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Light scattering by spheroids plays an important role in various applications. The most efficient algorithm to

calculate the optical properties of spheroids implies the field expansions in a special spheroidal basis, but its

application is limited by three problems — difficulties of computations of the spheroidal functions of complex

argument, the absent transition to the standard T -matrix, and loss of precision in complicated calculations for one

case of the incident radiation polarization (TE mode). The first two difficulties have been recently overcome to a

large extent, and in this work we solve the last problem — by using T -matrix transformations, we find the way of

expressing the TE mode solution through the more simple and stable TM mode solution.

Numerical calculations performed by us demonstrate that the suggested approach improves the result accuracy

by several orders, accelerates solution in several times and significantly extends its applicability range (up to the

diffraction parameters exceeding 100).
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1. Introduction

The representation of actual scatterer by spheroids is

an approach widely used in various fields of science:

for example, in atmospheric optics [1], astronomy [2],
medicine [3], nanooptics [4], laboratory analysis [5–8], etc.
The spheroidal model is especially often used in modern

astrophysics due to the lack of information about the shape

of non-spherical cosmic dust particles [9–13].

The popularity of the spheroidal model of scatterers is

explained by two aspects. Firstly, the most important optical

effects of the non-spherical shape of real particles are not

related to the small-scale surface roughness, but primarily to

the ratio of the largest size of the scatterers to the smallest

and, accordingly, are well reproduced by spheroids [1,14,15].
Secondly, such a model, on the one hand, is quite simple,

and on the other — very flexible, including both strongly

elongated (needle-like) and strongly flattened (disc-shaped)
particles.

The optical properties of spheroids required for the

application of the model can be calculated in different ways.

There are universal methods using various formulations of

the light scattering problem (FDTD, DDA, FEM, etc. — see,

for example, reviews [16,17]). Such methods are usually

focused on the consideration of particles of complex shape

and structure, and therefore for homogeneous (layered)

spheroids in most cases are practically ineffective, and often

require unrealistically large resources [18].

The expansion of fields in spherical functions used in

Mie theory easily extends to axisymmetric particles and, in

particular, spheroids [19]. This approach, called the T -matrix

method according to the standard notation of the matrix

linking the expansion coefficients of the fields of incident

and scattered radiation on a spherical basis, turned out to be

in demand [20,21]. However, the discrepancy between the

spherical coordinates used in this case and the spheroidal

geometry of the diffuser, as is known, leads to the fact that

the approach quickly loses accuracy with an increase in both

the asphericity of the particle and its diffraction parameter

(with a shape markedly different from spherical). This

happens despite special modifications designed to overcome

this disadvantage [22,23].
A natural approach to solving the problem of light

scattering by a spheroid is to use spheroidal coordinates

associated with the surface of the particle and expand

the fields according to the corresponding spheroidal func-

tions. In this case, the separation of variables method

(SVM) [24,25] is usually used, in which field expansions are

substituted into boundary conditions and after multiplication

by basic (angular) functions and integration, a system of

linear algebraic equations is obtained with respect to the

coefficients of expansion of an unknown field of scattered

radiation. For layered spheroids, it turns out to be more

34



On solution of the light scattering problem for a spheroid in the TM and TE modes when using spheroidal... 35

convenient to use the extended boundary condition method

(EBCM), in which field expansions are substituted into

surface integral equations equivalent to the differential

formulation of the problem used in SVM [26]. We note that

the use of non-standard (non-orthogonal) basis functions

from [27] in SVM and EBCM, formulated in spheroidal

coordinates, allows us to create efficient and uniquely

accurate algorithms that calculate the optical properties of

spheroids in a range of parameter values significantly wider

than other methods [28].

The circumstances that make it difficult to use field

decompositions on a non-standard spheroidal basis are:

a) difficulties in calculating the spheroidal functions of the

complex argument; b) lack of transition to the standard

(spherical) T matrix, widely used in applications; c) relative
complexity and complexity of the algorithm. We note that

the difficulties with calculating spheroidal functions have

significantly decreased after the appearance of algorithms

with extended precision and, in particular, the recent paper

of van Buren [29,30], and the way to solve the second

difficulty was recently outlined by us in [31].

In this paper, we propose a new approach to reducing

computational complexity (as well as improving accuracy

and acceleration) of methods using field expansions on a

non-standard spheroidal basis from [27]. It will be shown

how a more time-consuming solution of the problem in

the case of TE-mode1 can be associated with a simpler

and more stable solution for the TM-mode. By giving the

necessary basic relations, we find from them a connection

of T -matrices for these modes with different bases, which

is the basis of our approach. By giving the necessary basic

relations, we find from them a connection of T -matrices for

these modes with different bases, which is the basis of our

approach.

2. General relations

Let us consider the solution to the problem of light

scattering by a spheroid using various basis functions, define

the corresponding T -matrices and link the solutions to the

problem (finding the T -matrix) in the cases of TE- and TM-

modes when using a non-standard basis from [27].

2.1. The problem of light scattering and its

solution

As is customary in the methods of solving this problem

using field expansions, we will consider the harmonic fields

E(r, ω),H(r, ω), i.e. fields depending on the radius vector

r and frequencies ω and satisfying the Helmholtz vector

equation (k is wave number in the medium):

1E + k2 E = 0, (1)

1 TE- (Transverse Electric) and TM- (Transverse Magnetic) modes are

two cases of incident wave polarization.

and also the boundary conditions on the surface of the

diffuser [32].
When decomposing fields, different basic functions can

be selected. In the general case, for example, for an electric

field at any frequency, you can write

E(r) =
∑

ν

(aν A
s1
ν (r) + bν B

s2
ν (r)) . (2)

Here aν , bν — the required or known expansion coeffi-

cients, As1
ν (r), Bs2

ν (r) — respectively, the following solutions

of the Helmholtz vector equation (1):

Ms
ν(r) = ∇× (sψν(r)) ,

Ns
ν(r) =

1

k
∇×∇× (sψν(r)) =

1

k
∇×Ms

ν(r), (3)

where s is either a radius vector r, or a constant vector (for
example, the coordinate ort iz ), and ψν(r) is the solution of

the corresponding scalar Helmholtz equation. When using

spheroidal coordinates (ξ, η, ϕ), connected in a standard

way with spherical ones (r, θ, ϕ),

ψν(r) = R(i)
mn(c, ξ) Smn(c, η) Fm(ϕ), (4)

where Smn(c, η) and R(i)
mn(c, ξ) – spheroidal angular and

radial functions of the i-th kind (i = 1, 3), Fm(ϕ) – or

trigonometric (sinmϕ, cosmϕ), or exponential (exp imϕ)
functions, the parameter c = kd/2 and c = −ikd/2 for

prolate and oblate spheroidal coordinates, respectively,

d — focal distance (for example, [19]). When using

trigonometric functions, 2 separate solutions appear, called

TE- and TM-modes [19].
It is more convenient to use scalar potentials instead of

fields. In the theory of light scattering, the Debye potentials

Ve,Vm are traditionally used (for example, [24,33,34]) with

the representation of fields, for example, for the TE mode

in the form

ETE = ∇× (rVm) +
1

k
∇×∇× (rVe) . (5)

In this case, the decomposition of potentials Ve,Vm by

functions ψν(r), including cosmϕ, corresponds to the

decomposition of ETE by functions Mr
e,mn,N

r
o,mn, where

indexes e, o mean use in Fm(ϕ) even or odd trigonometric

functions. A set of similar functions Mr
ν(r),N

r
ν(r) we will

call the basis D. We note that the expansion of scalar

potentials by functions ψν(r) has the same coefficients as

the expansion of the field by vector functions corresponding

to these potentials (cf. (3) and (5)), and in this sense the

decompositions of scalar potentials and fields are equivalent.

In some cases, it is advisable to use other potentials.

For example, in the papers [25,26] it is shown that when

considering light scattering by spheroids, it is preferable to

use the Debye potential V and z -component of the Hertz

vector U in such a way that, for example, for the

ETE = ∇× (iz Um) + ∇× (rVm) . (6)
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This corresponds to the decomposition of the field by the

functions M
iz
ν (r),Mr

ν(r), which we will call the basis F .
In the EBCM method, substituting decompositions of

fields or potentials into the corresponding surface integral

equations and subsequent standard operations [19] give 2

systems of linear equations with respect to the expansion

coefficients of the internal (int) and scattered (sca) fields

with known expansion coefficients of the incident wave (in)
and the Green function:

QS a
int = a in, QR a

int = a sca, (7)

where the vectors a contain the coefficients aν , bν from the

relation (2), and the elements of similar matrices QR and

QS in general are surface integrals of spheroidal functions

and their derivatives, containing respectively only regular

or irregular radial functions at the origin [19]. In the

papers [25,26] it is shown that for a spheroidal basis F

the elements of matrices in the formulas (7) are expressed

in terms of the relations of the radial function Rmn(c, ξ)
to its derivative and integrals from products of angular

functions Smn(c, η). These integrals, in turn, are represented

by infinite series, including the coefficients dmn
l (c) of the

expansion Smn(c, η) by the associated Legendre functions,

which makes the solution of the problem more accurate and

faster.

An important role in applications is played by the T -
matrix linking the coefficients of expansions of incident and

scattered fields,

T sp = QR Q−1
S . (8)

For any basis and any incident wave, such a matrix makes

it possible to find the field of scattered radiation at any

distance from the particle from the obtained decomposition

coefficients, i.e. it allows calculating any optical properties

of the diffuser. In a standard spherical basis corresponding

to Debye potentials and including exponential functions

expmϕ, it turns out to be possible to analytically (which

significantly speeds up calculations) average such a matrix

over all particle orientations for ensembles of chaotically

oriented scatterers [35] that are often found in applications.

Below the T -matrix, associated with expansions in spher-

ical and spheroidal functions, we will call spherical and

spheroidal respectively. If the transformation of a spheroidal

T -matrix into a standard one is known, then calculating

the T -matrix from (8) can be considered a solution to the

scattering problem.

We note that the formulations of the problem for TE- and

TM-modes are generally similar, but an important difference

appears for the basis F. It consists in the fact that in the TE

mode there is a multiplier (ε − 1) in the equations, and

in the TM mode — (µ − 1) [25]. As a consequence, in

the frequently occurring case of particles with µ = 1, the

solution for the TM mode is noticeably simplified. The

simplification turns out to be significant for two reasons.

Firstly, because of the complexity of the systems (7) for

the TE mode, the results for it often turn out to be several

orders of magnitude less accurate than for the TM mode.

Secondly, the convergence of the solution for the TE mode

with an increase in the number of N terms taken into

account in the potential/field expansions is noticeably slower

than for the TM mode [25]. Since the calculation time is

mainly spent on inverting matrices of dimension 2N, the

calculation time of modes with the same specified accuracy

differs very significantly.

When applying the basis D and similar solutions for

different modes there is no such difference — both are

similar to the case of the TE-mode for the basis F. When

using exponential functions in Fm(ϕ) the solution is just

as difficult as when using trigonometric. In the SVM

method, the T -matrix is obtained after some additional

transformations [36], but the noted difference in solutions

for the bases F and D remains.

Let us consider the transformation of the spheroidal T
matrix for the TM mode at the basis F into the second part

of the solution — T matrix for the TE mode.

2.2. Connection of T-matrices for different modes
with a spheroidal basis F

To find this connection, we consider sequentially the

transformation of the spheroidal T sp,TM-matrix from the

formula (8) for the TM-mode at the basis F into the matrix

TTM defined for the standard spherical basis D, in which the

connection of T -matrices for different modes is known, and

then we do the inverse transformation of the T -matrix for

the TE-mode and get T sp,TE . Thus, in order to establish a

connection between T sp,TM and T sp,TE, the following 5 steps

must be done.

1) Transition from a spheroidal basis to a similar spherical

one (the same potentials, but different coordinate systems)
it was considered in the paper [31]. It was found that for

any basis, such a transition changes the T -matrix as follows:

T s,TM = D(c) T sp,TM DT (c), (9)

where T sp and T s — spheroidal and spherical T -matrices,

matrix D(c) depends on the parameter c and the normaliza-

tion of spheroidal angular functions, which are defined up

to a constant, the index T means transpose. The Flammer

normalization is often used, associated with the value

of the function at η = 0: S̄mn(c, η) = Smn(c, η)/Nmn(c),
where Nmn(c) — an infinite sum including the coefficients

dmn
r (c) of the expansion Smn(c, η) by associated Legendre

functions [37]. Another kind of normalization proposed

by Meixner&Schäfke is defined by the integral over all η

and has the form S̄mn(c, η) = Smn(c, η) /Nmn(0), and the

coefficients of the expansion of the angular function are

dr(c|mn) = dmn
r (c) Nmn(0)/Nmn(c). Here and below (as

opposed to the papers [25,26]) we use the second kind

of normalization in (4), and the elements are respectively

equal to Dnl(c) = i l−ndl−m(c|mn).
2) The transition from the non-orthogonal spherical basis

F to the practically standard spherical basis D from [34] was
made in [38], but only in the special case of the azimuthal
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number m = 0. Generalization to the case of an arbitrary

m 6= 0 looks more complicated:

TTM
11 = k F T s,TM

12 + T s,TM
22 , (10)

TTM
12 =

[

F T s,TM
11 + T s,TM

21 −
(

k F T s,TM
12 + T s,TM

22

)

F
]

G−1,

(11)
T TM
21 = k G T s,TM

12 , (12)

T TM
22 = G

(

T s,TM
11 − k T s,TM

12 F
)

G−1, (13)

where the matrices T s,TM and T TM obtained for these bases

are divided into 4 blocks corresponding to vectors that

include separately the coefficients aν and bν from (2), k is

a wave number. For all m, the matrix G is diagonal with

elements Gnn = −m/[n(n + 1)], and the matrix F is bi-

diagonal:

Fn,n+1 =

√

(n − m + 1)(n + m + 1)

(n + 1)2(2n + 1)(2n + 3)
,

Fn−1,n =

√

(n − m)(n + m)

n2(2n + 1)(2n − 1)
. (14)

3) A review of the results shows that in the basis D

selected in [34],

T TE
kl = (−1)k+l T TM

kl , (15)

where k, l = 1, 2.

4) The inverse transformation to the spherical basis F

obviously, is

T s,TE
11 = G−1 T TE

22 G + G−1 TTE
21 , (16)

T s,TE
12 =

1

k
G−1 TTE

21 , (17)

T s,TE
21 = TTE

12 G + T TE
11 F − F G−1T TE

22 G − F G−1 TTE
21 ,

(18)
T s,TE
22 = TTE

11 − F G−1 T TE
21 . (19)

5) The transition further to the spheroidal basis F, given

the properties of D(c) [31], is simple:

T sp,TE = DT (c) T s,TE D(c). (20)

Thus, instead of the laborious finding of the matrix T sp,TE

directly you can get it from T sp,TM using the relatively

simple transformations given above.

Let us consider the computational complexity of all

transformation steps (9)–(20). Steps 1 and 5 include a pair

of multiplications of matrices 2N × 2N (N — the number

of terms taken into account in the expansions of spheroidal

functions) into matrices 2N × 2Ns or 2Ns × 2N, where

2Ns is the dimension of the resulting spherical T matrix.

For general reasons, Ns should be significantly greater than

N, however, our tests show that Ns ≈ 1.3N is sufficient to

maintain the accuracy of the results. Therefore, both of

Table 1. Estimation of the accuracy of the results δ and

the calculation time t for elongated spheroids at α = 45◦ and

Ns/N = 1.3

xv a/b m̃ N Mode δ t, s δTE = δTE∗

3 4 1.3 24 TM 1.7 · 10−17 0.048

TE 4.4 · 10−7 0.048 N ≈ 70, t ≈ 1

TE* 3.6 · 10−16 0.027

3 50 1.3 56 TM 5.0 · 10−16 0.57

TE 1.1 · 10−6 0.57 No solution

TE* 5.3 · 10−15 0.35

70 4 1.3 190 TM 1.0 · 10−16 23.6

TE 2.4 · 10−11 23.3 N ≈ 200, t ≈ 30

TE* 3.5 · 10−14 12.8

3 4 5 + 2.5i 52 TM 1.6 · 10−14 0.53

TE 3.2 · 10−10 0.54 N ≈ 90, t ≈ 3.5

TE* ∼ 10−16 0.14

Note. ∗Calculated via TM-mode.

these steps require ∼N3 relatively simple operations. Steps

2 and 4 imply ∼N2 actions, since G is inverted analytically

and G−1 is also a diagonal matrix. Step 3 consists in

changing the sign of ∼N2 numbers. Thus, the asymptotic

complexity of all transformations is N3 for each azimuthal

number m ≤ N.

When calculating the TE-mode directly, it takes time

∼N2 for the calculation of rather complex elements of the

matrices QR and QS, as well as the time ∼N3 to invert QS

and multiply matrices in (2). The difference from the (9)–
(20) approach is not in the degree of N (not for small-

dimensional matrices), but in the properties of the system

for those modes, leading to a significantly greater loss of

accuracy in calculations.

3. Numerical calculations and discussion

We have performed test calculations of T -matrices and

other optical characteristics (including absorption cross

sections Cext and scattering Csca) both directly and in the

way proposed above for elongated and flattened spheroids

in a wide range of parameter values: the ratio of semi-axes

a/b, refractive index m̃, diffraction parameter xv = 2πrv/λ
(rv — the radius of a sphere whose volume is equal to

the volume of a spheroid, λ — the wavelength of the

incident radiation) and the angle α between the direction

of incidence of the wave and the axis of symmetry of the

spheroid.

Some results of these calculations are presented in

Tables 1 and 2, in which N means the number of terms used

in the expansions of potentials on a spheroidal basis, t — the

maximum calculation time for one value of the azimuthal

index is m, δ — estimation of the error of the results, namely

δ = |Cext(N) −Csca(N)|/Cext(N) for non-absorbing particles

(Im(m̃) = 0) and δ = |Cext(N) −Cext(N − 4)|/Cext(N) for
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Table 2. Estimation of the accuracy of the results δ and the

calculation time t for oblate spheroids at α = 45◦ and Ns/N = 1.3

xv a/b m̃ N Mode δ t, s δTE = δTE∗

3 4 1.3 18 TM 1.1 · 10−15 0.023

TE 6.9 · 10−5 0.022 N ≈ 75, t ≈ 1

TE* 3.0 · 10−16 0.012

3 50 1.3 24 TM 7.9 · 10−16 0.052

TE 3.0 · 10−4 0.052 No solution

TE* 1.8 · 10−16 0.031

70 4 1.3 130 TM 4.7 · 10−19 7.7

TE 6.4 · 10−15 7.7 N ≈ 140, t ≈ 11

TE* 2.5 · 10−19 5.4

3 4 5 + 2.5i 40 TM 5.6 · 10−15 0.27

TE 5.3 · 10−7 0.27 N ≈ 80, t ≈ 3

TE* ∼ 10−16 0.061

Note. ∗Calculated via TM-mode.

absorbing (Im(m̃) 6= 0). As is known, in both cases the

relative error of the cross-sections is about 10–30δ [19]. In
the last column of the tables, the values of N and t are

given, which are necessary when calculating the TE mode

directly to achieve the accuracy of the results obtained by

the proposed method (TE*).

In the Tables 1 and 2 are the values for typical dielectric

particles (m̃ = 1.3, a/b = 4, xv = 3), as well as for large

particles (xv = 70), with a large aspect ratio (a/b =50) or a
large refractive index (m̃ = 5 + 2.5i). A comparison of the

tables shows that elongated and flattened spheroids differ

slightly in this aspect.

The typical features of solutions for dielectric particles

(m̃ from ∼1.3 to ∼1.7+0.03i) with frequently occurring

parameters (xv = 1− 20 and a/b = 2− 10) are illustrated

by the given variant with m̃ = 1.3, a/b = 4, xv = 3. In

particular, the calculation time of TM- and TE-modes

directly with the same number of terms N practically does

not differ even at N = 20, since the main costs still go to

the conversion and multiplication of matrices. At the same

time, the accuracy of the calculation of the TE-mode, as

expected, is many orders of magnitude worse than for the

TM-mode. Excluding strongly elongated/flattened particles,

the accuracy of the TE mode can be improved to the

level of the TM mode by considering more terms in the

decompositions. However, this increases the calculation

time by 10-50 times, excluding very large particles, for

which such an increase is insignificant.

The proposed approach (indicated in the tables as TE*)
with the same number of terms as for the TM-mode, in

less time gives results for the TE-mode, which have only

an order of magnitude worse accuracy than that of the

TM-mode. Moreover, this is true for all cases considered

in Tables 1 and 2. We note that the developed approach

seems to be the only way to completely solve the problem

of light scattering in spheroidal coordinates (i.e. to find

Table 3. Estimation of calculation time t with low accuracy of

results δ for prolate spheroids at α = 45◦ and Ns/N = 1.3.

Parameters δ ≈ 10−4 δ ≈ 10−6

xv a/b m Mode N t, s N t, s

3 4 1.3 TM (TE*) 10 0.004 12 0.007

TE 14 0.01 24 0.05

3 50 1.3 TM (TE*) 32 0.1 36 0.3

TE 20 0.07 56 0.6

70 4 1.3 TM (TE*) 165 15 170 17

TE 170 17 175 18

both modes with high accuracy) for strongly aspherical

spheroids. We add that the methods based on the use of

the basis F had fundamental difficulties for small strongly

flattened spheroids (radial spheroidal coordinate ξ0 ≈ 0 for

f = −1) due to the very small values of the denominators

(ξ20 − f η2), present only in the mode [25,26], and the

proposed method solves this problem.

In the Tables 1 and 2, we arbitrarily limited ourselves

to the data corresponding to δ < 10−14, but even for the

selected parameter values, we could take more accurate

results, the accuracy of which depends not only on the

number of terms N, but also on the error of calculating

spheroidal functions, while the latter can be on at the level

of 10−22 and better [29]. On the other hand, in many

practical problems, the relative accuracy of the results above

is often not required 10−3 − 10−4 and in the vast majority

of cases – above 10−6. As Table 3 shows, calculations

directly allow obtaining such results for both modes in

comparable time for large xv, a/b or |m|, however, for

dielectric spheroids with xv = 1− 20 and a/b = 2− 10

the proposed approach gives a complete solution to the

problem (both modes) with a given (low) accuracy about

an order of magnitude faster than the solution
”
in the

forehead“.

In any case, the new approach has a wider scope of

applicability: for dielectric spheroids, it is approximately

limited by the ratio xa = 2πa/λ ≈ 300, where a — the

major semi-axis of the particle.

For large or strongly aspherical spheroids, calculations

with a large N are required and, therefore, taking into

account computationally comparable problems for many

values of m (m ∼ N). In such cases, as we found, the use of

parallel computing can significantly speed up calculations

with both OpenMP and MPI. Further acceleration of

calculations by about an order of magnitude can be made by

excluding from the matrices QR,QS zero elements, of which

exactly half, and, accordingly, reducing the dimension of all

matrices by half.

Optics and Spectroscopy, 2023, Vol. 131, No. 1



On solution of the light scattering problem for a spheroid in the TM and TE modes when using spheroidal... 39

4. Conclusion

As part of the method based on the decomposition

of fields by spheroidal functions using the original scalar

potentials from [27], a new approach to solving the problem

of light scattering by spheroids is proposed. The approach is

based on the original transformations of T -matrices during

transitions from a spheroidal basis to a spherical one and

from a non-orthogonal spherical basis to an orthogonal one.

Numerical calculations have shown that the proposed

approach always reduces the time for the exact solution

of the problem, and the reduction is significant in all cases

except for large particles (the diffraction parameter xv is

greater than ∼30). On the other hand, the new approach

makes it possible to refine the results by several orders

of magnitude, and for the first time gives a high-precision

solution for highly elongated/flattened spheroids.

The described approach will also be effectively applicable

to solving the problem of light scattering by layered

spheroids with confocal and non-confocal boundaries of

layers, developed in [38], since taking into account the

layering only changes the calculation of the spheroidal T
matrix in the formula (8).
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