02

Люминесценция ионов марганца и хрома в соединениях со структурой шпинели

© Н.М. Хайдуков¹, М.Н. Бреховских¹, Н.Ю. Кирикова², В.А. Кондратюк², В.Н. Махов^{2,¶}

¹ Институт общей и неорганической химии им. Н.С. Курнакова РАН,

119991 Москва, Россия

² Физический институт им. П.Н. Лебедева РАН,

119991 Москва, Россия

¶e-mail: makhovvn@lebedev.ru

Поступила в редакцию 23.11.2022 г. В окончательной редакции 09.12.2022 г. Принята к публикации 12.12.2022 г.

Однофазные керамические образцы шпинелей $MgAl_2O_4$, $ZnAl_2O_4$ и $LiAl_5O_8$, содержащих ионы марганца или хрома, были синтезированы методом высокотемпературных твердофазных реакций. Было показано, что люминесцентные свойства синтезированных люминофоров, в частности появление интенсивной красной люминесценции ионов Mn^{4+} , а также величина неоднородного уширения линий в спектрах люминесценции ионов Mn^{4+} и Cr^{3+} зависят от степени катионной инверсии, обеспечивающей зарядовую компенсацию для стабилизации ионов Mn^{4+} в октаэдрических позициях шпинелевой структуры при замещении ионов Al^{3+} и одновременно приводящей к разупорядоченности кристаллической структуры шпинели.

Ключевые слова: шпинель, инверсия, ионы марганца и хрома, красный люминофор.

DOI: 10.21883/OS.2023.04.55547.56-22

Введение

К настоящему времени разработано и исследовано большое количество практических люминофоров, а также лазерных материалов, в которых оптически активными ионами являются ионы марганца и хрома. Тем не менее исследования особенностей люминесценции этих ионов в матрицах различного типа активно продолжаются. В частности, в последнее время очень много работ посвящено поиску и исследованию новых красных люминофоров для светодиодных источников теплого белого света, т.е. для светодиодных ламп белого света с высоким индексом цветопередачи, в которых красную люминесценцию обеспечивают ионы Mn⁴⁺ [1-5]. Также очень популярной в последние годы стала тематика разработки люминофоров, излучающих в красной и дальней красной областях спектра, в частности на основе ионов Mn⁴⁺ и Cr³⁺, для агротехнических применений, а именно для стимулирования роста растений в теплицах, поскольку в этих спектральных областях находятся полосы поглощения хлорофиллов А и В, а также и фитохрома (P_R и P_{FR}), отвечающих за рост растений [5,6]. С другой стороны, поскольку оптические свойства ионов марганца и хрома исследованы во множестве соединений и считается, что интерпретация этих свойств обычно достаточно прозрачна, то исследования люминесцентных свойств данных ионов можно рассматривать как спектроскопический зонд для изучения особенностей кристаллической структуры матриц, в которые эти ионы вводятся.

Схема энергетических уровней ионов Mn^{4+} и Cr^{3+} обусловливается хорошо известной диаграммой Танабе-Сугано для ионов с электронной конфигурацией d^3 , находящихся в идеальной октаэдрической позиции [7]. Диаграмма показывает, что две основные широкие полосы поглощения этих ионов обусловлены разрешенными по спину переходами ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ и ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$, а за узкополосную люминесценцию отвечают запрещенные по спину переходы ${}^{2}E \rightarrow {}^{4}A_{2}$. Спектральное положение полос поглощения и люминесценции ионов Mn^{4+} и Cr^{3+} весьма сильно зависит от состава матрицы, что позволяет варьировать люминесцентные свойства люминофоров на основе этих ионов для конкретных применений. Однако с точки зрения практического применения очевидно, что оксидные матрицы более предпочтительны.

Одними из часто используемых для создания люминофоров оксидных матриц являются соединения со структурой шпинели. Основу кристаллической структуры шпинели составляет плотно упакованная кубическая кислородная подрешетка, а катионы могут занимать два типа кристаллографических позиций: с тетраэдрическим и октаэдрическим окружением ионами кислорода (рис. 1) [8]. Такая структура кристаллической решетки позволяет вводить в матрицу шпинелей оптически активные ионы с различным зарядовым состоянием. В частности, ионы марганца могут входить в матрицу шпинели с зарядом 2+, 3+ и 4+.

В настоящей работе проведен сравнительный анализ особенностей люминесцентных свойств трех типов керамических люминофоров на основе трех соединений со структурой шпинели: MgAl₂O₄, ZnAl₂O₄ и LiAl₅O₈,

Рис. 1. Кристаллическая структура шпинели. В данном примере двухвалентные катионы A^{2+} занимают тетраэдрические позиции, а трехвалентные катионы B^{3+} — октаэдрические позиции в AB_2O_4 , как это наблюдается в структурах нормальных шпинелей MgAl₂O₄ и ZnAl₂O₄.

активированных ионами марганца и хрома, включая температурные зависимости спектров люминесценции.

Образцы и методика эксперимента

Керамические образцы трех соединений алюминатов, а именно MgAl₂O₄, ZnAl₂O₄ и LiAl₅O₈, легированных ионами марганца или хрома (0.05-0.2 at% относительно ионов алюминия), были получены в результате высокотемпературного твердофазного синтеза при взаимодействии Al₂O₃ (чистота 99.99%) и MgCO₃ (99.99%), ZnCO₃ (99.99%), Li₂CO₃ (99.99%) соответственно, а также MnO₂ (99.999%) или Cr₂O₃ (99.99%). Для синтеза MgAl₂O₄ и ZnAl₂O₄ исходные реактивы смешивали в стехиометрических отношениях, а для синтеза $LiAl_5O_8$ использовали смеси с мольным соотношением исходных компонентов Al₂O₃/Li₂CO₃ равным 2.5, т.е. исходная смесь содержала в два раза больше ионов Li⁺ по сравнению со стехиометрическим составом LiAl₅O₈, принимая во внимание высокую летучесть Li₂O. Порошковые смеси одноосно прессовали в пресс-форме из нержавеющей стали при давлении около 150 МРа в таблетки диаметром 10 mm и толщиной 2 mm. Таблетки подвергались предварительному последовательному низкотемпературному отжигу на воздухе при температурах 500, 700 и 900 °C в течение 4 h в корундовых тиглях. Исследования кристаллической структуры и люминесцентных свойств проводились для образцов, подвергнутых далее последовательному высокотемпературному отжигу при температурах 1000, 1100, 1200 и 1300 °C в течение 4h на воздухе. Перед каждым отжигом таблетки растирали и прессовали заново. Также перед последним отжигом в образец добавляли 3 mas% Н₃ВО₃ в качестве флюса. Следует отметить, что такая методика многоступенчатого отжига позволила синтезировать керамику MgAl₂O₄,содержащую существенную долю нормальной (неинверсной) шпинельной фазы [9]. В отдельных случаях синтез выполнялся без предварительного низкотемпературного отжига, а время отжига увеличивалось до 20 h. Часть образцов подвергалась дополнительному отжигу в восстановительной атмосфере монооксида углерода в графитовых тиглях. Некоторые детали отжига конкретных образцов представлены ниже в соответствующих разделах, описывающих результаты спектроскопических исследований.

Структуру и фазовую чистоту образцов исследовали методом порошковой рентгеновской дифракции на рентгеновском дифрактометре Bruker D8 Advance с монохроматическим CuKa-излучением. Идентификацию синтезированных соединений, а также индицирование рентгенограмм проводили в программном комплексе EVA (Bruker) с использованием базы данных СОД. Результаты рентгенофазового анализа подтверждают, что рентгенограммы синтезированных керамических образцов индицируются в кубической сингонии, и керамики имеют структуру шпинели. Параметры кристаллических решеток LiAl₅O₈, MgAl₂O₄ и ZnAl₂O₄, синтезированных в различных условиях, варьировались в пределах 7.908-7.925, 8.07-8.09 и 8.08-8.10 Å соответственно. Какие-либо закономерности в изменении параметра решетки в зависимости от условий синтеза не прослеживаются.

Спектры люминесценции синтезированных образцов исследовались на установке, собранной на базе светосильного монохроматора МДР-12, в которой в качестве источника возбуждающего излучения использовался синий (455 nm) светодиод фирмы Mightex. Для низкотемпературных измерений использовался малогабаритный азотный криостат проливного типа специальной конструкции [10]. Температура контролировалась с помощью калиброванного платинового термосопротивления РТ100Ω. Спектры возбуждения люминесценции и кинетика люминесценции регистрировались на спектрофлуориметре CM 2203 (Solar, Минск).

Результаты и обсуждение

MgAl₂O₄

В кристаллической структуре нормальной шпинели $MgAl_2O_4$, принадлежащей к пространственной группе (пр. гр.) $Fd\bar{3}m$, каждый двухвалентный катион (Mg^{2+})

Рис. 2. Спектры люминесценции ионов марганца в образцах MgAl₂O₄, синтезированных в разных условиях, в частности, образец (1) — при использовании многоступенчатой процедуры отжига при 500, 600, 700, 1000, 1200 и 1300°С на воздухе, образец (2) — в восстановительной атмосфере СО, образцы (3–5) — синтезированы на воздухе при температурах 1000, 1200 и 1300°С соответственно без предварительного отжига при более низких температурах.

располагается в центре неискаженного тетраэдра (локальная группа симметрии T_d), а каждый трехвалентный катион (Al³⁺) расположен в октаэдре с тригональным искажением (группа симметрии D_{3d}). Однако в структуре шпинели возможна инверсия, т.е. часть двухвалентных катионов может находиться в октаэдрической позиции, а часть трехвалентных катионов — в тетраэдрической позиции. В результате создаются катионные разупорядоченности как в октаэдрической, так и тетраэдрической позициях вследствие различия в ионных радиусах.

В результате синтеза образцов MgAl₂O₄, активированных ионами марганца, с использованием вышеописанной многоступенчатой процедуры отжига получается люминофор, испускающий чисто красную люминесценцию ионов Mn⁴⁺ с пиком при 651 nm, т.е. такой люминофор содержит ионы марганца исключительно в зарядовом состоянии 4+ (рис. 2) [11-13]. Очевидно, что ионы Mn⁴⁺ замещают в MgAl₂O₄ ионы Al³⁺ в октаэдрических позициях, принимая во внимание то, что ионные радиусы ионов Mn⁴⁺ (0.53 Å) и Al³⁺ (0.535 Å) [14] в октаэдре практически одинаковы, а также общепринятое положение, что ионы Mn⁴⁺ могут стабилизироваться в кристаллической решетке и проявлять люминесценцию только в октаэдрическом окружении. Как видно из рис. 2, спектр люминесценции ионов Mn⁴⁺ не является узкополосным, как это можно было бы ожидать исходя из схемы уровней энергии иона Mn⁴⁺. Однако, поскольку четырехвалентные ионы марганца замещают ионы Al^{3+} с зарядом 3+, для стабилизации ионов Mn^{4+} в структуре кристаллической матрицы необходима зарядовая компенсация. Как отмечалось выше, характерным

свойством магниевой шпинели является возможность существования значительной степени инверсии, т.е. ионы Mg^{2+} могут замещать ионы Al^{3+} в октаэдре, и зарядовая компенсация в данной шпинели осуществляется в результате процесса гетеровалентного замещения:

$$Mg^{2+} + Mn^{4+} \rightarrow Al^{3+} + Al^{3+}.$$

При этом все линии в спектре люминесценции испытывают сильное неоднородное уширение из-за разупорядоченности структуры, вызванной инверсией. Таким образом, пик при 651 nm в спектре люминесценции MgAl₂O₄: Mn⁴⁺ соответствует неоднородно уширенной бесфононной линии (БФЛ) перехода ${}^{2}E \rightarrow {}^{4}A_{2}$ в ионе Mn⁴⁺, длинноволновое крыло спектра — стоксовым вибронным полосам, а коротковолновое — антистоксовым вибронным полосам.

При отжиге шпинели MgAl₂O₄, содержащей ионы марганца, в восстановительной атмосфере получается зеленый люминофор, в котором за люминесценцию отвечают ионы Mg²⁺ в тетраэдрических позициях структуры (рис. 2). При изменении условий синтеза, например в отсутствие низкотемпературной многоступенчатой процедуры отжига, получаются двухцветные люминофоры с красной и зеленой полосами люминесценции, обусловленными четырехвалентными и двухвалентными ионами марганца соответственно, с разным соотношением интенсивностей красной и зеленой полос люминесценции в зависимости от условий синтеза.

Отметим, что на всех приведенных в настоящей статье спектрах возбуждение люминесценции осуществляется на длине волны 455 nm, соответствующей излучению стандартного синего светодиода.

Как зеленая полоса, так и красная полоса люминесценции ионов Mn^{2+} и Mn^{4+} в шпинели $MgAl_2O_4$ обладают достаточно высокой температурной стабильностью [11]. В частности, интенсивность зеленой люминесценции люминофора $MgAl_2O_4:Mn^{2+}$, подвергнутого отжигу в восстановительной атмосфере монооксида углерода, уменьшается в 2 раза при 465 °C по сравнению с интенсивностью при комнатной температуре. Температурная стабильность красной люминесценции люминофора $MgAl_2O_4:Mn^{4+}$ несколько хуже, но также приемлема: интенсивность уменьшается в 2 раза при температуре 175 °C.

Таким образом, как зеленый, так и красный люминофоры на основе шпинели $MgAl_2O_4$, активированной ионами марганца, могут представлять интерес для практического использования. Свойство различной зависимости от температуры интенсивностей красной (Mn^{4+}) и зеленой (Mn^{2+}) люминесценции в $MgAl_2O_4$ потенциально может быть использовано как метод люминесцентной термометрии, в котором измеряемым параметром, зависящим от температуры, будет служить не интенсивность какой-то одной полосы люминесценции, а отношение интенсивностей красной и зеленой люминесценции. Рассчитанные цветовые координаты (СІЕ1931) для спектров люминесценции ионов марганца в MgAl₂O₄ составляют x = 0.18, y = 0.75 для зеленой люминесценции Mn²⁺ и x = 0.72, y = 0.28 для красной люминесценции Mn⁴⁺ [11]. Обе полосы люминесценции эффективно возбуждаются в синей спектральной области, что позволяет применить канонический трехцветный (RGB: red, green, blue) способ для создания светодиодных источников теплого белого света на основе комбинации из синего светодиода (455 nm) и однофазного двухцветного люминофора MgAl₂O₄:Mn с оптимально подобранным соотношением интенсивностей зеленой и красной полос люминесценции.

Ионы Cr³⁺ при введении в матрицу шпинели MgAl₂O₄ замещают, очевидно, трехвалентные ионы алюминия, для чего не требуется зарядовая компенсация, обеспечиваемая инверсией катионов в случае легирования ионами Mn⁴⁺. Поэтому в данной матрице можно ожидать получение узкополосного спектра люминесценции ионов Cr³⁺. Действительно, в природных минералах шпинели MgAl₂O₄ наблюдаются узкие БФЛ и вибронные линии в спектре люминесценции Cr³⁺ [15], т.е. в природе возможно образование шпинелей, в которых практически отсутствует инверсия катионов. Однако образцы MgAl₂O₄, полученные в лабораторных условиях, всегда характеризуются определенной степенью инверсии катионов, т.е. в таких образцах имеется разупорядоченность как в тетраэдрической, так и октаэдрической позициях структуры, что приводит к сильному неоднородному уширению линий в спектре люминесценции, в том числе ионов Cr³⁺, хотя, возможно, и не в такой степени, как в случае ионов Mn⁴⁺. Спектры люминесценции Cr³⁺ в шпинели MgAl₂O₄, полученной при многократном последовательном отжиге, имеют особенности, сходные с таковыми для иона Mn⁴⁺, но сдвинутые в длинноволновую область, т.е. демонстрируют неоднородно уширенные БФЛ с пиком при 688 nm, а также стоксовы и пропадающие при понижении температуры антистоксовы вибронные полосы (рис. 3).

Шпинель MgAl₂O₄ может быть со-активирована ионами Mn⁴⁺ и Cr³⁺, что потенциально даст широкий спектр излучения люминофора в красной и дальней красной областях. Лампы, состоящие из синего светодиода и возбуждаемого синим светом люминофора на основе шпинели MgAl₂O₄, содержащей ионы Mn⁴⁺ и Cr³⁺, могут представлять большой практический интерес для искусственного освещения в теплицах, поскольку спектр излучения такой лампы будет очень хорошо соответствовать спектрам поглощения хлорофиллов и фитохрома.

$ZnAl_2O_4$

Алюминат цинка имеет кристаллическую структуру, аналогичную структуре алюмината магния, т.е. принадлежит к структурному типу шпинели, в структуре кото-

Рис. 3. Спектры люминесценции MgAl₂O₄:Cr³⁺, измеренные при различных температурах.

Рис. 4. (*a*) Экспериментальная рентгенограмма синтезированного образца шпинели ZnAl₂O₄; (*b*) рентгенограмма шпинели ZnAl₂O₄ из базы данных [17]; (*c*) смоделированная рентгенограмма инверсной шпинели ZnAl₂O₄.

рой ионы алюминия занимают октаэдрические позиции, а ионы цинка — тетраэдрические. Рентгенограммы двух типов шпинелей MgAl₂O₄ и ZnAl₂O₄ по структуре, естественно, одинаковы, но интенсивности некоторых

Рис. 5. Спектры люминесценции ионов Mn^{2+} и Cr^{3+} в шпинели $ZnAl_2O_4$, синтезированной в результате последовательного отжига при 500, 600, 700, 1000, 1200 и 1300°С.

пиков сильно отличаются, поскольку Zn существенно более тяжелый элемент, чем Mg или Al (рис. 4). Наряду с этим инверсия катионов в структуре ZnAl₂O₄ должна также существенно изменять вид рентгенограммы, что можно видеть на рис. 4 из сравнения рентгенограммы нормальной и смоделированной с помощью программы VESTA [16] инверсной шпинели ZnAl₂O₄, в которой и тетраэдрические, и октаэдрические узлы на 33% заняты ионами Zn²⁺ и на 67% ионами Al³⁺. Следует отметить также, что рентгенограмма синтезированной нами шпинели ZnAl₂O₄ хорошо соответствует рентгенограмме нормальной шпинели ZnAl₂O₄ из базы данных [17].

Независимо от того, что процедура синтеза активированных ионами марганца керамик цинковой шпинели была такой же, как и для магниевой шпинели, в спектрах люминесценции синтезированных образцов $ZnAl_2O_4$ не были зарегистрированы полосы люминесценции, которые можно приписать ионам Mn^{4+} [12]. С другой стороны, в спектре люминесценции наблюдается набор узких линий, характерный для ионов Cr^{3+} (рис. 5). Такой же спектр регистрируется для неактивированных образцов, в которых ионы хрома присутствуют в качестве неконтролируемой примеси.

Таким образом, в цинковой шпинели не удается стабилизировать ионы Mn^{4+} в октаэдрических позициях структуры. Причина этого в том, что в отличие от магниевой шпинели характерной особенностью цинковой шпинели является то, что степень инверсии (доля тетраэдрических позиций, занятых ионами Al^{3+}) весьма низкая и не превышает 0.055 в предельном случае [18]. Эта особенность не позволяет обеспечить зарядовую компенсацию для замещения ионами Mn^{4+} трехзарядных ионов алюминия в октаэдрических позициях. Однако зеленая люминесценция (~ 515 nm) ионов

 ${\rm Mn}^{2+},$ замещающих ионы цинка в тетраэдрах, всегда присутствует.

Благодаря низкой степени инверсии, т.е. отсутствию разупорядоченности решетки, в спектре люминесценции ионов Cr³⁺ в ZnAl₂O₄ ясно идентифицируется тонкая структура спектров: БФЛ чисто электронного перехода $^{2}E \rightarrow ^{4}A_{2}$ (так называемая R-линия), а также 3 стоксовых и 3 антистоксовых вибронных линии, соответствующие трем модам нечетных колебаний v3, v4, и v6 октаэдра CrO_6^{9-} [12]. Следует отметить, что интенсивности БФЛ и вибронных линий сравнимы, поскольку данный электронный переход запрещен по четности и спину, причем октаэдрический полиэдр в структуре цинковой и магниевой шпинели хоть и искажен (тригональное искажение, группа симметрии D_{3d}), но имеет центр симметрии. Поэтому вероятность чисто электронного перехода мала, и относительно высокую интенсивность имеют вибронные линии. В спектре наблюдаются также другие более слабые БФЛ, которые обычно относят к люминесценции более сложных хромовых центров, например пар ионов хрома $Cr^{3+} - Cr^{3+}$.

Измерения температурной зависимости структуры спектров показали типичное поведение ее особенностей при понижении температуры, а именно исчезновение антистоксовых вибронных линий, а также сужение и спектральный сдвиг БФЛ. При низкотемпературных измерениях с достаточно высоким спектральным разрешением можно увидеть также расщепление БФЛ (рис. 6). Наблюдаемые две линии люминесценции, обозначаемые в литературе как R1 и R2, обусловлены электронным переходом ${}^2E \rightarrow {}^4A_2$ в ионе Cr^{3+} с двух подуровней \overline{E} и $2\overline{A}$ состояния ${}^{2}E$, чье расщепление возникает как результат совместного действия искажения октаэдрической симметрии кристаллического поля вокруг иона хрома и спин-орбитального взаимодействия [19]. Величина данного расщепления в матрице ZnAl₂O₄ мала $(\Delta E_{1,2} \sim 10 \, {\rm cm}^{-1})$ [15] и сравнима с ширинами линий

Рис. 6. Расщепление БФЛ электронного перехода ${}^{2}E \rightarrow {}^{4}A_{2}$ для ионов Cr³⁺ в шпинели ZnAl₂O₄.

Рис. 7. Левая панель: экспериментальные рентгенограммы "полностью" упорядоченного (длительный отжиг при 1300° C), "частично" разупорядоченного (отжиг при 1100° C в течение 4 h) и "полностью" разупорядоченного LiAl₅O₈, а также шпинели MgAl₂O₄. Правая панель: рентгенограмма "полностью" упорядоченного LiAl₅O₈ из базы данных [17], промоделированные с помощью программы VESTA [16] рентгенограммы соединения LiAl₅O₈ при некотором (10%) избыточном количестве ионов Li⁺, замещающих ионы Al³⁺ в октаэдрических узлах решетки, а также при наличии разной степени разупорядоченности, т.е. при "статистическом" распределении ионов Al³⁺ и Li⁺ либо только по октаэдрическим узлам, либо по всем катионным узлам.

в синтезированных образцах. Поэтому количественный анализ зависимости от температуры для спектрального положения и ширины линий здесь трудно осуществить.

LiAl₅O₈

Алюминат лития LiAl₅O₈ имеет кристаллическую структуру шпинельного типа (пр. гр. $P4_132$), в которой ионы Li⁺ и Al³⁺ в отношении 1:3 упорядоченно занимают два типа октаэдрических позиций: 4b и 12d соответственно. Остальные ионы Al³⁺ занимают тетраэдрическую позицию 8c. Однако можно ожидать, что в структуре данной шпинели возможна различная степень инверсии при распределении катионов Li⁺ и Al³⁺ по октаэдрическим позициям в структуре LiAl₅O₈. Ионы Mn⁴⁺ и Cr³⁺ замещают в LiAl₅O₈ ионы Al³⁺ в октаэдрических узлах 12d, имеющих в структуре LiAl₅O₈ ромбическое искажение (локальная симметрия C_2) [20,21].

Результаты рентгенофазового анализа подтвердили, что образцы керамик, подвергнутые отжигу в температурном диапазоне $1000 - 1300^{\circ}$ С, идентифицируются как соединение LiAl₅O₈ с описанным выше упорядоченным расположением ионов Li⁺ и Al³⁺ в октаэдрических и тетраэдрических узлах решетки (рис. 7). Однако параметр кубической решетки *a*, определенный из величины межплоскостного расстояния *d*(440), уменьшается с увеличением температуры и (или) длительности отжига и доходит до величины 7.908 Å для керамики, подвергнутой достаточно длительному отжигу при 1300 °С. Эта величина точно соответствует параметру кристаллической решетки для монокристалла LiAl₅O₈, т.е. для идеально стехиометрического состава LiAl₅O₈ [20].

Спектры люминесценции активированных ионами марганца образцов LiAl₅O₈, подвергнутых отжигу при различной температуре и разной длительности (рис. 8), показывают, что интенсивность характерной красной люминесценции ионов Mn^{4+} (пик при 662 nm), ясно наблюдаемой в образцах, синтезированных при ~ 1000°С, уменьшается с увеличением температуры и длитель-

Рис. 8. Спектры люминесценции ионов Mn^{4+} в образцах керамик LiAl₅O₈, синтезированных при температурах отжига 1000, 1100, 1200 и 1300°С и длительностях отжига 4, 8 и 12 h.

ности отжига, и люминесценция Mn^{4+} практически исчезает, когда по условиям отжига образуется стехиометрический состав LiAl₅O₈ [22,23].

Как и в рассмотренных выше двух алюминатах со структурой шпинели, в LiAl₅O₈ ионы Mn⁴⁺ должны замещать ионы Al³⁺ в октаэдрических позициях, и для стабилизации ионов Mn⁴⁺ в решетке необходимо обеспечить зарядовую компенсацию. Учитывая избыточное количество ионов Li⁺ в смеси исходных реагентов, естественно предположить, что зарядовая компенсация обеспечивается механизмом инверсии катионов, т.е. замещением некоторых соседних с Mn⁴⁺ ионов Al³⁺ ионами Li⁺. Соединения с некоторым избытком лития являются нестабильными и при увеличении температуры и/или длительности отжига теряют ионы Li⁺, переходя в стехиометрическое соединение LiAl₅O₈, в котором отсутствует инверсия и соответственно отсутствует механизм зарядовой компенсации. При этом из-за меньшей величины ионного радиуса Al³⁺ (0.535 Å) по сравнению с Li⁺ (0.76 Å) [14] параметр решетки уменьшается. Таким образом, люминесценция ионов Mn⁴⁺ может быть получена только в случае наличия инверсии, т.е. разупорядоченности в структуре шпинели LiAl₅O₈, что в том числе приводит к неоднородному уширению линий в спектрах. В принципе интенсивность красной люминесценции ионов Mn⁴⁺ может быть использована в качестве критерия степени упорядоченности структуры соединения LiAl₅O₈.

Как дополнительный эксперимент, стехиометрический образец $LiAl_5O_8$, легированный ионами марганца, т.е. образец, не показывающий люминесценцию ионов Mn^{4+} , был еще раз отожжен при 1300 °C с добавлением избыточного количества лития. Полученные образцы, как и ожидалось, показали наличие достаточно яркой красной люминесценции ионов Mn^{4+} . Однако рентгено-

грамма полученного образца оказалась совсем другой и не соответствовала стехиометрическому соединению LiAl₅O₈ [23]. Как было показано в работе [24], соединение LiAl₅O₈ претерпевает фазовый переход при температуре около 1300 °С, преобразуясь из упорядоченной структуры (пр. гр. $P4_132$), описанной выше, в разупорядоченную, в которой ионы Al³⁺ и Li⁺ статистически, т. е. случайным образом занимают катионные узлы в решетке LiAl₅O₈. При этом симметрия решетки меняется на другой тип, характерный для рассмотренных выше шпинелей MgAl₂O₄ и ZnAl₂O₄ (пр. гр. $Fd\bar{3}m$). Наличие такого разупорядочения, т. е. по существу наличие высокой степени инверсии катионов, обеспечивает в полученных таким образом образцах зарядовую компенсацию для ионов Mn⁴⁺.

На рис. 7 (левая панель) сравниваются экспериментальные рентгенограммы "полностью" упорядоченного (длительный отжиг при 1300° C), "частично" разупорядоченного (отжиг при 1100° C в течение 4 h) и полученного в дополнительном эксперименте "полностью" разупорядоченного LiAl₅O₈, а также для сравнения шпинели MgAl₂O₄. Видно, что рентгенограммы для полностью и частично упорядоченных структур практически не отличаются. Поэтому программа фазовой идентификации при сравнении с базой данных идентифицирует структуру всех подобных образцов как упорядоченная шпинель LiAl₅O₈. Видно также, что рентгенограммы полностью разупорядоченного LiAl₅O₈ и шпинели MgAl₂O₄ очень похожи по структуре, поскольку их решетки имеют одинаковый тип симметрии.

Используя программу VESTA, были промоделированы рентгенограммы соединения LiAl5O8 при некотором (10%) избыточном количестве ионов Li⁺, замещающих ионы Al³⁺ в октаэдрических позициях структуры, а также при наличии разной степени разупорядочения (рис. 7, правая панель). В расчетных рентгенограммах видно, что небольшое превышение количества ионов лития по сравнению со стехиометрией действительно почти не меняет форму рентгенограммы, а разупорядочение, т.е. статистическое распределение ионов лития и алюминия по катионным позициям кардинально меняет форму рентгенограммы, которая становится аналогичной рентгенограммам для другого типа кубической симметрии решетки, причем экспериментальная рентгенограмма разупорядоченного LiAl₅O₈ лучше соответствует расчетной рентгенограмме со статистическим распределением ионов Al³⁺ и Li⁺ только по октаэдрическим позициям.

Легирование матрицы LiAl₅O₈ ионами Cr³⁺, замещающими ионы Al³⁺, не требует зарядовой компенсации, и спектры люминесценции синтезированных нами образцов керамик LiAl₅O₈, активированных ионами Cr³⁺, демонстрируют типичную для ионов Cr³⁺ форму с двумя узкими БФЛ: при ~714 (более интенсивная) и ~700 nm (рис. 9) [10]. Как и в случае матрицы ZnAl₂O₄, можно предполагать, что данные линии люминесценции обусловлены электронным переходом ${}^{2}E \rightarrow {}^{4}A_{2}$ в ионе

Рис. 9. Спектр люминесценции керамики $LiAl_5O_8: Cr^{3+}$ (0.1 at. %), измеренный при 80 и 295 К. Спектр при 80 К приведен также в увеличенном масштабе, чтобы продемонстрировать структуру вибронных (стоксовых) линий, относящихся к БФЛ при 714 nm.

 Cr^{3+} с двух подуровней состояния ${}^{2}E$, чье расщепление возникает в результате искажения октаэдрической симметрии кристаллического поля вокруг иона хрома, т.е. это линии, обозначаемые в литературе как R₁ и R₂. Однако необходимо отметить, что величина энергетического расстояния между линиями в матрице LiAl₅O₈ $(\sim 270 \, \text{cm}^{-1}$ при 295 K) значительно превышает величину расщепления, наблюдаемого во многих других матрицах ($\sim 29 \text{ cm}^{-1}$ в Al₂O₃ [25,26], $\sim 20 \text{ cm}^{-1}$ в YAG [27–29], $\sim 10 \, \text{cm}^{-1}$ в шпинелях MgAl₂O₄ и ZnAl₂O₄ [30]), что может указывать на существенно большее искажение окружения ионов Cr^{3+} в структуре LiAl₅O₈ по сравнению с другими матрицами, обусловленное более низкой симметрией позиции для ионов Al³⁺, замещаемых ионами Cr^{3+} в структуре LiAl₅O₈, по сравнению с другими матрицами, а именно вместо тригональной D_{3d} наблюдается орторомбическая C₂ симметрия оптического Cr³⁺центра [31]. Заметим, что есть пример матрицы (Ga₂O₃), в которой величина расщепления ($\sim 147 \, \text{cm}^{-1}$ [32]) сопоставима с наблюдаемой в матрице LiAl₅O₈. С другой стороны, эти две БФЛ могут быть отнесены к двум неэквивалентным хромовым центрам, связанным между собой передачей энергии [33].

В спектрах помимо узких БФЛ наблюдаются достаточно слабые вибронные полосы, причем интенсивность антистоксовых вибронных линий, относящихся к БФЛ при 714 nm, в некотором температурном диапазоне сравнима с интенсивностью БФЛ при 700 nm, что мешает достаточно четко выделить в спектре линию 700 nm. Заметим, что слабость вибронных линий и соответственно высокая относительная интенсивность БФЛ обусловлены отсутствием центра симметрии у оптического Cr^{3+} центра в данной матрице, что увеличивает вероятность чисто электронного перехода. Два подуровня энергии, образующиеся в результате расщепления состояния ${}^{2}E$, должны находиться в тепловом равновесии, и, как результат, зависимость от температуры отношения интенсивностей линий люминесценции, обусловленной излучательными переходами с этих двух подуровней, должна описываться функцией Больцмана, что и было получено при измерениях температурных зависимостей спектров люминесценции LiAl₅O₈: Cr³⁺ (рис. 10,*a*). Однако в случае двух неэквивалентных хромовых центров, которые связаны между собой нерезонансной передачей энергии с участием фононов, отношение интенсивностей двух линий также может описываться функцией Больцмана [34]. Таким образом, вопрос об истинной природе этих двух БФЛ все еще остается открытым.

Помимо изменения интенсивности обе БФЛ претерпевают с температурой спектральный сдвиг и изменение ширины (рис. 10,*b*,*c*), аналогичные наблюдаемым для подобных линий в других матрицах, в частности в шпинели ZnAl₂O₄, как это было рассмотрено выше. Заметим, что спектральное разрешение в этих измерениях (0.2 nm) всегда было значительно меньше ширины линий. Как видно из рисунка, спектральный сдвиг и изменение ширины БФЛ при изменении температуры достаточно хорошо описываются в рамках известной модели для оптических центров в кристаллах, в которой наблюдаемые эффекты объясняются процессами рассеяния фононов на примесном ионе [25]. Однако неоднородное уширение БФЛ (т.е. ширина линии при нулевой температуре $\Gamma_0 \sim 20~{\rm cm}^{-1})$ оказалось заметно больше, чем типичные величины $\sim 1~{
m cm}^{-1}$, полученные для других матриц [25-30]. Можно предположить, что большее неоднородное уширение может быть связано с дополнительным искажением октаэдрической позиции алюминия в структуре LiAl₅O₈ из-за наличия некоторой инверсии между ионами Li⁺ и Al³⁺, степень которой зависит от условий синтеза.

Таким образом, в исследованном температурном диапазоне 80-295 К три параметра спектра люминесценции Сr³⁺ в матрице LiAl₅O₈ претерпевают заметные изменения с температурой: относительная интенсивность двух БФЛ при 700 и 714 nm, спектральное положение линий и ширина линий. Измерения каждого из этих трех параметров потенциально могут быть использованы в качестве метода бесконтактной люминесцентной термометрии. Метод термометрии по измерению отношения интенсивностей люминесценции с двух уровней, находящихся в тепловом равновесии, хорошо известен. Чувствительность метода S, определяемая как производная измеряемого параметра по температуре, а также относительная чувствительность S_R, равная отношению чувствительности к величине измеряемого параметра, в данном случае вполне приемлемы (рис. 10,*a*). В этом методе относительная чувствительность легко рассчитывается по формуле $S_{\rm R} = \Delta E_{1,2}/k_{\rm B}T^2$, где $\Delta E_{1,2}$ — энергетическое расстояние между уровнями, Т — температура, $k_{\rm B}$ — постоянная Больцмана. Однако, поскольку точ-

Рис. 10. Верхний ряд: зависимости от температуры отношения интенсивностей БФЛ при 700 и 714 nm (a), спектрального сдвига БФЛ при 714 nm (b), полной ширины на полувысоте БФЛ при 714 nm (c). Линиями показаны результаты аппроксимации экспериментальных данных (точки) функцией Больцмана (a) и формулами McCumber & Sturge [25] (b и c). Снизу приведены зависимости от температуры чувствительности (слева) и относительной чувствительности (справа, S_R) каждого из методов измерения температуры.

но рассчитать отношение интенсивностей I_{700}/I_{714} при некоторых температурах представляется затруднительным из-за наличия вибронных линий, перекрывающихся с БФЛ, точность определения температуры при таких измерениях может оказаться невысокой. По той же причине для мониторирования температуры по сдвигу и ширине линии реально можно использовать только БФЛ при 714 nm. В исследованном температурном диапазоне чувствительность метода измерения температуры как по сдвигу линии, так и по ширине линии (рис. 10,*b*,*c*) имеет максимальное значение в районе комнатной температуры и составляет $\sim 0.2\,{
m cm}^{-1}/{
m K}$ (т.е. $\sim 0.01\,{
m nm}/{
m K}$ для 714 nm). Вероятно, величину 0.01 nm можно считать близкой к предельно достижимой точности измерения длины волны на спектральных приборах. При такой точности спектральных измерений точность определения температуры (в районе 295 К) будет составлять ~1 K, что вряд ли можно считать достаточной для практического использования в термометрии.

Заключение

Методом высокотемпературных твердофазных реакций были успешно синтезированы однофазные керамические образцы трех соединений алюминатов со структурой шпинели, а именно $MgAl_2O_4$, $ZnAl_2O_4$ и $LiAl_5O_8$, легированные ионами марганца или хрома. Наряду с этим при различных условиях синтеза на основе различных матриц шпинели могут быть получены эффективные зеленые (ион-активатор — Mn^{2+}), красные (Mn^{4+}) или двухцветные (красный-зеленый) люминофоры, а также люминофоры, излучающие в дальней красной области (ион-активатор — Cr^{3+}). Однако для создания эффективных одноцветных красных люминофоров, легированных ионами Mn^{4+} , необходима особая стратегия синтеза.

Зарядовая компенсация замещения ионов Al^{3+} в октаэдрических узлах решетки на Mn^{4+} обеспечивается инверсией катионов, имеющих различные валентные состояния в шпинельных соединениях. В частности, шпинель MgAl₂O₄, в которой может быть достигнута высокая степень инверсии катионов, является перспективной матрицей для создания красного люминофора, содержащего ионы Mn^{4+} , тогда как используя матрицу шпинели ZnAl₂O₄, в которой практически отсутствует инверсия между Zn²⁺ и Al³⁺, не удается получить красный люминофор с ионом-активатором Mn^{4+} . Эффективная красная люминесценция ионов Mn^{4+} в матрице шпинели LiAl₅O₈ может быть получена, если по условиям синтеза создается структура, в которой есть инверсия между ионами Li⁺ и Al³⁺.

Высокая степень инверсии катионов и, следовательно, большая разупорядоченность в структуре шпинели приводят к сильному неоднородному уширению БФЛ и вибронных линий в спектрах излучения Mn^{4+} и Cr^{3+} . В исследованных алюминатах со структурой шпинели, где зарядовая компенсация замещения ионов Al^{3+} на Mn^{4+} обеспечивается инверсией катионов, спектр люминесценции Mn^{4+} всегда уширен. Вибронные линии в спектре излучения Cr^{3+} могут быть идентифицированы только в шпинельных соединениях с упорядоченной кристаллической структурой, в частности в $ZnAl_2O_4$ и в упорядоченной матрице LiAl₅O₈.

Некоторые из исследованных соединений шпинели, легированные ионами марганца и/или хрома, потенци-

ально могут быть использованы в качестве люминофоров для различных осветительных приборов, в частности двухцветные люминофоры — для создания белых светодиодных ламп, использующих каноническую трехцветную (RGB) схему, а люминофоры, излучающие в красной и дальней красной областях, для искусственного освещения растений в теплицах. Также ряд синтезированных люминофоров может представлять интерес для бесконтактной люминесцентной термометрии.

Финансирование работы

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках государственных заданий Института общей и неорганической химии им. Н.С. Курнакова и Физического института им. П.Н. Лебедева. Исследования проводились с использованием оборудования ЦКП ФМИ ИОНХ РАН и ФИАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramicánin, M.G. Brik, M. Wu. J. Mater. Chem. C, 6, 2652 (2018). DOI: 10.1039/c8tc00251g
- [2] S. Adachi. J. Lumin., 202, 263 (2018).
 DOI: 10.1016/j.jlumin.2018.05.053
- S. Adachi. ECS J. Solid State Sci. Technol., 9, 016001 (2020). DOI: 10.1149/2.0022001JSS
- [4] Y.H. Kim, J. Ha, W.B. Im. J. Materials Research and Technology, 11, 181 (2021). DOI: 10.1016/j.jmrt.2021.01.011
- [5] S.J. Dhoble, R. Priya, N.S. Dhoble, O.P. Pandey. J. Lumin., 36, 560 (2021). DOI: 10.1002/bio.3991
- [6] M.H. Fang, G.N.A. De Guzman, Z. Bao, N. Majewska, S. Mahlik, M. Grinberg, R.S. Liu. J. Mater. Chem. C, 8, 11013 (2020). DOI: 10.1039/d0tc02705g
- [7] Y. Tanabe, S. Sugano. J. Phys. Soc. Jpn., 9, 776 (1954).
 DOI: 10.1143/JPSJ.9.766
- [8] F. Bosi, C. Biagioni, M. Pasero. Eur. J. Mineral., 3, 183 (2019).
 DOI: 10.1127/ejm/2019/0031-2788
- [9] S.P. Feofilov, A.B. Kulinkin, N.M. Khaidukov. J. Lumin., 217, 116824 (2020). DOI: 10.1016/j.jlumin.2019.116824
- [10] Н.М. Хайдуков, К.С. Никонов, М.Н. Бреховских, Н.Ю. Кирикова, В.А. Кондратюк, В.Н. Махов. Неорган. материалы, 58 (7), 778 (2022). DOI: 10.31857/S0002337X22070107
 [N.M. Khaidukov, K.S. Nikonov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Inorganic Materials, 58 (7), 751 (2022).
 DOI: 10.1134/S002016852207010X].
- [11] Н.М. Хайдуков, М.Н. Бреховских, Н.Ю. Кирикова, В.А. Кондратюк, В.Н. Махов. Журн. неорган. химии, 65 (8), 1027 (2020). DOI: 10.31857/S0044457X20080061
 [N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 65

(8), 1135 (2020). DOI: 10.1134/S0036023620080069].

- [12] N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Ceram. Int., 46, 21351 (2020). DOI: 10.1016/j.ceramint.2020.05.231
- [13] N. Khaidukov, A. Pirri, M. Brekhovskikh, G. Toci, M. Vannini, B. Patrizi, V. Makhov. Materials, 14 (2), 420 (2021). DOI: 10.3390/ma14020420
- [14] R.D. Shannon. Acta Cryst. A, 32, 751 (1976).
 DOI: 10.1107/S0567739476001551
- [15] D.L. Wood, G.F. Imbusch, R M. Macfarlane, P. Kisliuk,
 D.M. Larkin. J. Chem. Phys., 48, 5255 (1968).
 DOI: 10.1063/1.1668202
- [16] K. Momma, F. Izumi, J. Appl. Cryst., 44, 1272 (2011).
 DOI: 10.1107/S0021889811038970
- [17] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. APL Materials, 1, 011002 (2013). DOI: 10.1063/1.4812323
- [18] H.St.C. O'Neill, W.A. Dollase. Phys. Chem. Minerals, 20, 541 (1994). DOI: 10.1007/BF00211850
- [19] S. Sugano, Y. Tanabe. J. Phys. Soc. Jpn., 13, 880 (1958).DOI: 10.1143/JPSJ.13.880
- [20] R. Famery, F. Queyroux, J.-C. Gilles, P. Herpin. J. Solid State Chem., 30, 257 (1979). DOI: 10.1016/0022-4596(79)90107-5
- [21] M. Kriens, G. Adiwidjaja, W. Guse, K.H. Klaska, C. Lathe, H. Saalfeld, N.Jb. Miner. Mh., 8, 344 (1996).
- [22] Н.М. Хайдуков, М.Н. Бреховских, Н.Ю. Кирикова, В.А. Кондратюк, В.Н. Махов. Журн. неорган. химии, 67 (4), 531 (2022). DOI: 10.31857/S0044457X22040092 [N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 67 (4), 547 (2022). DOI: 10.1134/S003602362204009X].
- [23] N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. J. Lumin., 248, 118942 (2022). DOI: 10.1016/j.jlumin.2022.118942
- [24] R.K. Datta, R. Roy. J. Am. Ceram. Soc., 46, 388 (1963).
 DOI: 10.1111/j.1151-2916.1963.tb11757.x
- [25] D.E. McCumber, M.D. Sturge. J. Appl. Phys., 34, 1682 (1963). DOI: 10.1063/1.1702657
- [26] D.D. Ragan, R. Gustavsen, D. Schiferl. J. Appl.Phys., 72, 5539 (1992). DOI: 10.1063/1.351951
- [27] J.T. Karpick, B. Di Bartolo. Nuovo Cimento B, 7 (1), 62 (1972). DOI: 10.1007/BF02827037
- [28] A.P. Vink, A. Meijerink. J. Lumin., 87–89, 601 (2000). DOI:10.1016/S0022-2313(99)00308-7
- [29] M. Erdem, G. Ozen, U. Yahsi, B. Di Bartolo, J. Lumin. 158, 464 (2015). DOI: 10.1016/j.jlumin.2014.10.053
- [30] D.L. Wood, G.F. Imbusch, R.M. Macfarlane, P. Kisliuk, D.M. Larkin. J. Chem. Phys., 48, 5255 (1968). DOI: 10.1063/1.1668202
- [31] G.T. Pott, B.D. McNicol. J. Solid State Chem., 7, 132 (1973).
 DOI: 10.1016/0022-4596(73)90145-X
- [32] Y. Tokida, S. Adachi. J. Appl. Phys., 112, 063522 (2012).
 DOI: 10.1063/1.4754517
- [33] T. Abritta, N.T. Melamed, J. Maria Neto, F. De Souza Barros.
 J. Lumin., 18–19, 179 (1979).
 DOI: 10.1016/0022-2313(79)90098-X
- [34] R.C. Powell, B. Di Bartolo, B. Birang, C.S. Naiman. In: *Optical Properties of Ions in Crystals*. Ed by H.M. Crosswhite, H.W. Moos (Interscience, New York, 1967), p. 207.