа значительно выше намагниченности насыщения Fe₃O₄. Средний размер ЭВП-МЧ Fe₃O₄ и Fe₂O₃, по формуле Шеррера, примерно соответствует 150 nm (рис. 2), хотя некоторые особенности формы кривых у основания пиков указывают на возможность существования большего количества очень мелких МЧ в случае образца FC, что также подтверждается данными БЭТ (см. ниже).

Одной из особенностей кристаллической структуры части магнетита является наличие перехода Вервея [9,17,18]. На рис. 3 представлены зависимости удельного магнитного момента от температуры, полученные при охлаждении в нулевом поле (ZFC) и при охлаждении в присутствии поля напряженностью 100 Oe (FC). Во время процесса ZFC образец нагревался до температуры 2 К в нулевом поле, затем прикладывалось поле напряженностью 100 Ое и образец нагревался до 390 К, при этом измерялся магнитный момент. Процесс FC проводился аналогичным образом, но охлаждение производилось в поле 100 Ое. Кривые ZFC частиц обоих типов (С и FC) имеют скачок в области около 100 К, который соответствует переходу Вервея (переход магнетита из моноклинной сингонии в кубическую) для частиц магнетита с совершенной малодефектной структурой при диаметре около 50 nm и более [8,17,18]. При увеличении температуры 100 К кривые ZFC не имеют максимума магнитного момента, т.е. частицы имеют широкий разброс по размерам.

Рис. 2. Рентгенофазовый анализ порошков А, С и FC. В скобках указаны индексы Миллера.

Рис. 3. Кривые ZFC-FC для частиц типа: (a) A, (b) C, (c) FC.

Диаметр частиц разного типа, определенный разными методами (указаны в скобках)

Образец	d_w (P Φ A), nm	d_w (C \Im M), nm	d_n (CЭM), nm	d_w (БЭТ), nm
A	240	210	170	167
C	150	230	73	165
FC	150	120	20	46

Кривые ZFC и FC для частиц типа A совпадают при температуре выше 340 K и по мере ее уменьшения расходятся. В отличие от частиц C и FC, скачок при 100 K, соответствующий переходу Вервея, отсутствует (рис. 3, *a*). Это согласуется с результатами РФА, указывающими на некоторое несовершенство кристаллической структуры частиц типа A, даже при условии, что средний размер коммерческих микрочастиц магнетита выше, чем для ЭВП-МЧ (таблица).

Форма и размерные характеристики частиц всех типов были исследованы с помощью сканирующей электронной микроскопии. Распределение по размеру оценивалось по фотографиям СЭМ из выборки, состоящей из N0 частиц. Средний диаметр частиц оценивался по количественному распределению частиц $N/N_0 = N/N(d) \cdot 100\%$, где d — размер частиц, N(d) количество частиц с размером d. Количественное распределение частиц всех типов по размеру хорошо аппроксимируется логнормальным законом, из которого можно определить среднечисленный диаметр частиц d_n (СЭМ). Средневзвешенный размер d_w (СЭМ) можно оценить с помощью формулы: $d_w = (\Sigma N_i d_i^4)/(\Sigma N_i d_i^3)$, где N_i обозначает количество частиц с определенным диаметром d_i (таблица).

По фотографиям, полученным методом СЭМ, частицы типов С и FC имеют выраженную сферическую форму, в отличие от частиц A, форма которых отличается от сферической и иногда встречаются агломераты. Партия FC характеризуется наличием крупных частиц, вокруг которых преимущественно собираются мелкие, со средним размером $d_n = 20$ nm. Количество крупных частиц меньше, чем мелких, однако их объемная доля больше (рис. 4). Другой методикой оценки средневзвешенного диаметра является метод БЭТ. С его помощью была определена величина удельной поверхности S_{sp} для частиц всех типов, которая составляет для частиц типа А 6.9 m²/g, для С — 7.7 m²/g и для FC — 25.0 m²/g. Основную часть частиц С и FC составляют частицы магнетита (Fe₃O₄) и гематита (Fe₂O₃) плотность которых близка к 5.2 · 10⁶ g/m³. Таким образом, средневзвешенный диаметр частиц d_w (БЭТ) можно оценить по формуле $d_w = 6/(\rho \cdot S_{sp})$.

Средневзвешенный диаметр частиц А, определенный методом СЭМ, dw (СЭМ) равен 210 nm и близок к среднечисленному d_n (СЭМ), равному 170 nm. По количественной оценке, основная часть частиц С и FC намного меньше, чем А, однако в их выборке присутствуют крупные частицы. Это приводит к тому, что d_w (СЭМ) сильно отличается от d_n (СЭМ). Размер d_w (БЭТ) частиц FC и C выше, чем количественный dn (CЭМ), но ниже, чем весовой d_w (СЭМ) (таблица). В отличие от оценки размера методом СЭМ по распределению, метод БЭТ чувствителен к малым частицам, которые трудно количественно идентифицировать микроскопическими методами. С другой стороны, хотя весовые оценки по распределению позволяют учесть крупные частицы, количество анализируемых частиц в случае СЭМ ограничено выборкой (таблица).

Структурные свойства наполненных композитов были исследованы методом сканирующей электронной микроскопии (рис. 5). На фотографиях яркие точки соответствуют крупным частицам, что связано с более активным взаимодействием электронного пучка с оксидными частицами, чем с полимерной матрицей. Тусклые точки представляют собой мелкую фракцию частиц. В отличие

Рис. 4. Распределения по размеру и соответствующие СЭМ-изображения для частиц оксидов железа А, С, FC.

от партий A и C, частицы типа FC имеют большую часть мелкой фракции. При малых концентрациях (5%, рис. 5, e) мелкие частицы собираются в агрегаты, которые находятся друг от друга на определенном расстоянии. При увеличении концентрации до 30% частицы FC более однородно заполняют композит (рис. 5, f), чем, например частицы типа C (рис. 5, d).

Удельный магнитный момент магнитных частиц и композитов на их основе был измерен при комнат-

ной температуре с помощью VSM. Получены значения коэрцитивной силы H_c для частиц разного типа: A — $H_c = 60$ Oe, C — $H_c = 50$ Oe, FC — $H_c = 55$ Oe (рис. 6, b). Коэрцитивная сила для образцов композитов не зависит от весовой концентрации частиц и совпадает с коэрцитивной силой этих частиц. (рис. 6, c, d). С ростом концентрации остаточный удельный магнитный момент и удельный момент технического насыщения (в поле 5 kOe) линейно растет, что говорит о том, что

Рис. 5. Фотографии СЭМ магнитных композитов с весовой концентрацией 5% (*a*, *c*, *e*) и 30% (*b*, *d*, *f*) магнитных частиц разных партий: *a*, *b* — A; *c*, *d* — C; *e*, *f* — FC;

магнитные свойства частиц в композитах не изменяются (рис. 7). Частицы типа С показали самый низкий остаточный удельный магнитный момент ($m_r = 3.1 \text{ emu/g}$) и самый высокий удельный магнитный момент технического насыщения ($m_s = 82 \text{ emu/g}$). Частицы FC, напротив, имеют наибольший $m_r = 3.8 \text{ emu/g}$ и наименьший $m_s = 75 \text{ emu/g}$. Магнитный момент эпоксидной смолы без наночастиц незначителен (рис. 6, *a*), и им можно пренебречь. Таким образом, подробная аттестация ансамблей магнитных частиц, полученных различными способами или в различных условиях, является основой для понимания особенностей магнитного детектирования модельных образцов, полученных на их основе.

Магнитоимпедансное детектирование проводилось при частоте тока 127 MHz, поскольку данной частоте соответствовала максимальная чувствительность к внешнему магнитному полю (33%/Oe) в диапазоне полей от 2 до 5 Oe.

Рис. 6. Удельный магнитный момент магнитных частиц (*a*, *c*) и композитов с различной весовой концентрацией частиц (*b*, *d*): 100% — чистые частицы, 0% — эпоксидная смола без частиц.

При сближении магнитного композита с чувствительным элементом кривые МИ-соотношения сдвигаются в область больших полей, а максимальное значение (пик кривых) уменьшается. Подобная тенденция наблюдается для всех композитов и согласуется с результатами предыдущих работ [10,19].

Как было показано ранее [10], присутствие контрольного образца из чистой эпоксидной смолы не влияет на МИ-соотношение чувствительного элемента. В данном исследовании в качестве контроля при расчете МИ-отклика использовалось МИ-соотношение чувствительного элемента (кривая "МІ" на рис. 8, *a*). МИ-отклик на композиты с одинаковой концентрацией, но разным типом частиц совпадает. Полученные результаты имеют экспериментальные погрешности, на которые влияют несколько факторов. Один из них — шероховатость поверхности композитов, которые не подвергались дополнительной полировке во избежание загрязнения магнитными примесями. Возможна и незначительная неоднородность в распределении частиц наполнителя даже при тщательной подготовке композитов с наполнителем в виде ансамбля МЧ (рис. 8, b). Кроме того, в данных модельных экспериментах не использовалась автоматическая система перемещения образца в виде магнитного композита относительно чувствительного элемента, и погрешность определения положения была

Рис. 7. Зависимость удельного магнитного момента частиц и композитов на их основе от концентрации: (*a*) остаточный магнитный момент, (*b*) магнитный момент технического насыщения (в поле *H* = 5 kOe). Прямые — линейная аппроксимация методом наименьших квадратов.

Рис. 8. *а*) Полевая зависимость МИ-соотношения чувствительного элемента при разных положениях композита с тридцатипроцентным содержанием частиц типа C (в поле рисунка указано положение композита в ст; кривая "МІ" — МИ-соотношение элемента без композита). *b*) МИ-отклик чувствительного элемента при разных положениях композитов с различной концентрацией и типом частиц, в поле H = 4 Oe. *c*) Зависимость МИ-отклика от концентрации в поле H = 4 Oe при положении композита OX = 0 ст. *d*) Зависимость остаточного магнитного момента от МИ-отклика, рассчитанная по данным рис. 7, *a* и рис. 8, *c*. Прямые — линейная аппроксимация методом наименьших квадратов.

не ниже 0.25 mm. Полученный результат лишь отражает тот факт, что несмотря на заметные отличия средних размеров и параметров дисперсности использованных партий микро- и наночастиц, при совпадении основных магнитных характеристик МИ-отклики при детектировании модельных образцов совпадают.

Концентрационные зависимости МИ-отклика при положении OX = 0 сm, когда композиты были расположены над МИ-элементом, хорошо аппроксимируются линейной зависимостью, что можно использовать для определения неизвестной концентрации частиц в композитах по МИ-отклику (рис. 8, *c*). Исходя из графиков (рис. 7, *a* и 8, *c*), через концентрацию можно связать значения остаточного магнитного момента с МИ-откликом и таким образом по величине МИ-отклика определять остаточный магнитный момент композитов (рис. 8, *d*).

Полученные результаты сравнения особенностей структуры, параметров дисперсности, магнитных и МИ-свойств указывают на возможность использования ЭВП-наночастиц с широким распределением по размерам для создания модельных наполненных композитов и приложений, где востребован большой размер партии при сохранении возможности контроля параметров дисперсности за счет изменения технологических условий получения МЧ.

4. Заключение

Был проведен сравнительный анализ структуры, параметров дисперсности и магнитных свойств больших партий магнитных наночастиц магнетита, полученных методом электрического взрыва проволоки, и те же параметры, определенные для коммерческих микрочастиц магнетита. Установлено, что, несмотря на значительные различия средних размеров, определенных по удельной поверхности, их размерные параметры, определенные с помощью рентгенофазового анализа, различаются менее значительно. В коммерческих микрочастицах магнетита основной фазой является Fe₃O₄, и они имеют самый большой средний размер (около 240 nm), но их кристаллическая структура несовершенна и содержит большое количество дефектов, а в партиях ЭВП-МЧ С и FC присутствуют фазы Fe₃O₄, Fe₂O₃ и α-Fe, и их кристаллическая структура обладает более высокой степенью совершенства.

Несмотря на заметные различия средних размеров и параметров дисперсности партий микро- и наночастиц, при совпадении основных магнитных характеристик МИ-отклики при детектировании модельных образцов были близки друг к другу по результатам МИ-детектирования с помощью прямоугольного пленочного МИ-элемента [FeNi/Cu]₅/Cu/[FeNi/Cu]₅ в геометрии, имитирующей геометрию тромба в кровеносном сосуде. Полученные результаты важны для приложений и позволяют предложить схемы детектирования, для которых можно использовать ансамбли МЧ с широким распределением по размерам.

Благодарности

Авторы благодарят А. Larranaga, S. Fernandez-Armas, I. Orue за сотрудничество. Отдельные измерения были проведены в SGIKER services UPV-EHU.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда № 23-29-00025, https://rscf.ru/project/23-29-00025/?.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Г.И. Фролов, О.И. Бачина, М.М. Завьялова, С.И. Равочкин. ЖТФ 78, 8, 101 (2008).
- [2] Q.A. Pankhurst, A.J. Connolly, S.K. Jones, J. Dobson. J. Phys. D 36, 13, R167 (2003).
- [3] Г.В. Курляндская, А.П. Сафронов, С.В. Щербинин, И.В. Бекетов, Ф.А. Бляхман, Э.Б. Макарова, М.А. Корч, А.В. Свалов. ФТТ 63, 9, 1290 (2021).
- [4] А.С. Камзин. ФТТ **58**, *3*, 519 (2016).
- [5] B.M. Geilich, I. Gelfat, S. Sridhar, A.L. van de Ven, T.J. Webster. Biomaterials 119, 78 (2017).
- [6] S.A.M.K. Ansari, E. Ficiara, F.A. Ruffinatti, I. Stura, M. Argenziano, O. Abollino, R. Cavalli, C. Guiot, F. D'Agata. Materials 12, 3, 465 (2019).
- [7] J.H. Grossman, S.E. McNeil. Phys. Today 65, 38 (2012).
- [8] G.V. Kurlyandskaya, L.S. Litvinova, A.P. Safronov, V.V. Schupletsova, I.S. Tyukova, O.G. Khaziakhmatova, G.B. Slepchenko, K.A. Yurova, E.G. Cherempey, N.A. Kulesh, R. Andrade, I.V. Beketov, I.A. Khlusov, Sensors, **17**, *11*, 2605 (2017).
- [9] I.V. Beketov, A.P. Safronov, A.I. Medvedev, J. Alonso, G.V. Kurlyandskaya, S.M. Bhagat. AIP Adv. 2, 022154 (2012).
- [10] Yu.A. Kotov. J. Nanopart. Res. 5, 5, 539 (2003).
- [11] G.Yu. Melnikov, V.N. Lepalovskij, A.V. Svalov, A.P. Safronov, G.V. Kurlyandskaya. Sensors 21, 3621 (2021).
- [12] A.Y. Prilepskii, A.F. Fakhardo, A.S. Drozdov, V.V. Vinogradov, I.P. Dudanov, A.A. Shtil, P.P. Bel'tyukov, A.M. Shibeko, E.M. Koltsova, D.Y. Nechipurenko. ACS Appl. Mater. Interfaces 10, 36764 (2018).
- [13] L.A. Ramajo, A.A. Cristóbal, P.M. Botta, J.M. Porto López, M.M. Reboredo, M.S. Castro. Compos. Part A Appl. Sci. Manuf. 40, 388 (2009).
- [14] H. Gu, S. Tadakamalla, Y. Huang, H.A. Colorado, Z. Luo, N. Haldolaarachchige, D.P. Young, S. Wei, Z. Guo. ACS Appl. Mater. Interfaces 4, 5613 (2012).
- [15] A. García-Arribas, E. Fernández, A. Svalov, G.V. Kurlyandskaya, J.M. Barandiaran. J. Magn. Magn. Mater. 400, 321 (2016).
- [16] Н.А. Бузников, А.В. Свалов, Г.В. Курляндская. ФММ 122, 3, 241 (2021).
- [17] С.С. Аплеснин, Г.И. Баринов, ФТТ 49, 10, 1858 (2007).
- [18] G.V. Kurlyandskaya, S.M. Bhagat, A.P. Safronov, I.V. Beketov, A. Larranaga. AIP Adv. 1, 4, 042122 (2011).
- [19] Г.Ю. Мельников, Л.М. Ранеро, А.П. Сафронов, А. Лараньяга, А.В. Свалов, Г.В. Курляндская. ФММ **123**, 1145 (2022).

Редактор Е.Ю. Флегонтова