Дополнение к статье "Генерация гармоник в экспериментах с лазерами на свободных электронах в рентгеновском диапазоне теоретический анализ" (2021, том 91, вып. 3, с. 495–504)

© К. Жуковский

16

Московский государственный университет им. М.В. Ломоносова, физический факультет, 119991 Москва, Россия e-mail: zhukovsk@physics.msu.ru

Поступило в Редакцию 28 августа 2020 г. В окончательной редакции 16 сентября 2020 г. Принято к публикации 22 сентября 2020 г.

Даны пояснения в отношении рассчитанных и построенных теоретически графиков спектральной плотности излучения некоторых рентгеновских лазеров на свободных электронах (ЛСЭ). Разъяснено, что представленные ранее графики спектральной плотности следует интерпретировать как оценочные в отношении уширения линий спектра, а не как представляющие реальную форму линии излучения ЛСЭ.

Ключевые слова: лазер на свободных электронах, линия спектра, спектральная плотность излучения.

DOI: 10.21883/JTF.2023.06.55612.pravka1

В работе [1] следует правильно понимать графики на рис. 2, b, 5, b, 6, b. Рассчитанная нами теоретически и показанная на этих графиках синяя (в онлайн версии) осциллирующая линия не представляет форму спектральной линии ЛСЭ, как можно ошибочно подумать. Осциллирующая линия дает представление о расщеплении и уширении спектральной линии излучения из-за конечной ширины пучка и связанных с этим бетатронных эффектов. С целью избежать недопонимания полученных результатов, их неверную трактовку и пояснить смысл рисунков в работе мы представляем новые рисунки, где показана жирная синяя (в онлайн версии) огибающая, которая представляет рассчитанную нами ширину линии

Рис. 2. *b* — спектральная плотность излучения $\lambda = 0.144$ nm ЛСЭ PAL-XFEL с *E* = 8 GeV, $\sigma_e = 0.18\%$, $I_0 = 27$ kA, $\gamma \varepsilon_{x,y} = 0.55$ mm × mrad. *I* — расщепление линии, *2* — огибающая и оценка ширины линии спектра, *3* — стандартная оценка ширины линии SASE, *4* — экспериментальная ширина линии SASE для заявленного значения $\delta \lambda / \lambda \approx 0.134\%$ [2].

Рис. 5. *b* — спектральная плотность излучения $\lambda = 0.125$ nm ЛСЭ SACLA с *E* = 7.8 GeV, $\sigma_e = 0.0925\%$, $I_0 = 27$ kA, $\gamma \varepsilon_{x,y} = 0.6$ mm × mrad. *I* — расщепление линии, *2* — огибающая и оценка ширины линии спектра, *3* — стандартная оценка ширины линии SASE, *4* — экспериментальная ширина линии SASE для заявленного значения $\delta \lambda / \lambda \approx 0.03\%$ [3].

излучения ЛСЭ. В большинстве случаев это уширение превышает или не уступает ширине линии ЛСЭ SASE с самоусилением спонтанного излучения. На обновленных рисунках мы продемонстрировали рассчитанную нами таким образом спектральную плотность синей жирной огибающей линией, а расщепление внутри нее показано тонкой синей линией, как и на соответствующих рисунках в [1]. Отметим, что согласие с экспериментально измеренными значениями спектральной плотности (красная штриховая линия (в онлайн версии) со стрелками на концах) для практически всех рассмотренных в работе ЛСЭ, а также других основных ЛСЭ, действующих в мире, оказывается существенно лучше для теоретически

Рис. 6. b — спектральная плотность излучения $\lambda = 0.1$ nm ЛСЭ SwissFEL с E = 5.8 GeV, $I_0 = 5.0$ kA, $\sigma_e = 0.006\%$, $\gamma \varepsilon_{x,y} = 0.4$ mm × mrad. I — расщепление линии, 2 — огибающая и оценка ширины линии спектра, 3 — стандартная оценка ширины линии SASE, 4 — максимальная ширина линии для заявленного экспериментального значения $\delta\lambda/\lambda = 0.15\%$, 5 — минимальная ширина линии для заявленного экспериментального значения $\delta\lambda/\lambda = 0.05\%$ [4].

рассчитанной нами ширины линии (жирная синяя огибающая), чем для стандартной оценки ширины линии SASE (оранжевая линия), соответствующей спектральной плотности $\delta \lambda / \lambda \approx \sqrt{\rho \lambda_u / L_s} \approx \rho$, где $\delta \lambda$ — ширина линии,
 λ — длина волны излучения ЛСЭ,
 ρ — параметр Пирса, λ_{μ} — период ондулятора, L_s — длина насыщения ЛСЭ. Для ширины линии ЛСЭ PAL-XFEL мы использовали обновленные данные из [2] с измеренной спектральной плотностью излучения SASE $\delta \lambda / \lambda \approx 0.13\%$. Отметим, что наши теоретические результаты для ширины спектра, показанные синей огибающей на рисунках, отлично согласуются со всеми экспериментальными данными (см. [2-4] и др. работы); (см. красную линию на рисунках) в отличие от стандартной оценки для ширины SASE (оранжевая линия), которая часто оказывается более узкой, чем реальные измеренные значения.

Автор заявляет о поддержке гранта МинОбрНауки 075-15-2021-1353.

Список литературы

- [1] К. Жуковский. ЖТФ, 91 (3), 495 (2021).
 DOI: 10.21883/JTF.2021.03.50529.243-20 [K. Zhukovskii.
 Tech. Phys., 66 (3) 481 (2022).
 DOI: 10.1134/S1063784221030245]
- [2] I. Nam, Ch.-Ki Min, B. Oh et al. Nature Photonics, **15**, 435 (2021).
- [3] I. Inoue, T. Osaka, T. Hara et al. Nature Photonics, 13, 319 (2019).
- [4] R. Abela, P. Beaud, J.A. van Bokhoven et al. Struct. Dyn., 4, 061602 (2017).