04,08

Идентификация парамагнитных центров гадолиния и железа в ортосиликатах скандия и иттрия

© В.А. Важенин¹, А.П. Потапов¹, К.А. Субботин^{2,3}, А.В. Фокин¹, М.Ю. Артёмов¹, А.И. Титов^{2,3}, С.К. Павлов^{2,3}

 Уральский федеральный университет, Институт естественных наук и математики Екатеринбург, Россия
 ² Институт общей физики им. А.М. Прохорова РАН, Москва, Россия
 ³ Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия
 Е-mail: vladimir.vazhenin@urfu.ru

Поступила в Редакцию 27 марта 2023 г. В окончательной редакции 27 марта 2023 г. Принята к публикации 28 марта 2023 г.

Методом парамагнитного резонанса проведено исследование специально выращенных кристаллов Sc₂SiO₅:Gd и Sc₂SiO₅:Fe. Установлено, что ионы Fe³⁺ замещают Sc³⁺ в обеих кристаллографических позициях, тогда как ионы Gd³⁺ демонстрируют один центр, локализованный в более просторной позиции с координационным числом 7. Измерение ориентационного поведения положений переходов центров Fe³⁺ и Gd³⁺ в двух ортогональных плоскостях позволило определить параметры их триклинных спиновых гамильтонианов. Ориентация главных осей Z тензоров тонкой структуры второго ранга используется для определения локализации примесных ионов Cr³⁺, Fe³⁺ и Gd³⁺ в силикатах скандия и иттрия.

Ключевые слова: силикаты скандия и иттрия, примесные ионы, парамагнитный резонанс.

DOI: 10.21883/FTT.2023.05.55494.45

1. Введение

При разработке материалов для квантовой электроники, квантовой кибернетики, сцинтилляторов и других применений особое значение имеет возможность определять концентрации и зарядовые состояния неконтролируемых примесей. Электронный парамагнитный резонанс (ЭПР) является одним из наиболее информативных методов детектирования переходных и редкоземельных примесных элементов в кристаллах на электронном уровне [1]. Это, в частности, касается ионов двух- и трехвалентного железа, которые являются важнейшей случайной примесью во многих кристаллах, ухудшающей их характеристики. Для реализации такой диагностики необходима достоверная информация о спектрах ЭПР примесных центров в кристаллах актуальных для вышеуказанных применений.

Кристаллы изоструктурных ортосиликатов иттрия и скандия являются именно такими материалами. Y_2SiO_5 , легированный ионами хрома, исследуется в качестве активной среды твердотельных лазеров, генерирующих излучение в ближней инфракрасной области [2], а также в качестве пассивного лазерного затвора [3]. Монокристаллы Sc_2SiO_5 , с примесью редкоземельных элементов (Tm^{3+} , Ho^{3+} , Nd^{3+}) привлекают внимание ввиду их возможного применения в твердотельных лазерах [4,5]. Примесные ионы редкоземельных элементов с ядерным спином, в частности в силикате иттрия [6], исследуются

как возможная основа для реализации квантовой памяти в оптическом диапазоне.

Исследование кристаллов Y₂SiO₅:Cr методом ЭПР было проведено авторами [7], которые пришли к выводу, что наблюдаемый ими спектр обусловлен ионами Cr^{4+} с электронным спином S = 1, локализованными в тетраэдрической позиции кремния. В работе [8] были исследованы спектры ЭПР ортосиликатов скандия и иттрия, легированных хромом. В Sc₂SiO₅ были обнаружены и изучены два различных триклинных центра Cr³⁺ со спином S = 3/2, локализованных в неэквивалентных (6- и 7-координированных) позициях скандия. В кристалле Y₂SiO₅ был детектирован только один центр, имеющий спектр идентичный спектру, наблюдаемому в [7]. При этом в работах [8,9] было убедительно показано, что этот центр обусловлен ионом Cr³⁺ в одной из двух неэквивалентных позиций иттрия, а не ионом Cr⁴⁺ в позиции кремния, как считали авторы [7]. Сигналы второго центра Cr³⁺ в Y₂SiO₅ на два порядка меньшей интенсивности, чем сигналы первого, были зарегистрированы в специально выращенном кристалле с нечетным изотопом ⁵³Cr авторами [10]. Этот центр обусловлен локализацией Cr³⁺ в другой иттриевой позиции кристалла. В обоих кристаллах, исследованных в работах [8,10], наблюдалось большое количество слабых, не идентифицированных на том этапе сигналов.

Известно, что помимо железа в коммерчески доступных иттрий и скандий содержащих реактивах, а, сле-

довательно, и в выращиваемых из них монокристаллах нередко присутствуют в следовых количествах редкоземельные ионы (ввиду сходства их химических свойств), замещая эти псевдоредкоземельные ионы в структуре кристаллов, но их ЭПР спектры, за исключением Gd^{3+} и Eu^{2+} , не наблюдаются при комнатной температуре. Действительно, авторы работы [11], скрупулезно исследовав вышеупомянутые слабые (не принадлежащие ионам хрома) ЭПР сигналы кристаллов $Y_2SiO_5:53Cr$, изучавшихся в [10] показали, что все эти сигналы обусловлены двумя ионами Gd^{3+} , локализованными в двух физически неэквивалентных позициях иттрия (таких же, в которых локализуются и центры Cr^{3+}).

Центры Cr³⁺ в ортосиликате скандия с примесью хрома исследовались в работах [8,12,13]. И во всех этих работах помимо интенсивных переходов Cr³⁺ детектировались более слабые неизвестные сигналы. В результате тщательного анализа ориентационного поведения указанных сигналов было показано, что часть из них соответствует переходам центра Gd³⁺ в структурной локализации ионов Sc³⁺ одного вида (см. рис. 1 в [13]). Отсутствие видимых сигналов центра гадолиния в другой скандиевой позиции могло быть обусловлено его меньшей интенсивностью на фоне большого числа неидентифицированных сигналов, среди которых, в частности, возможны переходы неконтролируемой примеси трехзарядного железа. Кроме того, второй центр Gd³⁺ мог быть замаскирован интенсивными сигналами Cr³⁺.

Для надежной идентификации неконтролируемых примесей в этом кристалле в рамках настоящей работы были выращены кристаллы Sc₂SiO₅, легированные только гадолинием (электронная конфигурация Gd³⁺-4f⁷, основное состояние ⁸S_{7/2}) и только железом (3d⁵, ⁶S_{5/2} — для ионов Fe³⁺). Проведены ЭПР-исследования природы парамагнитных центров, реализующихся в указанных кристаллах.

2. Образцы и методика измерений

Монокристаллы Sc₂SiO₅: Gd и Sc₂SiO₅: Fe выращивались методом Чохральского на установке "Кристалл-2" (СССР). Шихты для выращивания кристаллов готовились из реактивов Sc₂O₃ марки CкO-3, ОСТ 48-4-417-87, Gd₂O₃ марки ГдО-г, ОСТ 48-200-81 (оба реактива п/я M-5649, CCCP) SiO₂ W30 (Wacker Chemie AG, Австрия) и Fe₂O₃ ОСЧ 2-4 ТУ 6-09-1418-78 (Реахим, СССР). Все реактивы имели квалификацию чистоты не ниже 4N. Реактивы предварительно сушились, навешивались в необходимых количествах на электронных аналитических весах Adventurer AX523 (OHAUS, США), затем навески тщательно перемешивались с помощью мешалки Multi RS-60 (BioSan, Латвия). Полученные смеси обжигались на воздухе в муфельной печи ЭКПС-10/1250 СПУ 4107 (Россия) при 700°С в течение 5 h. Номинальная (шихтовая) концентрация Gd_2O_3 в кристалле Sc_2SiO_5 : Gd составляла 0.005 wt%, номинальная концентрация Fe_2O_3 в кристалле Sc_2SiO_5 : Fe составляла 0.1 wt%.

Выращивание проводилось из иридиевого тигля диаметром и высотой 30 mm в атмосфере технического азота (фактическая остаточная концентрация кислорода в ростовой атмосфере не измерялась, но по нашим оценкам она не превышала 1 vol%). Скорость вытягивания на номинальной стадии роста составляла 1 mm/h, скорость вращения — 6 rpm. После завершения роста и отрыва выращенной були от зеркала расплава она охлаждалась со скоростью 8°C/h до комнатной температуры. После выращивания проводился дополнительный отжиг кристаллов на воздухе в муфельной печи при температуре 1000°C в течение трех недель. Скорость нагрева/охлаждения составляла 10°С/h. Выращенные кристаллы были прозрачны и бесцветны. Ростовой полосчатости, трещин и иных трехмерных дефектов в кристаллах не было.

Структура кристаллов Sc₂SiO₅ принадлежит к моноклинной сингонии, пространственная группа C_2/c (C_{2h}^{6}) . В ячейке I2/c постоянные решетки: a = 0.997 nm, b = 0.643 nm, c = 1.206 nm, $\beta = 103.94^{\circ}$ [14]. Все атомы в структуре имеют локальную симметрию кристаллического поля 1 (С1): кремний находится в искаженном кислородном тетраэдре, ионы Sc³⁺ занимают две неэквивалентные позиции с координационными числами 6 (M1) и 7 (M2). Каждая атомная позиция размножается элементами симметрии ячейки (центр инверсии и ось $C_2 \parallel \mathbf{b}$) до четырех. В связи с этим при локализации парамагнитного иона в любой из трех позиций (M1, M2, Si) в ЭПР будет наблюдаться два магнитно неэквивалентных спектра. При этом если вектор индукции магнитного поля В лежит в кристаллографической плоскости ас или параллелен кристаллографической оси b, тогда эти два спектра становятся эквивалентными.

Ориентация кристаллов относительно осей оптической индикатрисы (одна из которых совпадает с кристаллографической осью **b**, а две остальных лежат в кристаллографической плоскости **ac**, будучи повернутыми относительно осей **a** и **c**, на определенный угол, зависящий от длины волны) проводилась кристаллооптическими методами на поляризационном оптическом микроскопе "Биомед-5" (КНР). Погрешность ориентации не превышала 1°. После ориентации для ЭПР-измерений образцы вырезались в виде кубиков со стороной, равной 6 mm. Грани кубиков были параллельны осям оптической индикатрисы.

Измерения ориентационного поведения спектров ЭПР при комнатной температуре проводились на спектрометре Х-диапазона EMX Plus Bruker в полях до 1.5 Т. Образцы в резонаторе спектрометра крепились к держателю, закрепленному на штанге штатного автоматического гониометра и способному вращаться вокруг оси перпендикулярной штанге.

Таблица 1. Параметры СГ центра Gd^{3+} в Sc₂SiO₅ при комнатной температуре в системе координат **z** || **b** и в главных осях тензора тонкой структуры второго ранга. b_{nm} , c_{nm} и среднеквадратичное отклонение F(N) — в MHz; N — число положений переходов, использованных в процедуре оптимизации. Двойные знаки параметров b_{nm} и c_{nm} с нечетными проекциями соответствуют магнитно неэквивалентным спектрам одного центра (см. разд. 2). Абсолютные знаки параметров не определялись.

Параметры	z b (наст. работа)	В главных осях (наст. работа)	z b [13]	В главных осях [13]
g	1.990	1.990	1.990	1.990
b_{20}	2880	3510	2860	3480
b_{21}	± 5500	0	± 5430	0
b_{22}	2900	2470	2880	2470
C ₂₁	± 2980	0	± 3200	0
C 22	100	0	160	0
b_{40}	10	10	6	0
b_{41}	± 80	5	∓ 60	40
b_{42}	40	-20	45	15
b_{43}	∓50	100	± 10	110
b_{44}	-15	15	15	40
C 41	∓50	90	± 40	40
C 42	-20	10	-10	-30
C 43	± 5	90	∓100	-370
C 44	-60	-50	85	60
F(N)	47(588)		60(438)	

3. Центры Gd³⁺ в ортосиликате скандия

Измерение ЭПР-спектров образцов Sc₂SiO₅, легированных гадолинием, при вращении магнитного поля в двух ортогональных плоскостях показало наличие только одного центра Gd^{3+} , представленного двумя магнитно неэквивалентными спектрами. На рис. 1 хорошо видно, что практически все сигналы в ортосиликате скандия принадлежат единственному центру Gd^{3+} (см. введение), наблюдавшемуся в работе [13].

Рис. 1. Экспериментальный ЭПР-спектр, уровни энергии, а также расчетные положения и интегральные интенсивности переходов центра Gd^{3+} в Sc_2SiO_5 при **В** || **b** на частоте 9836 MHz.

Для описания спектра использовалась лабораторная система координат, введенная в [13]: **z** || **b**, ось **x** отстоит от кристаллографической оси **c** на 6°. Спиновый гамильтониан (СГ) для электронного спина S = 7/2 имеет вид [15]:

$$H_{\rm sp} = \beta(\mathbf{BgS}) + \frac{1}{3} \sum_{m} (b_{2m}O_{2m} + c_{2m}\Omega_{2m}) + \frac{1}{60} \sum_{m} (b_{4m}O_{4m} + c_{4m}\Omega_{4m}) + \frac{1}{1260} \sum_{m} (b_{6m}O_{6m} + c_{6m}\Omega_{6m}), \qquad (1)$$

где g — g-фактор, β — магнетон Бора, O_{nm} , Ω_{nm} — спиновые операторы Стивенса, b_{nm} , c_{nm} — параметры тонкой структуры.

Ориентационное поведение (азимутальное — в плоскости **ас** и полярное — в ортогональной плоскости, содержащей ось **z**) положений ЭПР сигналов Gd^{3+} приведено на рис. 2–3. Двойные экспериментальные точки на азимутальной зависимости (рис. 2) обусловлены расщеплением сигналов за счет выхода магнитного поля из плоскости **ас**, не превышающего, по нашим оценкам, одного градуса, в процедуре оптимизации параметров СГ в этом случае использовались средние значения.

Перед оптимизацией параметров СГ проводилась идентификация номеров уровней переходов наблюдаемых зависимостей, особенности процедуры которой описаны в работе [11]. Минимизацией среднеквадратичного отклонения расчетных (путем диагонализации комплексной матрицы восьмого порядка) от измеренных

Рис. 2. Азимутальная угловая зависимость положений переходов центра Gd³⁺ в Sc₂SiO₅ на частоте 9827 MHz. Кривые — результат расчета зависимостей с параметрами табл. 1.

Рис. 3. Полярная угловая зависимость положений ЭПР-переходов центра Gd^{3+} в Sc_2SiO_5 на частоте 9835 MHz при $\varphi = 14^{\circ}$ (рис. 2). Кривые — результат расчета зависимостей с параметрами табл. 1. Сплошные и штриховые кривые соответствуют двум ионам гадолиния в связанных операцией C_2 магнитно неэквивалентных позициях.

резонансных частот переходов получены параметры СГ, приведенные в табл. 1. Учет параметров шестого ранга практически не улучшал описания спектра. В этой же таблице приводятся параметры СГ центра Gd^{3+} в локальной системе координат XYZ тензора тонкой структуры второго ранга, становящегося диагональным с $|b_{20}| > |b_{22}|$. Матрица направляющих косинусов, связывающая две системы координат, имеет следующий вид:

	Х	Y	Z
x	-0.9300	0.0923	0.3558
y	-0.0460	-0.9896	0.1364
Z	0.3647	0.1105	0.9246

Полученные в настоящей работе параметры второго ранга неплохо согласуются с результатами [13], тогда как заметное отличие двух наборов параметров четвертого ранга (вплоть до знаков, табл. 1) говорит о большой погрешности, не позволяющей анализировать их систему главных осей.

Таким образом, в Sc₂SiO₅, легированном гадолинием, наблюдается лишь один центр Gd³⁺, что согласуется с результатами [13]. Если второй центр и существует, то концентрация его на несколько порядков меньше первого. Скорее всего, описанный центр обусловлен ионом Gd³⁺ (ионный радиус $R_i = 0.938$ Å [16]), локализованным в более просторной позиции скандия M2 с семикратным кислородным окружением и $R_i > 0.745$ Å [16]. Главная ось центра Z, согласно матрице направляющих косинусов, отстоит от **b** на угол ~ 22° (агссоз 0.9246), тогда как в Y₂SiO₅ по данным [11] наблюдаются два центра Gd³⁺ (Gd 1 и Gd 2), оси которых в локальных системах координат, повернуты относительно кристаллографической оси **b** на ~ 66° (Gd 1) и ~ 19° (Gd 2).

Учитывая близость отклонения главной оси центра Gd 2 в силикате иттрия к аналогичной величине для единственного центра гадолиния, обнаруженного в силикате скандия, логично предположить, что именно Gd 2 локализован в позиции иттрия ($R_i = 0.96$ Å [16]) с координационным числом 7. Следует заметить, что концентрация центров Gd 2 в Y₂SiO₅, следующая из интегральных интенсивностей сигналов, примерно в три раза больше, чем Gd 1.

Иная ситуация в обсуждаемых силикатах складывается для нечетного изотопа редкоземельного иона ¹⁴³Nd³⁺ ($R_i = 0.983$ Å [16]). Как в Y₂SiO₅ ($g_z = 4.1038$) [17,18], так и в Sc₂SiO₅ ($g_z = 3.48$) [19] наблюдается только по одному центру ¹⁴³Nd³⁺. В работе [20] в результате анализа огибающей модуляции в методике трехимпульсного электронного спинового эха на образцах с изотопом ²⁸Si было установлено, что центр ¹⁴³Nd³⁺ в Y₂SiO₅ обусловлен ионом неодима в позиции иттрия с семикратным кислородным окружением. Логично предполагать, что эту же позицию Y³⁺ в силикате иттрия будет занимать

центр Gd 2 с более интенсивным ЭПР-спектром, имеющий в семикратном окружении ионный радиус 1.0 Å [16].

Важно отметить, что в более ранней работе [21] в ЭПР-спектре кристалла Y_2SiO_5 , легированного неодимом, наблюдалось два центра с $g_{max} = 3.825$ и $g_{max} = 4.171$, отнесенных авторами к ионам Nd³⁺, локализованным в двух физически неэквивалентных позициях иттрия. Аналогичные пары спектров были обнаружены в кристаллах силиката иттрия с примесью редкоземельных ионов Ce³⁺, Yb³⁺ и Er³⁺ [21]. Скорее всего различие в количестве парамагнитных редкоземельных центров, детектируемых в Y₂SiO₅, обусловлено отличием в методах и режимах выращивания кристаллов.

4. Центры Fe³⁺ в ортосиликате скандия

ЭПР-спектр Sc₂SiO₅, легированного железом, демонстрирует при комнатной температуре переходы двух центров Fe³⁺ (Fe 1 и Fe 2), локализованных естественно в двух разных позициях скандия. Также были обнаружены сигналы одного центра Gd³⁺, аналогичные описанным в разделе 3 и множество слабых сигналов, идентифицированных нами как принадлежащие случайной примеси марганца с ядерным спином 5/2 (Mn²⁺, S = 5/2 или/и Mn⁴⁺, S = 3/2). Большое количество сигналов ионов марганца может быть связано с вхождением их как в позиции скандия обоих видов, так и в позиции кремния. Например, в работе [22] ионы марганца в кристалле граната Y₃Al₅O₁₂ были обнаружены во всех трех видах катионных позиций данного кристалла.

Присутствуют в ЭПР-спектре исследуемого кристалла Sc_2SiO_5 : Fe и не идентифицированные сигналы. На рис. 4 показан спектр данного кристалла в магнитном поле, вектор **В** которого слегка вышел из плоскости **ас**.

Рис. 4. ЭПР-спектр кристалла Sc₂SiO₅: Fe на частоте 9822 MHz в ориентации магнитного поля $\theta \approx 90^{\circ}$, $\varphi = 107^{\circ}$ лабораторной системы координат. Вертикальные отрезки (красные сплошные для Fe 1, синие штриховые для Fe 2, черные пунктирные для Gd³⁺) показывают расчетные положения и интегральные интенсивности переходов.

Рис. 5. Азимутальная угловая зависимость положений переходов центров Fe 1 (красные штриховые) и Fe 2 (черные сплошные) в Sc₂SiO₅ на частоте 9827 MHz. Кривые — результат расчета зависимостей с параметрами, приведенными в табл. 2.

Рис. 6. Полярная угловая зависимость положений переходов центров Fe 1 (синие сплошные) и Fe 2 (черные штриховые) в Sc₂SiO₅: Fe на частоте 9827 MHz при $\varphi = 107^{\circ}$. Кривые — результат расчета зависимостей с параметрами, приведенными в табл. 2. Точки без кривых — сигналы не идентифицированных центров.

Рис. 7. Уровни энергии и переходы центров Fe 1 (черные сплошные) и Fe 2 (красные штриховые) в Sc_2SiO_5 при **B** || **b** на частоте 9822 MHz.

Об этом говорит расщепление сигнала центра Fe 2 в поле ~ 540 mT, тогда как остальные переходы магнитно неэквивалентных центров собраны. Широкие линии в районах 350 и 900 mT обусловлены держателем образца и кислородом воздуха, соответственно. Наиболее интенсивные сигналы марганца располагаются вблизи 250 mT.

Ориентационное поведение экспериментальных положений переходов центров Fe 1 и Fe 2 в двух плоскостях приведено на рис. 5-6. Как и в случае с центрами гадолиния (см. раздел 3) многие сигналы на азимутальной зависимости из-за отклонения магнитного поля от плоскости ас расщеплены (двойные точки на рис. 5). Особенно велико расщепление для перехода $5 \leftrightarrow 6$ центра Fe 2 при $\phi \sim -45^{\circ}$, помеченное на рис. 5 стрелкой. Однако расчет полярной угловой зависимости при этом ϕ показал, что расщепление такого порядка происходит при отклонении магнитного поля от плоскости **ас** всего на $\sim 1.5^{\circ}$. Следует отметить, что расщепление предсказывается заметно несимметричным, в связи с чем использование среднего значения двух резонансных положений в процедуре определении параметров СГ не желательно.

Отсутствие сигналов в полярной зависимости (рис. 6) при **B** || **b** в полях заметно выше 400 mT, казалось бы, противоречит структуре электронных состояний и предсказываемым переходам на рис. 7. Однако, как видно, два перехода 3 \leftrightarrow 4 центра Fe 2 предсказываются вблизи минимума расстояния между уровнями энергии этих переходов, то есть между практически параллельными уровнями (рис. 7). Это должно приводить и действительно приводит к сильному уширению сигналов, а значит к большой ошибке в определении резонансного положения. Похожая ситуация складывается и с переходами 4 \leftrightarrow 5 центра Fe 2. Минимальная разность энергий состояний 2 и 3 центра Fe 2 при **B** || **b** выше 800 mT оказалась больше рабочей частоты спектрометра, но уже

Таблица 2. Параметры СГ двух центров Fe ³⁺ в Sc ₂ SiO ₅ в
системе координат $\boldsymbol{z} \parallel \boldsymbol{b}$ и в главных осях тензора тонкой
структуры второго ранга. Абсолютные знаки параметров не
определялись.

	Fe 1	Fe 1	Fe 2	Fe 2
Параметры	z b	в главных	z b	в главных
		осях		осях
g	2.000	2.000	2.000	2.000
b_{20}	2240	6650	6170	-8990
b_{21}	± 18530		1060	
b_{22}	5110	6000	6220	6390
c ₂₁	± 4440		± 17680	
c 22	-6050		7220	
b_{40}	0	10	-100	-90
b_{41}	± 80	-160	∓240	-340
b_{42}	80	-80	350	-240
b_{43}	± 230	-650	∓ 500	300
b_{44}	-250	300	90	-500
C41	± 310	-50	± 10	30
C 42	-210	-140	50	-580
C 43	± 550	-940	1090	0
C 44	250	150	-940	-600
F(N)	29(298)		93(430)	

при $\theta \ge 1^{\circ}$ становится меньше, в результате чего один из двух переходов детектируется.

Проведенная идентификация переходов экспериментальных зависимостей на рис. 5–6 по методике [11] позволила осуществить оптимизацию параметров спиновых гамильтонианов (выражение 1 без шестого ранга) двух центров Fe³⁺, не используя азимутальные зависимости с большим расщеплением сигналов магнитно не эквивалентных спектров. Результаты приведены в табл. 2.

Бросается в глаза большая величина среднеквадратичного отклонения F(N) у центра Fe 2. Когда обсуждался рис. 7 обращалось внимание на то, что именно у центра Fe 2 многие переходы происходят между отталкивающимися уровнями энергии, что ведет к большим погрешностям в используемых экспериментальных данных. Кроме того, как хорошо видно на рис. 6, величина $dB_{\rm res}/d\theta$ для центра Fe 2 много больше, чем для центра Fe 1, что тоже приводит к большей ошибке из-за погрешности в ориентации.

В табл. 2 также приведены величины параметров СГ в локальных системах координат тензоров тонкой структуры второго ранга, в которых тензоры становятся диагональными с $|b_{20}| > |b_{22}|$. Переход из лабораторной системы координат в систему главных осей определяется последовательными поворотами на углы Эйлера (*zyz*): $\alpha = 349.5$; $\beta = 45.4$; $\gamma = 327.5$ для Fe 1 и $\alpha = 112.2$; $\beta = 285.4$; $\gamma = 166.2$ для Fe 2. Минимальные углы между главными осями Z этих тензоров и осью z лабораторной системы координат имеют следующие значения: $\sim 45^{\circ}$ для Fe 1 и $\sim 75^{\circ}$ для Fe 2.

Таблица 3. Углы между главными осями Z тензоров тонкой структуры второго ранга центров Fe^{3+} , Cr^{3+} , Gd^{3+} и осью $z \parallel b$ в двух силикатах. (Жирным шрифтом выделены центры с большей интенсивностью. Спектры Fe^{3+} в двух позициях Sc^{3+} , а также Cr^{3+} в Sc_2SiO_5 , имеют практически равную интенсивность.)

Кристалл	Ион	$\lambda_b = \angle_b Z \mathbf{z}^\circ$	$\lambda_s = \angle_s Z \mathbf{z}^\circ$
Y ₂ SiO ₅	$\mathrm{Cr}^{3+} \mathrm{Gd}^{3+}$	51 [9,10] 66 [11]	30 [10] 19 [11]
Sc ₂ SiO ₅	Fe^{3+} Cr^{3+} Gd^{3+}	75 наст. работа 68 [12,13] —	45 наст. работа 54 [12,13] 22 [13]
Координационное число		6 (M1)	7 (<i>M</i> 2)

В табл. З приводятся углы (λ_i) между главными осями Z тензоров тонкой структуры второго ранга центров Fe³⁺, Cr³⁺, Gd³⁺ и осью z || b в двух силикатах. Как видно, во всех случаях, кроме центров гадолиния в Sc₂SiO₅, наблюдается два физически не эквивалентных примесных центра с заметно различными значениями λ_i .

В последней колонке собраны центры с меньшим значением λ_s , в предпоследней — с большим λ_b . Большое отличие значений λ_i у центров железа и хрома от λ_i гадолиния не удивительно, поскольку они принадлежат разным электронным конфигурациям. Кроме того, из-за существенной разницы ионных радиусов примесных ионов Fe³⁺, Cr³⁺ с одной стороны и матричных ионов Y³⁺, Sc³⁺ с другой стороны можно ожидать заметной релаксации окружения парамагнитного дефекта.

В разделе 3 центр Gd^{3+} в Sc_2SiO_5 с $\lambda_s = 22^\circ$ отнесен к иону гадолиния в более просторной позиции с семикратным окружением (см. табл. 3). Там же более интенсивный центр Gd³⁺ (Gd 2) в Y₂SiO₅ с $\lambda_s = 19^{\circ}$ (с учетом результатов [20], связанных с локализацией примесных ионов ¹⁴³Nd в силикатах) предполагался расположенным тоже в позиции иттрия с координационным числом 7 (табл. 3). Очень малая концентрация центров Cr 2 с $\lambda_s = 30^\circ$ в Y₂SiO₅ [10] объяснялась сильным несоответствием ионных радиусов Cr^{3+} (0.615 Å) и Y^{3+} (0.96 Å) в семикратном окружении. Можно предположить, что величина угла λ_i является признаком локализации примесного центра в двух позициях скандия и иттрия. Для проверки этого предположения желательно проведение исследования центров Fe³⁺ в кристаллах силиката иттрия.

5. Заключение

Таким образом, в рамках работы были выращены монокристаллы Sc₂SiO₅ : Gd и Sc₂SiO₅ : Fe, проведено исследование данных кристаллов методом ЭПР при 300 К. Впервые на основе идентифицированных по-

левых и ориентационных зависимостей ЭПР-сигналов в кристалле Sc₂SiO₅ определены параметры спиновых гамильтонианов двух центров трехвалентного железа.

Установлено, что ионы трехвалентного железа входят в обе неэквивалентные кристаллографические позиции ионов Sc^{3+} структуры кристалла в сопоставимых количествах. В то же время ионы Gd^{3+} отдают однозначное предпочтение более просторной позиции M2 с координационным числом 7. Данный результат вполне объясним с позиций размерного фактора. Анализ ориентации главных осей тензоров тонкой структуры второго ранга позволил сделать предположение о возможности их использования для определения локализации примесных ионов.

Эти результаты позволят в дальнейшем выявлять неразрушающими методами ЭПР случайные микропримеси (на уровне 1 ppm и менее) данных ионов в Sc_2SiO_5 и изоструктурных ему кристаллах, перспективных для применения в качестве лазерных и сцинтилляционных сред, а также в квантовой кибернетике.

Финансирование работы

Работа выполнена при финансовой поддержке Минобрнауки Российской Федерации, тема № FEUZ-2023-0017 с использованием оборудования УЦКП "Современные нанотехнологии" УрФУ (рег. № 2968), поддержанным Минобрнауки РФ (проект 075-15-2021-677).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Д.Д. Крамущенко, И.В. Ильин, В.А. Солтамов, П.Г. Баранов, В.П. Калинушкин, М.И. Студеникин, В.П. Данилов, Н.Н. Ильичев, П.В. Шапкин. ФТТ 55, 2, 234 (2013).
- [2] B.H.T. Chai, Y. Simony, C. Deka, X.X. Zhang, E. Munin, M. Bass. OSA Proc. ASSL 13, 28 (1992).
- [3] Chih-Kang Chang, Jih-Yuan Chang, Yen-Kuang Kuo. Proc. SPIE 4914, 498 (2002).
- [4] L. Zheng, J. Xu, L. Su, H. Li, W. Ryba-Romanowski, R. Lisiecki, P. Solarz. Appl. Phys. Lett. 96, 121908 (2010).
- [5] X. Yang, E. Song, W. Xie. Infrared Phys. Technol. 85, 154 (2017).
- [6] A.L. Alexander, J.J. Longdell, M.J. Sellars, J. Opt. Soc. Am. B 2, 79 (2007).
- [7] R.R. Rakhimov, H.D. Horton, D.E. Jones, G.B. Loutts, H.R. Ries. Chem. Phys. Lett. **319**, 639 (2000).
- [8] В.А. Важенин, А.П. Потапов, Г.С. Шакуров, А.В. Фокин, М.Ю. Артёмов, В.А. Исаев. ФТТ 60, 10, 1995 (2018).
- [9] V.F. Tarasov, I.V. Yatsyk, R.F. Likerov, A.V. Shestakov, R.M. Eremina, Yu.D. Zavartsev, S.A. Kutovoi. Opt. Mater. 105, 109913 (2020).
- [10] V.A. Vazhenin, A.P. Potapov, K.A. Subbotin, D.A. Lis, M.Yu. Artyomov, V.V. Sanina, E.V. Chernova, A.V. Fokin. Opt. Mater. 117, 111107 (2021).

- [11] A.V. Fokin, V.A. Vazhenin, A.P. Potapov, M.Yu. Artyomov, K.A. Subbotin, A.I. Titov. Opt. Mater. **132**, 112741 (2022).
- [12] V.F. Tarasov, R.M. Eremina, K.B. Konov, R.F. Likerov, A.V. Shestakov, Yu.D. Zavartsev, S.A. Kutovoi. Appl. Magn. Res. 52, 5 (2021).
- [13] В.А. Важенин, А.П. Потапов, А.В. Фокин, М.Ю. Артёмов, В.А. Исаев. ФТТ 64, 8, 967 (2022).
- [14] Maria D. Alba, Pablo Chain, Triana Gonzalez-Carrascosa. J. Am. Ceram. Soc. 92, 487 (2009).
- [15] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972). С. 121.
- [16] R.D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).
- [17] R. Eremina, T. Gavrilova, I. Yatsyk, I. Fazlizhanov, R. Likerov, V. Shustov, Yu. Zavartsev, A. Zagumennyi, S. Kutovoi. J. Magn. Magn. Mater. 440, 13 (2017).
- [18] A.A. Sukhanov, V.F. Tarasov, R.M. Eremina, I.V. Yatsyk, R.F. Likerov, A.V. Shestakov, Yu.D. Zavartsev, A.I. Zagumennyi, S.A. Kutovoi. Appl. Magn. Res. 48, 589 (2017).
- [19] R.M. Eremina, V.F. Tarasov, K.B. Konov, T.P. Gavrilova, A.V. Shestakov, V.A. Shustov, S.A. Kutovoi, Yu.D. Zavartsev. Appl. Magn. Res. 49, 53 (2018).
- [20] A.A. Sukhanov, R.F. Likerov, R.M. Eremina, I.V. Yatsyk, T.P. Gavrilova, V.F. Tarasov, Yu.D. Zavartsev, S.A. Kutovoi. J. Magn. Res. 295, 12 (2018).
- [21] I.N. Kurkin, K.P. Chernov. Physica B 101, 233 (1980).
- [22] J.A. Hodges, J.L. Dorman, H. Makram. Phys. Status. Solidi 35, 53 (1969).

Редактор Т.Н. Василевская