01

Энергетический спектр и оптические свойства бромида фуллерена С₇₀Br₁₀ в модели Хаббарда

© А.В. Силантьев

Марийский государственный университет, 424001 Йошкар-Ола, Россия e-mail: kvvant@rambler.ru

Поступила в редакцию 11.09.2022 г. В окончательной редакции 15.03.2023 г. Принята к публикации 15.03.2023 г.

> В рамках модели Хаббарда в приближении среднего поля получен энергетический спектр молекулы С₇₀Br₁₀ с группой симметрии Сs. Используя методы теории групп, проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетическом спектре бромида фуллерена С₇₀Br₁₀. Предложена интерпретация наблюдаемых экспериментально полос оптического поглощения молекулы С₇₀Br₁₀.

Ключевые слова: модель Хаббарда, функции Грина, энергетический спектр, наносистемы, С70, С70, Вг10.

DOI: 10.21883/OS.2023.04.55559.4138-22

Введение

Фуллерен С₇₀, изображенный на рис. 1 [1], был открыт в 1985 г. одновременно с фуллереном С₆₀ [2]. Исследования фуллерена С70, проведенные при помощи ядерного магнитного резонанса (ЯМР) [3], показали, что ¹³С ЯМР-спектр этого фуллерена состоит из пяти пиков, наличие которых указывает на существование пяти групп неэквивалентных друг другу атомов. При этом интенсивности пиков в ЯМР-спектре находятся в соотношении 10:20:10:20:10, которое указывая на количество атомов углерода в каждой группе. Таким образом, эти исследования показали, что молекула фуллерена С₇₀ обладает симметрией D_{5h}. Из диаграммы Шлегеля, которая изображена на рис. 2 [1], видно, что фуллерен С₇₀ с группой симметрии D_{5h} имеет восемь неэквивалентных связей, обозначенных буквами a, b, c, d, e, f, g, h, и пять групп неэквивалентных атомов углерода: $G_1 = \{1, 2, 3, 4, 5, 62, 63, 66, 67, 70\},\$ $G_2 = \{6, 9, 12, 15, 18, 61, 64, 65, 68, 69\}, \ G_3 = \{7, 8, 10,$ 11, 13, 14, 16, 17, 19, 20, 43, 44, 47, 48, 51, 52, 55, 56,

К множеству G_1 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и, кроме того, каждый из них имеет двух ближайших соседей из этого же множества G_1 . К множеству G_2 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и каждый из них не имеет ближайших соседей из этого же множества G_2 . К множеству G_3 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и каждый из них имеет одного ближайшего соседа из этого же множества G_3 . При этом ребро, которому принадлежат оба атома, является границей между двумя гексагонами. К множеству G4 принадлежат атомы, которые находятся в вершинах сочленения двух гексагонов и одного пентагона, и каждый из них имеет одного ближайшего соседа из этого же множества G4, причем ребро, которому принадлежат оба атома, является границей между гексагоном и пентагоном. К множеству G5 принадлежат атомы, которые находятся в вершинах сочленения трех гексагонов, и каждый из них имеет одного ближайшего соседа из этого же множества G5.

Практически сразу, как только научились синтезировать фуллерены С₆₀ и С₇₀ в макроскопических количествах, начались интенсивные исследования их химических свойств. Одними из первых химических соединений этих фуллеренов были соединения с галогенами [4,5]. В частности, довольно много исследований было посвящено исследованию свойств фторидов, хлоридов и бромидов фуллерена С70 [6-8]. Повышенный интерес к галогенидам фуллеренов связан с тем, что они обладают целым рядом ценных для практических целей свойств. Например, C₅₀Cl₁₀ является перспективным материалом для нелинейной оптики, так как это соединение обладает довольно высокой статической поляризуемостью и второй гиперполяризуемостью [9]. Отметим также, что галогенированные фуллерены перспективны как полифункциональные присадки к нефтепродуктам, которые могут одновременно улучшать их антиокислительные и противоизносные эксплуатационные характеристики [10]. Кроме того, галогениды фуллеренов являются важными соединениями, которые используются для получения самых разнообразных материалов. Для проектирования новых материалов на основе галогенидов фуллеренов необходимо знание химических и физических свойств этих соединений.

Рис. 1. Молекула $C_{70}Br_{10}$ с группой симметрии C_s с указанием атомов углерода, а также атомов углерода, с которыми связаны атомы брома [1].

Рис. 2. Диаграмма Шлегеля фуллерена С₇₀ с указанием положения атомов углерода и связей между атомами углерода[1].

Следует отметить, что из галогенидов фуллерена C_{70} наиболее просто получаются бромиды этого фуллерена. Например, при взаимодействии фуллерена C_{70} с жидким бромом, которое происходит при комнатной температуре, образуется моносольватированный бромид $C_{70}Br_{10}*Br_2$, нагревание которого до 70° С приводит к образованию бромида фуллерена $C_{70}Br_{10}$, выход которого составляет примерно 91% [11].

Проведенные исследования [12] показали, что молекула $C_{70}Br_{10}$ обладает симметрией Cs, а атомы брома

Оптика и спектроскопия, 2023, том 131, вып. 4

связаны с атомами углерода, которые находятся в экваториальной области фуллерена C_{70} , как показано на рис. 1. Из диаграммы Шлегеля для молекулы $C_{70}Br_{10}$, изображенной на рис. 3 [1], видно, что атомы брома связаны с атомами углерода, которые принадлежат множеству G₄, причем в каждом гексагоне, который состоит из четырех атомов, принадлежащих множеству G₄, и двух атомов, принадлежащих множеству G₅, содержится по два атома углерода, связанных с атомами брома.

Для описания электронных свойств наносистем, состоящих из атомов углерода, широко используется модель Хаббарда [13]. В рамках данной модели в приближении среднего поля ранее были получены энергетические спектры и спектры оптического поглощения фуллерена С₈₀ с группой симметрии *I_h* [14], фуллерена С₇₀ [15], фуллерена С₆₀ [16], фуллерена С₅₀ и хлорида фуллерена С₅₀Сl₁₀ с группой симметрии D_{5h} [17], фуллерена С₃₆ с группой симметрии D_{6h} [18], фуллерена C₂₈ с группой симметрии T_d [19], фуллерена С₂₆ с группой симметрии D_{3h} [20], фуллерена C₂₄ с группами симметрии O_h , D_6 и D_{6d} [21] и фуллерена С₂₀ с группами симметрии I_h, D_{5d} и D_{3d} [22], а в работе [23] были исследованы электронные свойства углеродных нанотрубок. Полученные в работах [15–17] результаты достаточно хорошо согласуются с экспериментальными данными.

Целью данной работы является исследование энергетического спектра бромида фуллерена C₇₀Br₁₀ в рамках модели Хаббарда в приближении среднего поля.

Энергетический спектр бромида фуллерена С₇₀Вr₁₀

Как известно, электронные свойства фуллеренов и нанотрубок, состоящих из атомов углерода, зависят в основном от поведения π -электронов в этих наносистемах. Для описания поведения π -электронов в бромиде фуллерена C₇₀Br₁₀ воспользуемся моделью Хаббарда [13], гамильтониан которой имеет следующий вид:

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\bar{\sigma}}, \quad (1)$$

где $c_{i\sigma}^+$, $c_{i\sigma}$ — операторы рождения и уничтожения электронов со спином σ на узле *i*; $n_{i\sigma}$ — оператор числа частиц со спином σ на узле *i*; ε_i — энергия одно-электронного атомного состояния на узле *i*; t_{ij} интеграл переноса, описывающий перескоки электронов с узла *i* на узел *j*; U_i — энергия кулоновского отталкивания двух электронов, находящихся на *i*-м узле; $\bar{\sigma} = -\sigma$.

Как известно, точное решение для модели Хаббарда получено для ограниченного числа систем, например для одномерной модели [24], для димера [25], для димера в расширенной модели Хаббарда [26]. При исследовании электронных свойств различных физических систем в рамках модели Хаббарда применяются разнообразные приближенные методы [27]. Среди приближенных методов, применяемых при исследовании физических систем в рамках модели Хаббарда, широко используется приближение среднего поля. В рамках этого приближения, как известно [27], в гамильтониане (1) следует сделать следующую замену:

$$n_{i\sigma}n_{i\bar{\sigma}} \to n_{i\sigma} \langle n_{i\bar{\sigma}} \rangle + n_{i\bar{\sigma}} \langle n_{i\sigma} \rangle, \qquad (2)$$

где $\langle n_{i\sigma} \rangle$ — среднее число электронов со спином σ , находящихся на узле *i*.

Подставляя (2) в гамильтониан (1), получим гамильтониан модели Хаббарда в приближении среднего поля:

$$H = \sum_{\sigma,i} \varepsilon'_{i\sigma} n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c^+_{i\sigma} c_{j\sigma}, \qquad (3)$$

где

$$\varepsilon_{i\sigma}' = \varepsilon_i + U \langle n_{\bar{\sigma}} \rangle. \tag{4}$$

Для того, чтобы найти энергетический спектр бромида фуллерена C₇₀Br₁₀, воспользуемся методом антикоммутаторных функций Грина [28], которые имеют следующий вид:

$$G_{f\sigma}(\tau) = \langle \langle c_{f\sigma}^+ | c_{f\sigma} \rangle \rangle = \theta(\tau) \langle [c_{f\sigma}^+(\tau), c_{f\sigma}(0)]_+ \rangle.$$
 (5)

Как известно, энергетический спектр квантовой системы определяется фурье-образами антикоммутаторных функций Грина, которые в приближении среднего поля имеют следующий вид [15,16]:

$$\langle\langle c_{f\sigma}^{+}|c_{f\sigma}\rangle\rangle_{E} = \frac{i}{2\pi}\sum_{m=1}^{p}\frac{Q_{j,m}}{E - E_{m} + ih}, \quad E_{m} = \varepsilon' + e_{m},$$
(6)

где p — число энергетических состояний квантовой системы, E_m — энергия *m*-го состояния квантовой системы, e_m — энергия *m*-го состояния квантовой системы относительно ε' , $Q_{j,m}$ — спектральная плотность *m*-го энергетического состояния, зная которую можно найти степень вырождения каждого энергетического уровня [15,16]:

$$g_i = \sum_{j=1}^{N} Q_{j,i},$$
 (7)

где g_i — степень вырождения *i*-го энергетического уровня, N — число узлов наносистемы.

Найдем операторы рождения $c_{f\sigma}^+(\tau)$, входящие в функции Грина (5). Для этого для всех операторов рождения $c_{f\sigma}^+(\tau)$, которые заданы в представлении Гейзенберга, запишем уравнения движения:

$$\frac{dc_{f\sigma}^{+}(\tau)}{d\tau} = [H, c_{f\sigma}^{+}(\tau)], \qquad (8)$$

где f = 1, ..., N; $\tau = it$; t — время; i — мнимая единица.

Подставив в уравнения движения (8) гамильтониан (3) и используя диаграмму Шлегеля на рис. 3, получим замкнутую систему дифференциальных уравнений:

. . +

$$\begin{cases} \frac{dc_{j\sigma}}{d\tau} = \varepsilon'_{\sigma}c^{+}_{1\sigma} + t_{c}c^{+}_{2\sigma} + t_{g}(c^{+}_{6\sigma} + c^{+}_{9\sigma}), \\ \dots \\ \frac{dc^{+}_{70\sigma}}{d\tau} = \varepsilon'_{\sigma}c^{+}_{70\sigma} + t_{j}c^{+}_{65\sigma} + t_{i}c^{+}_{62\sigma} + t_{b}c^{+}_{69\sigma}). \end{cases}$$
(9)

Прежде чем решать систему уравнений (9), найдем численные значения всех параметров, которые в нее входят. Для того, чтобы найти численные значения интегралов переноса, которые входят в (9) и соответствуют молекуле $C_{70}Br_{10}$, воспользуемся следующим соотношением [14,15]:

$$t_s = -8957.33 \exp(-6.0207 x_s). \tag{10}$$

Проведенные ренгеноструктурные исследования показали [12], что у бромида фуллерена C₇₀Br₁₀ расстояния между атомами углерода имеют следующие значения:

$$\begin{aligned} x_a &= 1.37(2) \text{ Å}, \quad x_b = 1.38(2) \text{ Å}, \quad x_c = 1.39(2) \text{ Å}, \\ x_d &= 1.40(2) \text{ Å}, \quad x_f = 1.41(2) \text{ Å}, \\ x_g &= 1.42(2) \text{ Å}, \quad x_h = 1.43(2) \text{ Å}, \quad x_i = 1.44(2) \text{ Å}, \\ x_j &= 1.45(2) \text{ Å}, \quad x_k = 1.46(2) \text{ Å}, \\ x_m &= 1.48(2) \text{ Å}, \quad x_n = 1.49(2) \text{ Å}, \quad x_o = 1.50(2) \text{ Å}, \\ x_p &= 1.51(2) \text{ Å}, \quad x_r = 1.52(2) \text{ Å}, \\ x_s &= 1.53(2) \text{ Å}, \quad x_t = 1.54(2) \text{ Å}, \quad x_x = 1.59(2) \text{ Å}, \quad (11) \end{aligned}$$

Таким образом, из соотношений (10) и (11) следует, что для бромида фуллерена $C_{70}Br_{10}$ с группой симметрии C_s интегралы переноса имеют следующие значения:

$$t_{a} = -2.20714 \text{ eV}, \quad t_{b} = -2.07817 \text{ eV}, \quad t_{c} = -1.95675 \text{ eV},$$

$$t_{d} = -1.84241 \text{ eV}, \quad t_{f} = -1.73476 \text{ eV},$$

$$t_{g} = -1.63340 \text{ eV}, \quad t_{h} = -1.53796 \text{ eV}, \quad t_{i} = -1.44810 \text{ eV},$$

$$t_{j} = -1.36348 \text{ eV}, \quad t_{k} = -1.28381 \text{ eV},$$

$$t_{m} = -1.13817 \text{ eV}, \quad t_{n} = -1.07167 \text{ eV}, \quad t_{o} = -1.00905 \text{ eV},$$

$$t_{p} = -0.95009 \text{ eV}, \quad t_{r} = -0.89458 \text{ eV},$$

$$t_{s} = -0.84231 \text{ eV}, \quad t_{t} = -0.79309 \text{ eV}, \quad t_{x} = -0.58693 \text{ eV}.$$

(12)

Для того чтобы найти численное значение энергии ε' , заметим, что процесс образования этой молекулы можно описать следующим образом. При образовании молекулы C₇₀Br₁₀ десять валентных электронов фуллерена C₇₀ и по одному валентному электрону у атомов брома спариваются и образуют прочные связи между атомами углерода и брома. Тогда, как следует из соотношения (4), энергия ε' определяется следующим образом:

$$\varepsilon' = \begin{cases} \varepsilon'_{C_n}, &$$
для $C_n, \\ \varepsilon'_{C_n} - qU/n, &$ для $C_n^{+q} X_k^{(-q)}, \end{cases}$ (13)

где ε'_{C_n} — это ε' соответствует фуллерену С_n; q — число электронов, перешедших с фуллерена С_n на k атомов Х. Из соотношения (13) следует, что

$$\varepsilon'_{C_{70}Br_{10}} = \varepsilon'_{C_{70}} - \frac{qU}{n} = -4.979 - \frac{10 \cdot 5.662}{70} = -6.111 \,\text{eV},$$
(14)

Оптика и спектроскопия, 2023, том 131, вып. 4

Рис. 3. Диаграмма Шлегеля бромида фуллерена C₇₀Br₁₀ с указанием положения атомов углерода, связей между атомами углерода и атомов углерода, с которыми связаны атомы брома [1].

где $U = 5.662 \,\mathrm{eV}$ [29], $\varepsilon' = -4.979 \,\mathrm{eV}$ [15].

Подставив численные значения для интегралов переноса (12) и энергии ε' (14) в систему дифференциальных уравнений (9) и решив полученную систему уравнений, получим выражения для операторов рождения $c^+_{f\sigma}(\tau)$. Поскольку выражения для операторов рождения являются довольно громоздкими (каждый оператор рождения содержит 70 × 70 = 4900 слагаемых), то мы здесь их не приводим. Как видно из рис. 1, структурными элементами рассматриваемого фуллерена являются пятиугольники (пентагоны) и шестиугольники (гексагоны). В приложении приведено подробное решение для пентагона. Теперь, используя выражения для операторов рождения и соотношения (5)-(7), получим для молекулы C₇₀Br₁₀ ее энергетический спектр. Результаты вычислений приведены в табл. 1, а также на рис. 4. Как видно из соотношения (6) и рис.4, энергетические уровни бромида фуллерена C₇₀Br₁₀ с группой симметрии C_s сосредоточены вблизи энергии $\varepsilon' = \varepsilon'_{C_{70}Br_{10}}.$

Энергетические состояния бромида фуллерена $C_{70}Br_{10}$ с группой симметрии C_s можно классифицировать в соответствии с неприводимыми представлениями данной группы, которая имеет следующие неприводимые представления a', a'' [30]. В табл. 1 и на рис. 4 показано, с какими неприводимыми представлениями группы C_s связаны энергетические состояния бромида фуллерена $C_{70}Br_{10}$. Отметим, что на рис. 4 индекс ' соответствует неприводимому представлению a', а индекс '' соответствует неприводимому представлению a''.

Таким образом, результаты данных вычислений показали, что энергетический спектр бромида фуллерена

Рис. 4. Энергетический спектр молекулы C₇₀Br₁₀.

 $C_{70}Br_{10}$ с группой симметрии C_s состоит из 70 невырожденных энергетических состояний. В работе [15]

 $E(\Gamma_j)$

 $E_{36}(a'')$

 $E_{37}(a'')$

 $E_{38}(a')$

 $E_{39}(a')$

 $E_{40}(a'')$

 $E_{41}(a')$

 $E_{42}(a'')$

 $E_{43}(a')$

 g_j

1

1

1

1

1

1

1

1

	-3.298	-8.277	1	$E_9(a^{\prime\prime})$	44	1.580	-3.399	1	$E_{44}(a'')$
	-2.956	-7.936	1	$E_{10}(a'')$	45	1.642	-3.337	1	$E_{45}(a'')$
	-2.915	-7.895	1	$E_{11}(a')$	46	1.662	-3.317	1	$E_{46}(a')$
	-2.802	-7.781	1	$E_{12}(a')$	47	1.736	-3.243	1	$E_{47}(a')$
	-2.744	-7.723	1	$E_{13}(a')$	48	1.837	-3.143	1	$E_{48}(a'')$
	-2.743	-7.722	1	$E_{14}(a'')$	49	1.923	-3.057	1	$E_{49}(a')$
	-2.563	-7.543	1	$E_{15}(a'')$	50	1.948	-3.032	1	$E_{50}(a'')$
	-2.433	-7.412	1	$E_{16}(a')$	51	2.124	2.855	1	$E_{51}(a')$
	-2.134	-7.114	1	$E_{17}(a')$	52	2.163	-2.817	1	$E_{52}(a')$
	-2.100	-7.080	1	$E_{18}(a'')$	53	2.281	-2.699	1	$E_{53}(a'')$
	-2.020	-6.999	1	$E_{19}(a')$	54	2.405	-2.574	1	$E_{54}(a'')$
	-1.940	-6.920	1	$E_{20}(a'')$	55	2.426	-2.553	1	$E_{55}(a')$
	-1.874	-6.853	1	$E_{21}(a')$	56	2.552	-2.427	1	$E_{56}(a)$
	-1.826	-6.805	1	$E_{22}(a'')$	57	2.584	-2.396	1	$E_{57}(a'')$
	-1.771	-6.750	1	$E_{23}(a')$	58	2.714	-2.266	1	$E_{58}(a'')$
	-1.603	-6.583	1	$E_{24}(a'')$	59	2.840	-2.139	1	$E_{59}(a'')$
	-1.573	-6.552	1	$E_{25}(a')$	60	2.888	-2.091	1	$E_{60}(a')$
	-1.459	-6.438	1	$E_{26}(a'')$	61	3.047	-1.932	1	$E_{61}(a'')$
	-1.401	-6.381	1	$E_{27}(a'')$	62	3.308	-1.671	1	$E_{62}(a'')$
	-1.297	-6.277	1	$E_{28}(a')$	63	3.351	-1.628	1	$E_{63}(a')$
	-1.210	-6.190	1	$E_{29}(a'')$	64	3.683	-1.297	1	$E_{64}(a'')$
	-1.202	-6.181	1	$E_{30}(a')$	65	3.789	-1.190	1	$E_{65}(a')$
	-0.827	-5.807	1	$E_{31}(a')$	66	3.810	-1.169	1	$E_{66}(a'')$
	-0.773	-5.753	1	$E_{32}(a'')$	67	4.132	-0.8472	1	$E_{67}(a')$
	-0.632	-5.612	1	$E_{33}(a'')$	68	4.192	-0.788	1	$E_{68}(a')$
	-0.544	-5.523	1	$E_{34}(a')$	69	4.217	-0.763	1	$E_{69}(a'')$
	-0.289	-5.269	1	$E_{35}(a')$	70	4.300	-0.680	1	$E_{70}(a'')$
іуч сі	чен энергетический спектр фуллерена С ₇₀ с имметрии <i>D</i> _{5<i>h</i>} , который представлен на рис. 5. я энергетические спектры бромида фуллерена с ружной сирьостические спектры бромида фуллерена						неские значения полосам погло- 0		
с группои симметрии C_s и фуллерена C_{70} ой симметрии D_{5h} , которые представлены на				Пол	Полосы поглощения		[31] <i>E</i> , eV	Расчет E , eV	
5, видим, что понижение симметрии, вызванное						а	380	3.269	3.270
инением атомов брома к фуллерену Столлривело				h		470	2 6 4 3	2 6 4 3	

Таблица 1. Энергетический спектр молекулы C₇₀Br₁₀ с группой симметрии C_s: значения энергии уровней, кратность их вырождения и неприводимые представления группы C_s, к которым они относятся

N⁰

36

37

38

39

40

41

42

43

 e_j , eV

-0.100

0.254

0.381

0.670

0.810

1.008

1.183

1.289

 E_j , eV

-5.080

-4.725

-4.599

-4.309

-4.169

-3.972

-3.797

-3.690

 $E(\Gamma_j)$

 $E_1(a')$

 $E_2(a')$

 $E_3(a^{\prime\prime})$

 $E_4(a')$

 $E_5(a'')$

 $E_6(a')$

 $E_7(a')$

 $E_8(a')$

был пол группой Сравние C₇₀Br₁₀ с групп рис. 4 и присоединением атомов брома к фуллерену С70, привело к расщеплению дважды вырожденных энергетических состояний.

Спектр оптического поглощения является важной характеристикой любой молекулы. Используя полученный выше энергетический спектр бромида фуллерена C₇₀Br₁₀ с группой симметрии С_s, можно с помощью теории групп найти переходы, которые обусловливают оптический спектр этой молекулы. Можно показать, что в энергетическом спектре молекулы с группой симметрии C_s разрешены все переходы [30].

Полосы поглощения	[31] λ, nm	[31] <i>E</i> , eV	Расчет E, eV
а	380	3.269	3.270
b	470	2.643	2.643
С	505	2.460	2.463
d	535	2.322	2.324
f	565	2.199	2.200
g	635	1.956	1.954

В работе [31] были проведены экспериментальные исследования, посвященные изучению спектра оптического поглощения бромида фуллерена C₇₀Br₁₀ в бензоле, в 1,2-дихлорбензоле и в 1,2-диметилбензоле. Проведенные

N₂

1

2

3

4

5

6

7

8

9

 e_j , eV

-4.535

-4.425

-4.097

-4.072

-3.837

-3.797

-3.529

-3.407

 E_j , eV

-9.514

-9.405

-9.077

-9.052

-8.816

-8.776

-8.508

-8.386

 g_j

1

1

1

1

1

1

1

1

Рис. 5. Энергетический спектр молекулы С₇₀ [15].

исследования показали, что в оптическом спектре поглощения бромида фуллерена $C_{70}Br_{10}$ можно выделить, как это видно из рис. 6 [1,31], шесть полос поглощения: *a*, *b*, *c*, *d*, *f*, *g*, которые представлены в табл. 2. Зная энергетический спектр молекулы $C_{70}Br_{10}$, можно дать следующую интерпретацию ее экспериментально наблюдаемого спектра оптического поглощения. Полосы спектра оптического поглощения, которые соответствуют экспериментально наблюдаемым энергиям E_a , E_b , E_c ,

Рис. 6. Спектр поглощения бромида фуллерена $C_{70}Br_{10}$ в бензоле (1), в 1,2-дихлорбензоле (2), в 1,2-диметилбензоле (3) [1,31].

 E_d , E_f , E_g , представленным в табл. 2, можно интерпретировать как полосы, формирующиеся переходами, представленными в табл. 3. Данные переходы представлены также на рис. 4. Как видно из табл. 4, энергии этих переходов близки к экспериментальным значениям [31].

Заключение

Проведенные исследования показали, что спектр оптического поглощения молекулы $C_{70}Br_{10}$, который наблюдается экспериментально [31], достаточно хорошо согласуется со спектром оптического поглощения этой молекулы, который получен в рамках модели Хаббарда в приближении среднего поля.

Отметим также, что исследования оптических свойств фуллеренов C_{60} и C_{70} , а также эндофуллерена $Y_3N@C_{80}$ и хлорида фуллерена $C_{50}Cl_{10}$, выполненные в рамках модели Хаббарда в приближении среднего поля [20,19,18,14], показали хорошее соответствие между экспериментальными данными и теоретическими результатами. Это позволяет считать, что модель Хаббарда в приближении среднего поля достаточно хорошо описывает электронные свойства углеродных наносистем.

Приложение

Найдем в рамках модели Хаббарда в приближении среднего поля энергетические спектры пентагона и гексагона, которые изображены на рис. 7. Для этого прежде всего найдем операторы рождения $c_{f\sigma}^+(\tau)$, входящие в функцию Грина (5). Подставив в уравнения движения (8) гамильтониан (3) и используя рис. 7, в случае пентагона получим замкнутую систему дифференциальных уравнений

$$\frac{dc_{1\sigma}^+(\tau)}{d\tau} = \varepsilon' c_{1\sigma}^+(\tau) + t_a (c_{2\sigma}^+(\tau) + c_{5\sigma}^+(\tau)),$$

Рис. 7. Пентагон и гексагон — структурные элементы фуллерена.

Таблица 3. Переходы, формирующие полосы поглощения *a*, *b*, *c*, *d*, *f*, *g*

ΔE	$\Delta E, eV$	ΔE	$\Delta E, eV$	ΔE	$\Delta E, eV$
а		с		f	
$E_{46} - E_{24}$	3.2653	$E_{35} - E_{14}$	2.4542	$E_{32} - E_{10}$ 2.1832	
$E_{31} - E_3$	3.2699	$E_{35} - E_{13}$	2.4546	$E_{37} - E_{20}$	2.1947
$E_{42} - E_{18}$	3.2829	$E_{36} - E_{15}$	2.4629	$E_{34} - E_{14}$	2.2000
b		$E_{41} - E_{26}$	2.4667	$E_{34} - E_{13}$	2.2004
$E_{32} - E_8$	2.6337	$E_{31} - E_9$	2.4703	$E_{38} - E_{22}$	2.2066
$E_{40} - E_{22}$	2.6361	d		$E_{41} - E_{30}$	2.2095
$E_{42} - E_{26}$	2.6417	$E_{41} - E_{28}$	2.3052	g	
$E_{36} - E_{14}$	2.6431	$E_{38} - E_{20}$	2.3209	$E_{33} - E_{15}$	1.9311
$E_{36} - E_{13}$	2.6435	$E_{33} - E_{10}$	2.3241	$E_{38} - E_{25}$	1.9536
$E_{33} - E_9$	2.6653	$E_{36} - E_{16}$	2.3326	$E_{39} - E_{28}$	1.9675
$E_{35} - E_{10}$	2.6670			$E_{32} - E_{14}$	1.9704
				$E_{32} - E_{13}$	1.9708

$$\frac{dc_{2\sigma}^{+}(\tau)}{d\tau} = \varepsilon' c_{2\sigma}^{+}(\tau) + t_a (c_{1\sigma}^{+}(\tau) + c_{3\sigma}^{+}(\tau)),$$

$$\frac{dc_{3\sigma}^{+}(\tau)}{d\tau} = \varepsilon' c_{3\sigma}^{+}(\tau) + t_a (c_{2\sigma}^{+}(\tau) + c_{4\sigma}^{+}(\tau)), \quad (\Pi 1)$$

$$\frac{dc_{4\sigma}^{+}(\tau)}{d\tau} = \varepsilon' c_{4\sigma}^{+}(\tau) + t_a (c_{3\sigma}^{+}(\tau) + c_{5\sigma}^{+}(\tau)),$$

$$\frac{dc_{5\sigma}^{+}(\tau)}{d\tau} = \varepsilon' c_{5\sigma}^{+}(\tau) + t_a (c_{1\sigma}^{+}(\tau) + c_{4\sigma}^{+}(\tau)).$$

Используя методы операционного исчисления [32,33], решим систему дифференциальных уравнений (П1). Для этого в системе уравнений (П1) сделаем следующую замену:

$$\frac{d}{d\tau} \to p,$$

$$x(\tau) \to x(p),$$

$$y(\tau) \to y(p),$$
(Π2)

где *p* — параметр.

Подставляя (П2) в (П1), получим систему алгебраических уравнений:

$$pc^{+}_{1\sigma}(p) - c^{+}_{1\sigma}(0) = \varepsilon'c^{+}_{1\sigma}(p) + t_{a}(c^{+}_{2\sigma}(p) + c^{+}_{5\sigma}(p)),$$

$$pc^{+}_{2\sigma}(p) - c^{+}_{2\sigma}(0) = \varepsilon'c^{+}_{2\sigma}(p) + t_{a}(c^{+}_{1\sigma}(p) + c^{+}_{3\sigma}(p)),$$

$$pc^{+}_{3\sigma}(p) - c^{+}_{3\sigma}(0) = \varepsilon'c^{+}_{3\sigma}(p) + t_{a}(c^{+}_{2\sigma}(p) + c^{+}_{4\sigma}(p)),$$

$$pc^{+}_{4\sigma}(p) - c^{+}_{4\sigma}(0) = \varepsilon'c^{+}_{4\sigma}(p) + t_{a}(c^{+}_{3\tau}(p) + c^{+}_{5\sigma}(p)),$$

$$pc^{+}_{5\sigma}(p) - c^{+}_{5\sigma}(0) = \varepsilon'c^{+}_{5\sigma}(p) + t_{a}(c^{+}_{1\tau}(p) + c^{+}_{4\sigma}(p)).$$
(II3)

Используя метод Крамера [34], найдем решение системы уравнений (ПЗ), которая представляет собой систему алгебраических уравнений относительно неизвестных $c_{1\sigma}^+(p), c_{2\sigma}^+(p), c_{3\sigma}^+(p), c_{4\sigma}^+(p), c_{5\sigma}^+(p)$:

$$c_{1\sigma}^{+}(p) = [((p - \varepsilon')^{2} + t_{a}(\varepsilon' - t_{a} - p))c_{1\sigma}(p) + t_{a}(p - t_{a} - \varepsilon')(c_{2\sigma}^{+}(p) + c_{5\sigma}^{+}(p)) + t_{a}^{2}(c_{3\sigma}'(p) + c_{4\sigma}^{+}(p))] : [(p - 2t_{a} - \varepsilon') \times ((p - \varepsilon')^{2} + t_{a}(p - \varepsilon' - t_{a}))].$$
(II4)

Делая в уравнении (П4) циклическую перестановку индексов 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1, получим оставшиеся операторы $c_{2\sigma}^+(p), c_{3\sigma}^+(p), c_{4\sigma}^+(p), c_{5\sigma}^+(p)$. Зная эти операторы и используя обратное преобразование Лапласа [35], получим выражения для операторов рождения:

$$\begin{aligned} c_{1\sigma}^{+}(\tau) &= \frac{1}{5} (c_{1\sigma}^{+}(0) + c_{2\sigma}^{+}(0) + c_{3\sigma}^{+}(0) + c_{5\sigma}^{+}(0)) \\ &\times \exp(E_{1}\tau) + \frac{1}{10} (4c_{1\sigma}^{+}(0) + (\sqrt{5} - 1)(c_{2\tau}^{+}(0) + c_{5\sigma}^{+}(0)) \\ &- (\sqrt{5} + 1)(c_{3\sigma}^{+}(0) + c_{4\sigma}^{+}(0))) \exp(E_{2}\tau) \\ &+ \frac{1}{10} (4c_{1\sigma}^{+}(0) + (\sqrt{5} + 1)(c_{3\tau}^{+}(0) + c_{5\sigma}^{+}(0)) \\ &+ (\sqrt{5} - 1)(c_{2\sigma}^{+}(0) + c_{4\sigma}^{+}(0))) \exp(E_{3}\tau), \end{aligned}$$
(II5)

где

$$E_1 = \varepsilon + 2t_a, \quad E_2 = \varepsilon + t_a(\sqrt{5} - 1)/2,$$

 $E_3 = \varepsilon - t_c(1 + \sqrt{5})/2.$ (II6)

Делая в уравнении (П5) циклическую перестановку индексов 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1, получим оставшиеся операторы рождения $c^+_{2\sigma}(\tau)$, $c^+_{3\sigma}(\tau)$, $c^+_{4\sigma}(\tau)$, $c^+_{5\sigma}(\tau)$.

Подставив в формулу (5) оператор рождения (П5) и выполнив фурье-преобразование, получим фурье-образ антикоммутаторной функции Грина:

$$\langle \langle c_{j\sigma}^{+} | c_{j\sigma} \rangle \rangle_{E} = \frac{i}{2\pi} \frac{1}{5} \left\{ \frac{1}{E - E_{1} + ih} + \frac{2}{E - E_{2} + ih} + \frac{2}{E - E_{3} + ih} \right\}, \quad j = 1 \dots 5,$$
(II7)

где выражения (Пб) представляют собой энергетический спектр пентагона, энергетические состояния которого согласно соотношениям (7), (6) и (П7) имеют следующие степени вырождения:

$$g_1 = 1, \quad g_2 = g_3 = 2.$$
 (II8)

Аналогичным образом можно получить фурье-образ антикоммутаторной функции Грина и энергетический спектр для гексагона:

$$\langle \langle c_{j\sigma}^{+} | c_{j\sigma} \rangle \rangle_{E} = \frac{i}{2\pi} \frac{1}{6} \bigg\{ \frac{1}{E - E_{1} + ih} + \frac{2}{E - E_{2} + ih} + \frac{2}{E - E_{3} + ih} + \frac{1}{E - E_{4} + ih} \bigg\},$$
(II9)

 $E_1 = \varepsilon + 2t_a, \quad E_2 = \varepsilon + t_a,$ $E_3 = \varepsilon - t_a, \quad E_4 = \varepsilon - 2t_a, \quad (\Pi 10)$

$$= 1 = 2$$

$$g_1 = g_4 = 1$$
. $g_2 = g_3 = 2$. (1111)

Отметим, что из (П5) видно, что в случае пентагона каждый оператор рождения содержит $5 \times 3 = 15$ слагаемых. Аналогично можно показать, что операторы рождения для бромида фуллерена $C_{70}Br_{10}$ с группой симметрии C_s содержат по $70 \times 70 = 4900$ слагаемых.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- A.B. Силантьев. ФТТ, 65 (1), 157 (2023).
 DOI: 10.21883/FTT.2023.01.53939.470 [A.V. Silant'ev. Physics of the Solid State, 65 (1), 151 (2023).
 DOI: 10.21883/PSS.2023.01.54990.470].
- [2] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature, **318**, 162 (1985). DOI: 10.1038/318162a0
- [3] R. Tycko, R.C. Haddon, G. Dabbagh, S.H. Glarum,
 D.C. Douglass, A.M. Mujsce. J. Phys. Chem., 95 (2), 518 (1991). DOI: 10.1021/j100155a006

- [4] P.R. Birkett, P.B. Hitchcock, H.W. Kroto, R. Taylor, D.R.M. Walton. Nature, **357**, 479 (1992).
 DOI: 10.1038/357479a0
- [5] A.A. Tuinman, P. Mukherjee, J.L. Adcock, R.L. Hettich, R.N. Compton. J. Phys. Chem., 96, 7584 (1992).
 DOI: 10.1021/j100198a019
- [6] N. Liu, H. Touhara, Y. Mono, D. Komichi, F. Okino, S. Kawasaki. J. Electrochem. Soc., 143, L214 (1996).
 DOI: 10.1149/1.1837091
- [7] S.I. Troyanov, A.A. Popov. Angew. Chem. Int. Ed., 44, 4215 (2005). DOI: 10.1002/ange.200500476
- [8] G. Waidmann, M. Jansen. Z. Anorg. Allg. Chem., 62, 623 (1997). DOI: 10.1002/zaac.19976230198
- [9] Y. Yang, F.H. Wang, Y.S. Zhou, L.F. Yuan, J. Yang. Phys. Rev. A, 71, 013202 (2005). DOI: 10.1103/PhysRevA.71.013202
- [10] Е.В. Полункин, Т.М. Каменева, В.С. Пилявский, Р.С. Жила, О.А. Гайдай, П.А. Трошин. Катализ и нефтехимия, 20, 70 (2012).
- [11] К.Н. Семенов, Н.А. Чарыков, В.А. Кескинов, Д.Г. Летенко, В.А. Никитин, Е.Г. Грузинская. Журн. общей химии, 83, 582 (2013). [К.N. Semenov, N.A. Charykov, V.A. Keskinov, D.G. Letenko, V.A. Nikitin. Russ. J. Gen. Chem., 83, 583 (2013). DOI: 10.1134/S1070363213040117].
- [12] S.I. Troyanov, A.A. Popov, N.I. Denisenko, O.V. Boltalina, L.N. Sidorov, E. Kemnitz. Angew. Chem. Int. Ed., 42, 2395 (2003). DOI: 10.1002/ange.200351132
- J. Hubbard. Proc.Roy.Soc. London A, 276, 238 (1963).
 DOI: 10.1098/rspa.1963.0204
- [14] А.В. Силантьев. Опт. и спектр., 129 (10), 1227 (2021). DOI: 10.21883/OS.2021.10.51486.2188-21 [A.V. Silant'ev. Opt. Spectrosc., 130 (2), 73 (2022). DOI: 10.1134/S0030400X22010131].
- [15] А.В. Силантьев. Опт. и спектр., 124 (2), 159 (2018). DOI: 10.21883/OS.2018.02.45517.211-17 [A.V. Silant'ev. Opt. Spectrosc., 124 (2), 155 (2018). DOI: 10.1134/S0030400X18020157].
- [16] А.В. Силантьев. Физика металлов и металловедение, 118 (1), 3 (2017). DOI: 10.7868/S0015323016100119
 [A.V. Silant'ev. Phys. Met. Metallogr., 118 (1), 1 (2017). DOI: 10.1134/S0031918X16100112].
- [17] А.В. Силантьев. Опт. и спектр., 130 (8), 1153 (2022). DOI: 10.21883/OS.2022.08.52899.3029-21 [A.V. Silant'ev. Opt. Spectrosc., 130 (8), 924 (2022). DOI: 10.21883/EOS.2022.08.54763.3029-21].
- [18] А.В. Силантьев. Опт. и спектр., 127 (2), 191 (2019).
 DOI: 10.21883/OS.2019.08.48028.215-18 [A.V. Silant'ev. Opt. Spectrosc., 127 (2), 190 (2019).
 DOI: 10.1134/S0030400X19080265].
- [19] А.В. Силантьев. Физика металлов и металловедение, 121 (6), 557 (2020). DOI: 10.31857/S0015323020060145
 [A.V. Silant'ev. Phys. Met. Metallogr., 121 (6), 501 (2020). DOI: 10.1134/S0031918X20060149].
- [20] А.В. Силантьев. Физика металлов и металловедение, 122 (4), 339 (2021). DOI: 10.31857/S0015323021040094
 [A.V. Silant'ev. Phys. Met. Metallogr., 122 (4), 315 (2021). DOI: 10.1134/S0031918X21040098].
- [21] А.В. Силантьев. Физика металлов и металловедение, 121 (3), 227 (2020). DOI: 10.31857/S0015323020010167
 [A.V. Silant'ev. Phys. Met. Metallogr., 121 (3), 195 (2020). DOI: 10.1134/S0031918X20010160].
- [22] А.В. Силантьев. Физика металлов и металловедение, **119**(6), 541 (2018). DOI: 10.7868/S0015323018060013

[A.V. Silant'ev. Phys. Met. Metallogr., **119** (6), 511 (2018). DOI: 10.1134/S0031918X18060133].

- [23] Г.С. Иванченко, Н.Г. Лебедев. ФТТ, 49 (1), 183 (2007).
 [G.S. Ivanchenko, N.G. Lebedev. Phys. Solid State, 49 (1), 189 (2007). DOI: 10.1134/S1063783407010301].
- [24] E. Lib, F.Y. Wu. Phys. Rev. Lett., 20, 1445 (1968).
 DOI: 10.1142/9789812798268_0001
- [25] R.A. Harris, L.M. Falicov. J. Chem. Phys., 51, 5034 (1969).DOI: 10.1063/1.1671900
- [26] А.В. Силантьев. Известия вузов. Физика, 57 (11), 37 (2014).
 [А.V. Silant'ev. Russ. Phys. J., 57, 1491 (2015).
 DOI: 10.1007/s11182-015-0406-z].
- [27] Ю.А. Изюмов, М.И. Кацнельсон, Ю.Н. Скрябин. Магнетизм коллективизированных электронов (Наука, М., 1994).
- [28] С.В. Тябликов. Методы квантовой теории магнетизма, 2-е изд. (Наука, М., 1975).
- 148 (4), [29] A.B. Силантьев. ЖЭТФ. 749 (2015).10.7868/S0044451015100120 DOI: A.V. Silant'ev. L Exp. Theor. Phys., **121** (4), 653 (2015).DOI: 10.1134/S1063776115110084].
- [30] Р. Хохштрассер. Молекулярные аспекты симметрии (Мир, М., 1968).
- [31] K.N. Semenov, N.A. Charykov, A.S. Kritchenkov. J. Chem. Eng. Data, 58, 570 (2013). DOI: 10.1021/je3010744
- [32] Я. Микусинский. Операторное исчисление (ИЛ, М., 1956).
- [33] Р.С. Гутер, А.Р. Янпольский. Дифференциальные уравнения (Высшая Школа, М., 1976).
- [34] А.Г. Курош. *Курс высшей алгебры*, 2-е изд. (Наука, М., 1975).
- [35] Г. Бейтмен, А. Эрдейн. Таблицы интегральных преобразований: Преобразования Фурье, Лапласа, Меллина, том 1 (Наука, М., 1969).