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The paper presents a new original technique for accurate reconstructing the wave front phase at interferometry

measurements based upon the estimation of the signals? amplitudes. The optical signals? processing is implemented

within the Rice statistical model. The required phase of the wave front to be reconstructed is calculated from

the geometrical considerations from the calculated undistorted amplitudes values. The paper provides both the

mathematical basics of the technique and the results of its testing by means of both numerical and physical

experiments. The proposed technique can be efficiently applied in a wide circle of scientific and technical tasks in

numerous ranging and communication systems.
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Introduction

Reduction of the phase of optical radiation that has

passed through or reflected from an object has always

played an important role in optical measurements. This led

to the widespread use of interferometry methods and the

appearance of a large number of interferometers of various

types. The key link in these devices is the deciphering of

interference patterns, i. e. reduction of the phase distribution

of the wave front, which carries information about the

studied object. Very significant results have been obtained

along the way.

The most common way to reconstruct the phase from

interference measurements is a group of phase stepping

methods, which is based on recording several interference

patterns of the same object with a deterministic retardance

in the reference channel and the subsequent joint processing

of the obtained interference patterns.

The specific feature of the phase-step methods is the

requirement of careful calibration of the retardance value

in the reference channel, which leads to changes in the

interference fringes, because its value is embedded in the

calculated formulas for the phase [1].
At present, the so-called self-calibrating algorithms have

appeared, in which the retardance value is determined

by interference patterns [2–6]. As a rule, this requires

the presence of some number of fringes — interference

patterns with the carrier. However, in some cases,

obtaining interference patterns without a carrier is the

only possible or more preferable option. For example,

sometimes when using low-coherence sources, it is difficult

to obtain interference patterns on the carrier, and in the

Fizeau interferometer scheme, when studying large optical

parts, it is desirable that the beams follow the same path,

and therefore, the interference patterns were also without

carrier. When the retardance device is calibrated, an

artifact occurs in the form of
”
second harmonic“ — phase

modulation, repeating the interference fringes, but of double

frequency [7]. Therefore, the actual task is to develop a

phase step method independent of the retardance device

calibration and capable of operating with a small number of

interference fringes.

The aim of this work is to analyze an algorithm for

reconstructing the phase distribution based on the joint

processing of photometric and interference data without

using a deterministic retardance device.

Theoretical foundations

Let us consider the process of object field interference

E0(x , y) = A(x , y) exp[−ikϕ(x , y)],

where k = 2π/λ, and the reference field

Er (x , y) = B(x , y) exp[−ikφ(x , y)]

assuming their partial coherence with the spatial distribution

of the coherence function γ(x , y) [8]. Then, the canonical

equation of the interference pattern has the form

I(x , y) = A2(x , y) + B2(x , y) + 2A(x , y)B(x , y)

× cos
[

k
(

ϕ(x , y) − φ(x , y)
)]

γ(x , y), (1)
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where γ(x , y) — the coherence function in the interference

pattern registration plane determining the contrast of fringes.

From expression (1)b it is not difficult to obtain the

following expression for the phase difference of the desired

wave front and the known phase distribution of the

reference wave:

ϕ(x , y) − φ(x , y) = (1/k) arccos
[(

I(x , y) − A2(x , y)

− B2(x , y)
)

/
(

2A(x , y)B(x , y)γ(x , y)
)]

. (2)

It is easy to see that for the phase reduction, it is

necessary to solve several problems: measure the intensity

distribution A2(x , y), B2(x , y) and I(x , y), to measure the

coherence function in the interference pattern formation

plane, to calculate the arccos function for different argu-

ments.

Let us elaborate on the solution to each problem.

Measuring the intensity distribution

It is obvious from expression (2), that errors in de-

termining the distribution of radiation intensities in each

channel significantly affect the phase reduction, since the

arccos function is significantly nonlinear for argument

values close to 1. In order to determine this effect, we

conduct a numerical simulation of the algorithm under noise

conditions.

The process of formation of the
”
slow“ component

fields Eo and Er in each channel of the interferometer in

the presence of noise can be written in the form of

Ro,r = Eo,r + n exp(iϕ),

where E — the non-noise (true) value of the signal. The

value E is complex, which allows to consider the wave

phase in the simulation of optical measurements, n —
a real random variable whose value obeys the Rayleigh

distribution with a scale parameter σ , φ random phase,

which has a uniform distribution in the range from 0

to 2π, indices o, r refer to the object and reference waves,

respectively. The complex value R has been used for

various calculations, in which not only the amplitude but

also the phase of the wave matters, for example, to calculate

the interference pattern of two waves. To calculate the

amplitude r distribution in each channel from R, a modulus

was taken:

r = |R|.

To compensate for the noise effect on the intensity

distribution measurements in each channel and interfer-

ence pattern, it is necessary to perform averaging over

realizations. When using statistical methods of signal

processing, the specific features of the distribution to which

the analyzed data are subject are essential.

It is known that the amplitude of the signal formed as a

result of Gaussian noise on an initially deterministic signal
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Figure 1. Illustration of the mismatch between the average Rice

signal x and the Rice parameter ν as a function of the signal-to-

noise ratio, SNR = ν/σ .

is a random variable, which obeys the statistical distribution

of Rice [9].
In Rice signal analysis problems, the measured quantity is

the amplitude x =
√

x2
Re + x2

Im of a complex variable with

real xRe and imaginary x Im components, characterized by its

mean value and distorted by a normally distributed Gaussian

noise with variance σ 2 . These conditions characterize many

tasks of signal processing of different physical nature. The

amplitude x =
√

x2
Re + x2

Im obeys a Rice distribution with a

probability density function

P
(

x |ν, σ 2
)

=
x
σ 2

exp

(

−x2 + ν2

2σ 2

)

I0

(

xν
σ 2

)

,

where Iα(z ) — modified Bessel function of order one α.

The problem to be solved is to determine the unknown

parameters ν and σ 2 on the basis of the data obtained from

measurements.

Because of the specific features of the Rice statistical

distribution, the Rice data analysis requires the development

of specific methods and appropriate mathematical apparatus.

It is known that when processing Gaussian data, the

traditional means of filtering is data averaging. However,

as noted above, unlike the Gaussian distribution case, the

average value of the Rice signal x is not the same as the

desired value of the useful signal ν . This is shown in Fig. 1,

where the mean value of the Rice signal x is represented by

a curved line, and the true value of the signal is represented

by a straight line coming from the origin. The average

value of the Rice signal as a function of Rice parameters

is expressed by the following formula:

x = σ
√

π/2I1/2(−ν2/2σ 2).

In (2) L1/2(z ) — the Laguerre polynomial.

The graphs in Fig. 1 correspond to fixed values of the

noise parameter σ : σ = 1, so the values on the abscissa

axis correspond to the signal-to-noise ratio.
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Thus, if traditional averaging filtering methods are applied

to data subject to Rice statistics, the true signal values are

distorted in the area of small signal-to-noise ratio values.

The presence of such an error in the averaging of Rice

data is strictly justified in works [10–16]. The presence

of an unavoidable error means that simple averaging is

inapplicable to correctly solve the problem and the need

to use data processing methods that take into account the

specific features of the Rice statistical model.

In [10–16], an exact theory of statistical processing

of Rice signals was developed and new mathematical

methods for the so-called two-parameter approach to Rice

data analysis were rigorously justified. This approach

involves solving the problem of Rice data analysis by jointly

estimating signal and noise.

The specific theoretical methods developed as part of the

two-parameter Rice signal analysis in [14–16] differ in the

basic statistical principles on which they are based. One

such theoretical technique involves the method of moments.

This technique is based on the processing of measured data

for 2nd and 4th moments and is designated as M24.

The solution to the two-parameter Rice signal analysis

problem by the MM24 method is based on the known

formulas for the 2nd and 4th initial moments of the Rice

random variable [17]:







x2 = 2σ 2 + ν2,

x4 = 8σ 4 + 8σ 2ν2 + ν4.
(3)

Considering formulas (3) as a system of two equations for

the two unknown variables A and σ 2, we can calculate the

required values ν and σ 2 based on data for the second x2

and the fourth x4 moments of Rice value x obtained from

sample measurements [16,18].
From the formulas (3), to determine the required Rice

parameters A and σ 2, it is not difficult to obtain the

following expressions:

A2 = x2
√
1− t,

σ 2 =
x2

2

(

1−
√
1− t

)

. (4)

In expressions (4), the notation was introduced

t =
x4

(

x2
)2

− 1.

It is easy to see that for any random variable x , due to the

stochasticity of the variable x2, the condition x4−
(

x2
)2

> 0

is satisfied, since the difference x4−
(

x2
)2

determines the

variance of the random variable x2. Therefore, the entered

parameter t grows with the process stochasticity and

satisfies the relation 0 < t ≤ 1. The limiting case t = 1

corresponds to a particular case of the Rice — Rayleigh

distribution, when there is noise and no useful signal

(A = 0).
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Figure 2. Simulation of phase step profile reduction using

the MM24 method for processing interference and photometric

measurements. 1 — object wave, averaged; 2 — support wave,

averaged; 3 — interference wave, averaged; 4 — interference

wave, single realization; 5 — value; 6 — signal reduced by Rice;

7 — average signal level by Rice.

Thus, the MM24 method makes it possible to jointly

calculate by formulas (4) both the desired estimation of

signal value A and noise variance σ 2, which is important for

subsequent image processing.

The efficiency of statistical data analysis by the MM24

method for optical phase measurements is substantiated, in

particular, in work [19].

Results of numerical experiments

Using the MM24 method to process the interference and

photometric measurements, we simulated the reduction of

the phase step profile. The reduction results are shown in

Fig. 2. The upper graph shows the results of measurements

separately for the object wave, separately for the reference

wave and the result of their interference. Wherein,

• the true value of the object wave had an amplitude of 3

(in conditional units) and a phase of φob = π/4 from the 1st

to the 200th pixel, and from the 201th to the 400th pixel,

the phase was φob + φh, where φh — the height of the phase

step, corresponding to 20 nm at a wavelength of 600 nm;

• the true value of the reference wave had all amplitude 2

and phase 0;

• the interference wave was the sum of the noisy object

and reference waves;

• the noise level for the object and reference waves was

the same and was σ = 1;

• averaging for the interference pattern was performed

for 256 realizations. For the object and reference waves,

averaging was performed over 256 random samples of the
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same realization, since the desired field amplitude was the

same everywhere. In a real experiment, as a rule, the

interferometer is adjusted so that the field amplitudes in

the reference and signal channels are the same and uniform

throughout the instrument field of view, so this procedure is

also possible.

The bottom graph shows the results of phase step

reduction from measurements averaged using the M24

method.

Phase reduction using conventional averaging results not

only in a shift of the entire phase front, but also in a phase

change that depends on the noise level and its value proper.

Fig. 3 shows the results of the simulation of the phase

step reduction at different values of the noise parameter σ .

The step height 20 nm. Number of implementations 1000.

Other parameters are the same. The upper graph shows

the dependencies of the reduction upper and lower step

levels on the noise level. The bottom graph shows the

dependence of the step height estimate divided by its true

height, also from the noise level on the measured data. The

graphs show that, unlike the MM24 method, the estimation

by conventional averaging gives distorted values. However,

when the signal-to-noise ratio is small, the reduction error

increases when using the MM24 method. This is due to

the fact that starting σ ≈ 1.5 in this method, there are

negative values below the root in the expression (4) for

some points in the formulas. Such points were excluded

from the averaging, which led to distortions.

Thus, averaging the experimental data using Rice statistics

makes it possible to recover the true value of the field phase

from the photometric and interference data at any signal-to-

noise ratio.
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Figure 3. Simulation results for phase step reduction at different

values of the noise parameter. 1 — simple averaging, 2 — Rice

averaging.
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Figure 4. Interference pattern obtained with an interference

microscope (a); same interference pattern normalized to the

coherence function (b). 1 — step , 2 — base .

Measuring the distribution of the
coherence function by species of the
bands on the interference pattern

The second factor affecting the phase measurement accu-

racy with the proposed method is the spatial heterogeneity

of the coherence function in the area of interference

pattern formation. This is due to the fact that modern

interferometers use radiation sources with partial coherence.

Fig. 4, a shows an interference pattern obtained with an in-

terference microscope with a low-coherence source [1]. An
LED (model M530L3 from ThorLabs) with a wavelength

of 530 nm was used as a light source in the microscope. As

you can see from the figure, the visibility of the fringes

varies by image field. Consequently, it is necessary to

determine the coherence coefficient, which will be different

at different points of the interference pattern. To compensate
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for the influence of non-uniformity of fringe contrast, a two-

step procedure was developed to determine the distribution

of the coherence function over the image field, based on the

processing of a flat surface interference pattern. At the first

stage, sets of local maxima and minima were determined

in each line of the image. The maxima and minima were

approximated by two-dimensional fourth-order polynomials.

In the result, two smooth surfaces enveloping the interfer-

ence pattern from above and below were obtained. Next,

the interference pattern was normalized using these two

surfaces so that the minimum corresponds to a value of −1,

and the maximum — +1.

At the second stage of normalization, we used cubic

splines drawn along the maxima and minima. To reduce

the noise effect on the result, these lines were first passed

through a low-pass filter. This procedure made it possible

to almost completely eliminate the coherence function non-

uniformity over the entire field of view of the interferometer.

Fig. 4, b shows an interference pattern normalized to the

coherence function. Thus, the use of the proposed algorithm

requires a preliminary measurement of such a characteristic

as the coherence function distribution of the coherence

function in the interference pattern registration plane.

Field phase calculation

According to expression (2), in order to calculate the

phase, it is necessary to calculate the arccos function from

the values obtained after processing the photometric and

interference data. This function is defined in the range

from −1 to 1 and is linear for values of the argument around

zero. However, when approaching the range boundaries, its

derivative tends to infinity. Therefore, in the presence of

noise, there is a significant amplification of the noise of

the reduction phase at values of the argument close to ±1.

In the present work, to compensate for this effect, another

interference pattern with a retardance of the reference

channel of about a quarter of a wavelength is proposed.

In this case, the part of the phase distribution where the

arccos argument of the first interference pattern has values

around zero will be reduced from the first interference

pattern, and the other part of the distribution — from the

second interference pattern. It is easy to see that it is not

necessary to know the retardance value in the reference

channel, as it is easily calculated from the phase difference

in the overlapping areas of the argument.

Experimental findings

To verify the proposed method, a physical experi-

ment was carried out to reduce the step shape of the

SHS−180 QC measure produced by VLSI Standards Inc.

Certified step height 19.9± 0.8 nm. The measurements

were made with a low-coherence source [1] interference

microscope. This microscope has a Linnik circuit with a

reference mirror mounted on a piezo element. Thus, it is

possible to set the desired offset of the reference mirror.

The microscope was used to obtain an interference

pattern between the images of the step and the reference

mirror (interference pattern), an image of the step without

interference (with overlapped reference channel) and an

image of the reference mirror (with overlapped object

channel). Images of each type were obtained by a series

of 9 images followed by averaging using the MM24 method.

In addition, two fringe pattern were obtained that differ

from each other in the phase of the interference fringes by

approximately π/2.

An LED (model M530L3 from ThorLabs) with a

wavelength of 530 nm was used as a light source in the

microscope.

An example of the resulting interference pattern is

shown in Fig.4. As can be seen from the figure, due to

the unevenness of the coherence function, the contrast of

the fringes varies across the image field. The coherence

function distribution over the image field was preliminarily

determined according to the above technique. The phase

distribution was calculated along two lines, one of which

crossed the step, and the other passed outside of it. This is

necessary in order to determine the baseline characterizing

optical aberrations and the general inclination of the plane.

The height from the phase overrun in length units was

recalculated by the formula

hnm =
hrad

4π
λ,

where λ — the wavelength of the LED 530 nm, and 4

instead of 2 is because the light makes two passes when

the image is acquired.

Subtracting the base from the step results in a visually

straight step. According to the methodology used to

calibrate the ZYGO [20] profilometer, to calculate the step

height, it is necessary to calculate the average height of two

sections on different sides of the step, as well as the average

height of the profile section that is on the step, while you

need to step back from its edge, as there are sharp phase

jumps due to diffraction at the edge. The step height will

be the difference of these two values.

Since the slope was subtracted from the profiles reduction

(each profile has its own slope), the resulting step also

has a slight slope. To eliminate the effect of this slope on

the result, the areas for averaging on the base were taken

symmetrical about the area on the step so that the
”
center

of mass“ of the substrate areas is under the
”
center of mass“

of the step area.

The step with the subtracted base and the result of the

step height measurement are shown in Fig. 5. The averaging

areas are highlighted in red and green, and the dashed line

shows the calculated step height. The measured step height

was 19.29 nm, which agrees well with its certified height of

19.9± 0.8 nm.
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measurement result

.

Conclusions

Mathematical modeling and experimental results show

that the joint processing of photometric and interference

measurements using the algorithm proposed in this work

allows us to reduce the phase distribution with sufficiently

high accuracy, even in the presence of noise. In this case,

the requirements to the retardance device are significantly

reduced. However, there are serious requirements for pre-

calibration of the interferometer according to the spatial

distribution of the coherence function. Another requirement

of the proposed algorithm is the uniformity of intensity

distribution in the reference and signal channels of the

interferometer. This greatly simplifies the processing of

photometric data, because it allows to use Rice methods of

data analysis of averaging the distributions of the amplitudes

of the object and reference channels on a single frame at

random sampling counts.
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