08.2

Влияние кинетики атомных ступеней на рост многокомпонентных кристаллов в условиях повышенных пересыщений

© А.В. Редьков, С.А. Кукушкин

Институт проблем машиноведения РАН, Санкт-Петербург, Россия E-mail: avredkov@gmail.com

Поступило в Редакцию 28 марта 2023 г. В окончательной редакции 3 мая 2023 г. Принято к публикации 11 мая 2023 г.

Исследован процесс роста многокомпонентного кристалла при повышенных пересыщениях в случаях, когда классическое приближение о неподвижности атомных ступеней становится некорректным. Выведены аналитические выражения, описывающие скорость движения ансамбля ступеней на кристаллической поверхности, а также скорость роста кристалла по слоистому и слоисто-спиральному механизмам. Результаты могут быть использованы для оптимизации процессов роста как объемных кристаллов, так и толстых эпитаксиальных пленок различных многокомпонентных соединений, в частности полупроводниковых соединений групп A₃B₅ и A₂B₆.

Ключевые слова: теория роста кристаллов, атомные ступени, скорость роста, многокомпонентный кристалл, эпитаксия, полупроводники.

DOI: 10.21883/PJTF.2023.13.55735.19570

К настоящему времени накоплен большой теоретический задел для описания роста кристаллов и тонких пленок в различных режимах, а также явлений на поверхности: от нуклеации и спирального роста до разных типов неустойчивости [1-3]. Однако формулы, которые были выведены в основном для описания роста однокомпонентных кристаллов, в общем случае неприменимы к многокомпонентным системам. В то же время многие из используемых в современных эпитаксиальных технологиях полупроводниковых материалов состоят из нескольких компонентов, например арсениды, нитриды и фосфиды галлия, индия, алюминия [4,5], а также многие соединения группы А2В6. В процессе эпитаксиального роста каждый из компонентов, входящих в кристалл или пленку, обладает своими собственными индивидуальными свойствами. Например, коэффициенты диффузии компонентов по поверхности подложки, времена их жизни и ряд других параметров компонентов существенно различны. Помимо этого у технологов есть возможность регулировать соотношение потоков разных компонентов на поверхность, которое может сильно влиять как на скорость роста, так и на дефектность, а также на конечную морфологию растущей пленки [6-8]. Таким образом, детальное понимание процессов роста в многокомпонентных системах представляется чрезвычайно важным и актуальным для дальнейшего развития полупроводниковой технологии. Ранее в цикле работ [9–12] классическая теория роста Бартона-Кабреры-Франка (БКФ) [13] была расширена на случай роста из газовой фазы *N*-компонентного кристалла при наличии химических реакций. Отметим, что в этой теории движение ступеней считается пренебрежимо медленным, не оказывающим влияние

на распределение адатомов по поверхности. Вместе с тем в ряде работ [14,15] было показано, что такое допущение не всегда справедливо и при повышенных пересыщениях (но до активации процесса нуклеации) итоговая скорость ступени может значительно отличаться от предсказываемой теорией. Таким образом, в настоящей работе ставится задача анализа роста многокомпонентного кристалла в условиях, когда скорость передвижения ступеней оказывает значительное влияние на распределение адатомов по поверхности и ей нельзя пренебречь.

В модели БКФ для многокомпонентной системы [9] считается, что над поверхностью поддерживается постоянное парциальное давление каждого из компонентов, которое обеспечивает равномерный поток атомов этого компонента на поверхность по всей площади. Адатомы диффундируют по террасам, могут испариться или встроиться в параллельные ступени, расположенные на одинаковом расстоянии x_0 . Считается, что адатомы взаимодействуют друг с другом только при последовательном встраивании в изломы на ступенях согласно реакции

$$\nu_1 A_1 + \nu_2 A_2 + \dots + \nu_N A_N \leftrightarrow C, \tag{1}$$

где $A_i - i$ -й компонент, v_i — его стехиометрический коэффициент, C — кристалл, N — число компонентов. Встраивание приводит к перемещению ступени со скоростью v. На террасах взаимодействия адатомов не происходит, они также не влияют на диффузию и осаждение друг друга. Иллюстрация процесса приведена на рис. 1, a. Для нахождения скорости роста необходимо решить систему из N дифференциальных уравнений, описывающих распределение адатомов каждого типа на террасе между ступенями $n_i(x)$:

$$\begin{cases} D_1 \frac{\partial^2 n_1(x)}{\partial x^2} + v \frac{\partial n_1(x)}{\partial x} - \frac{n_1(x)}{\tau_1} + J_1 = 0, \\ \cdots \\ D_N \frac{\partial^2 n_N(x)}{\partial x^2} + v \frac{\partial n_N(x)}{\partial x} - \frac{n_N(x)}{\tau_N} + J_N = 0, \end{cases}$$
(2)

где D_i — коэффициент поверхностной диффузии, τ_i — время десорбции, $J_i = \frac{P_i}{P_{i0}} \frac{n_i^0}{\tau_i}$ — поток атомов из газовой фазы на поверхность, P_i — парциальное давление, над поверхностью, P_{i0} — равновесное давление, n_i^0 — равновесная концентрация адатомов [9]. Начало системы координат находится в середине террасы между ступенями (рис. 1, *a*), ось *x* параллельна направлению движения ступеней. Для каждого из компонентов выполнены следующие условия: непосредственно возле ступеней $(x = \pm \frac{x_0}{2})$ поддерживается равновесная концентрация $n_i(x) = n_i^0|_{x=\pm \frac{x_0}{2}}$ вследствие быстрого безбарьерного встраивания адатомов [13]. Делая замену $\varphi_i(x) = \frac{P_i}{P_{i0}} - \frac{n_i(x)}{n_i^0}$ (см. [9]), получим

$$\begin{cases} \lambda_1^2 \frac{\partial^2 \varphi_1(x)}{\partial x^2} + \upsilon \tau_1 \frac{\partial \varphi_1(x)}{\partial x} - \varphi_1(x) = \mathbf{0}, \\ \dots \\ \lambda_N^2 \frac{\partial^2 \varphi_N(x)}{\partial x^2} + \upsilon \tau_N \frac{\partial \varphi_N(x)}{\partial x} - \varphi_N(x) = \mathbf{0}, \end{cases}$$
(3)

где $\lambda_i = \sqrt{D_i \tau_i}$ — длина свободного пробега *i*-го компонента, $\varphi_i(x) = \sigma_i|_{\pm \frac{x_0}{2}}, \sigma_i = \frac{P_i}{P_{i0}} - 1.$

Как нетрудно показать, решением будет являться функция

$$\varphi_{i}(x) = \sigma_{i} \left(\frac{\operatorname{ch}[\alpha_{i}x_{0}]\operatorname{ch}[\beta_{i}x]}{\operatorname{ch}\left[\frac{x_{0}\beta_{i}}{2}\right]} + \frac{\operatorname{sh}[\alpha_{i}x_{0}]\operatorname{sh}[x\beta_{i}]}{\operatorname{sh}\left[\frac{x_{0}\beta_{i}}{2}\right]} \right) \\ \times \exp(-2x\alpha_{i}), \tag{4}$$

где $\alpha_i = \frac{\tau_i v}{4\lambda_i^2}, \beta_i = \frac{\sqrt{4\lambda_i^2 + \tau_i^2 v^2}}{2\lambda_i^2}.$

Для иллюстрации на рис. 1, *b* и *c* приведены зависимости распределения для одного из компонентов на террасе в различных случаях.

Поверхностный поток *i*-го компонента к ступени *J*_{si} с обеих сторон с учетом как диффузионного, так и конвективного вкладов (условие Стефана [14]) равен

$$J_{si} = D_i n_i^0 \left(\frac{\partial \varphi_i(x)}{\partial x} \Big|_{x = \frac{x_0}{2} + 0} - \frac{\partial \varphi_i(x)}{\partial x} \Big|_{x = \frac{x_0}{2} - 0} \right)$$
$$+ n_i^0 v = 2D_i n_i^0 \sigma_i \beta_i \left(\frac{\operatorname{ch}[x_0 \beta_i] - \operatorname{ch}[2x_0 \alpha_i]}{\operatorname{sh}[x_0 \beta_i]} \right) + n_i^0 v.$$

Учтем, что потоки различных компонентов связаны друг с другом и пропорциональны стехиометрическим коэффициентам: $\frac{J_{s1}}{\nu_1} = \cdots = \frac{J_{sN}}{\nu_N} = J_s$, где J_s — полный поток "кристаллических ячеек" в ступень. Применяя для этого цепочку преобразований из [9], получим выражение для J_s

$$J_s = D^{os}(v)\xi^{os} + vn^{os}(v), \qquad (5)$$

где

$$D^{os}(v) = \left(\sum_{i=1}^{N} \frac{v_i^2 \mathrm{sh}[x_0\beta_i]}{2D_i n_i^0 \beta_i (\mathrm{ch}[x_0\beta_i] - \mathrm{ch}[2x_0\alpha_i])}\right)^{-1}$$

осредненный коэффициент диффузии,

$$\xi^{os} = \sum_{i=1}^{N} \nu_i \sigma_i = \frac{K}{K_{eq}} - 1$$

многокомпонентное пересыщение,

$$n^{os}(v) = D^{os}(v) \sum_{i=1}^{N} \frac{\nu_i \operatorname{sh}[x_0 \beta_i]}{2D_i \beta_i (\operatorname{ch}[x_0 \beta_i] - \operatorname{ch}[2x_0 \alpha_i])}$$

— осредненная равновесная концентрация.

С другой стороны, скорость перемещения ступени v сама по себе определяется этим потоком J_s и плотностью кристаллических ячеек в ступени n_0 [13]:

$$v = \frac{J_s}{n_0} = \frac{D^{os}(v)\xi^{os}}{n_0} + \frac{vn^{os}(v)}{n_0}.$$
 (6)

Зная v, скорость нормального роста R можно выразить [9] как $R = av/x_0$, где a — параметр решетки. В случае спирального роста $x_0 = 19\rho_c$, где ρ_c — радиус критического зародыша. Отметим, что скорость роста v входит и в правую, и в левую части уравнения (6), т.е. уравнение (6) — трансцендентное уравнение. Поэтому решение уравнения (6) может быть получено численно при знании всех материальных констант. Вместе с тем следует отметить, что в крайнем случае, когда скорость перемещения ступени мала $\frac{\tau_i^2 v^2}{4\lambda_i^2} \ll 1$, или, что эквивалентно, $\frac{\tau_i v^2}{2D_i} \ll 1$ либо $v \ll \frac{2\lambda_i}{\tau_i}$, коэффициент $D^{os}(v)$ перестает зависеть от v и совпадает с аналогичным коэффициентом, полученным в приближении медленных ступеней в [9]:

$$D^{os}(v) = \left(\sum_{i=1}^{N} \frac{v_i^2 \lambda_i \operatorname{sh}\left[\frac{x_0}{\lambda_i}\right]}{2D_i n_i^0 \left(\operatorname{ch}\left[\frac{x_0}{\lambda_i}\right] - 1\right)}\right)^{-1}$$
$$\approx 2\left(\sum_{i=1}^{N} \frac{v_i^2 \lambda_i}{D_i n_i^0 \operatorname{th}\left[\frac{x_0}{2\lambda_i}\right]}\right)^{-1},$$

а коэффициент, связанный с конвективным потоком, исчезает.

Отметим также, что в многокомпонентной системе для некоторых компонентов ступень может быть "медленной" $(\frac{\tau_i v^2}{2D_i} \ll 1)$, тогда как для других — "быстрой" $(\frac{\tau_i v^2}{2D_i} \gg 1)$, и неучет конвективного потока этих компонентов может привести к неправильной оценке зависимости скорости роста от ростовых условий или неверному определению кинетических параметров по экспериментальным данным. Для примера проанализируем, при каких скоростях роста это явление влияет

Рис. 1. Схематический вид рассматриваемой задачи (*a*); зависимости концентрации *i*-го компонента на террасе между ступенями при фиксированных значениях длины свободного пробега λ_i и времени жизни адатома τ_i и различных величинах скорости ступеней v (*b*), а также при фиксированных v и τ_i и различных длинах свободного пробега λ_i (*c*).

Рис. 2. a — зависимость длины свободного пробега λ_i и времени жизни адатомов τ_i галлия и азота на поверхности GaN; b — величина $2\lambda_i/\tau_i$ для Ga и N, которая определяет, при каких скоростях ступени вклад конвективного потока становится значимым.

на рост нитрида галлия (GaN) методом молекулярнопучковой эпитаксии (МПЭ). Величины λ_i и τ_i для адатомов Ga и N по данным [16,17] представлены на рис. 2, a. На рис. 2, b показано значение пороговой величины $\frac{2\lambda_i}{\tau_i}$ для обоих компонентов в зависимости от температуры. Когда скорость перемещения ступеней v ниже кривой для соответствующего компонента, он встраивается в ступень в диффузионном режиме; когда выше, необходимо учитывать конвективный поток. Видно, что существуют четыре области. В области 1 адатомы и Ga, и N поступают к ступени в диффузионном режиме и не "чувствуют" перемещения ступеней, в этом случае для описания роста применима теория [9]. В областях 2 и 3 один из компонентов переходит в конвективный режим (в области 2 — азот, в области 3 галлий), и для описания роста необходимо использовать формулы, приведенные в настоящей работе. В области 4 оба компонента поступают к ступени в конвективном режиме.

Отметим, что характерная скорость роста R при МПЭ составляет величину порядка 1 монослоя в секунду (~ 0.3 nm/s). При $x_0 = 100$ nm ступени должны пере-

мещаться со скоростью v = 100 nm/s. Эта скорость в широком диапазоне температур попадает в область 4 на рис. 2, b, где конвективным вкладом обоих компонентов пренебречь нельзя. Следует также отметить, что при применении МПЭ часто выбирают условия, когда рост происходит в режиме двумерной нуклеации островков, а не по механизму БКФ. Представляется, что даже в этом режиме для правильной оценки скорости разрастания островков необходим учет конвективного потока наиболее "медленных" компонентов.

Таким образом, в работе показано, что для правильной оценки скорости роста кристалла во многих случаях необходимо учитывать конечную скорость перемещения атомных ступеней. Получены выражения для этой скорости в приближении безбарьерного встраивания адатомов различных компонентов в ступень, постоянства и равенства скорости движения всех ступеней во времени и соответственно расстояний между ними. На примере GaN продемонстрировано, что в многокомпонентной системе в зависимости от ростовых условий перемещение ступени может оказывать качественно различное влияние на распределение компонентов (галлия и азота), их поток к ступени и итоговую скорость роста. Представленные результаты могут быть использованы для оптимизации эпитаксиальных ростовых процессов различных сложных многокомпонентных соединений из газовой фазы, включая востребованные соединения групп A₃B₅ и A₂B₆.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 21-72-00032).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- P. Politi, G. Grenet, A. Marty, A. Ponchet, J. Villain, Phys. Rep., **324** (5-6), 271 (2000).
 DOI: 10.1016/S0370-1573(99)00046-0
- [2] V.G. Dubrovskii, Nucleation theory and growth of nanostructures (Springer, Berlin, 2014).
 DOI: 10.1007/978-3-642-39660-1
- [3] A.A. Чернов, УΦΗ, 73 (2), 277 (1961).
 DOI: 10.3367/UFNr.0073.196102c.0277 [A.A. Chernov, Sov. Phys. Usp., 4 (1), 116 (1961).
 DOI: 0.1070/PU1961v004n01ABEH003328].
- [4] S. Fujita, Jpn. J. Appl. Phys., 54 (3), 030101 (2015).
 DOI: 10.7567/JJAP.54.030101
- [5] H.M. El-Hageen, A.M. Alatwi, A.N.Z. Rashed, Open Eng., 10 (1), 506 (2020). DOI: 10.1515/eng-2020-0065
- [6] B. Mao, G. Zhao, L. Wang, N. Zhang, H. Du, G. Liu, Semicond. Sci. Technol., 38 (3), 035014 (2023).
 DOI: 10.1088/1361-6641/acb6ad

- [7] А.В. Редьков, А.В. Осипов, С.А. Кукушкин, ФТТ, 57 (12), 2451 (2015). [А.V. Redkov, А.V. Osipov, S.A. Kukushkin, Phys. Solid State, 57 (12), 2524 (2015). DOI: 10.1134/S106378341512029X].
- [8] Y. Zheng, M. Agrawal, N. Dharmarasu, K. Radhakrishnan, S. Patwal, Appl. Surf. Sci., **481**, 319 (2019).
 DOI: 10.1016/j.apsusc.2019.03.046
- [9] A.V. Redkov, S.A. Kukushkin, Cryst. Growth Des., **20** (4), 2590 (2020). DOI: 10.1021/acs.cgd.9b01721
- [10] A.V. Redkov, S.A. Kukushkin, Cryst. Growth Des., 21 (9), 4914 (2021). DOI: 10.1021/acs.cgd.1c00349
- [11] A.V. Redkov, S.A. Kukushkin, Faraday Discuss., 235, 362 (2022). DOI: 10.1039/D1FD00083G
- [12] A.V. Redkov, S.A. Kukushkin, A.V. Osipov, J. Cryst. Growth, 548, 125845 (2020). DOI: 10.1016/j.jcrysgro.2020.125845
- [13] W.K. Burton, N. Cabrera, F.C. Frank, Phil. Trans. Roy. Soc. A, 243 (866), 299 (1951). DOI: 10.1098/rsta.1951.0006
- [14] R. Ghez, S.S. Iyer, IBM J. Res. Develop., 32 (6), 804 (1988).
 DOI: 10.1147/rd.326.0804
- [15] K. Voigtlaender, H. Risken, E. Kasper, Appl. Phys. A, **39** (1), 31 (1986). DOI: 10.1007/BF01177161
- [16] O. Brandt, H. Yang, K.H. Ploog, Phys. Rev. B, 54 (7), 4432 (1996). DOI: 10.1103/PhysRevB.54.4432
- [17] С.А. Кукушкин, В.Н. Бессолов, А.В. Осипов, А.В. Лукьянов, ФТТ, 44 (7), 1337 (2002). [S.A. Kukushkin, V.N. Bessolov, A.V. Osipov, A.V. Luk'yanov, Phys. Solid State, 44 (7), 1399 (2002). DOI: 10.1134/1.1494642].