01,11,19

Изменение температуры плавления металлов с ростом давления

© М.Н. Магомедов

Институт проблем геотермии и возобновляемой энергетики – филиал Объединенного института высоких температур РАН, Махачкала, Россия

E-mail: mahmag4@mail.ru

Поступила в Редакцию 27 марта 2023 г. В окончательной редакции 27 марта 2023 г. Принята к публикации 7 апреля 2023 г.

> Предложен новый аналитический (т. е. без компьютерного моделирования) метод расчета зависимости температуры плавления T_m однокомпонентного кристалла от давления P. Метод основан на делокализационном критерии плавления и не содержит подгоночных констант. Данным методом были рассчитаны барические зависимости температуры плавления $T_m(P)$ и ее производной по давлению $T'_m(P)$ для золота, платины и ниобия в интервале давлений P = 0-1000 GPa. Показано, что рассчитанные данным методом зависимости для золота и платины лучше согласуются с экспериментальными данными, чем зависимости, полученные методами компьютерного моделирования. Для ниобия рассчитанная зависимость $T_m(P)$ оказалась более крутой, т. е. величины $T'_m(P)$ получились больше, чем в эксперименте. Указано, что это расхождение может быть обусловлено как уменьшением параметра Линдеманна с ростом давления, так и перераспределением электронов на s-d-орбиталях при сжатии переходных металлов с ОЦК-структурой.

Ключевые слова: температура плавления, давление, межатомное взаимодействие, золото, платина, ниобий.

DOI: 10.21883/FTT.2023.05.55489.46

1. Введение

Зависимость температуры плавления T_m от давления P изучается давно, однако зависимость $T_{\rm m}(P)$ до сих пор вызывает споры даже для однокомпонентных веществ [1-10]. Дело в том, что эксперименты с плавлением вещества при высоких статических (а тем более динамических) давлениях имеют погрешность, величина которой растет с ростом Т-Р-параметров [1-6]. Что касается теоретических оценок зависимости $T_{\rm m}(P)$, то ввиду отсутствия теории жидкого состояния отсутствует и теория плавления (можно сказать и наоборот: ввиду отсутствия теории плавления нет четкого представления, что такое однокомпонентная жидкость). В связи с этим до сих пор неясно, почему кристалл нельзя перегреть выше $T_{\rm m}(P)$, хотя жидкость можно сравнительно легко переохладить вплоть до 0.8*T*_m(*P*) [7].

Основной проблемой расчета свойств вещества при фазовом переходе кристалл—жидкость (ФП К—Ж) является вопрос критерия, определяющего этот переход. В теоретических работах для оценки зависимости $T_m(P)$ используются различные феноменологические критерии плавления [7,8], и в большинстве современных работ выбирается критерий плавления Линдеманна (Lindemann melting criterion) [9,10]. Критерий плавления Линдеманна утверждает [11,12]: амплитуда колебания атома, отнесенная к расстоянию между центрами ближайших атомов, при температуре плавления есть величина постоянная для кристаллов с одинаковой структурой. Критерий Линдеманна был успешно использован для теоретического изучения плавления однокомпонентных кристаллов с различной структурой и применялся для расчетов параметров плавления как макро-, так и нанокристаллов различных веществ [7]. Но для процесса кристаллизации этот критерий оказался неприменим. Поэтому в работах [13–16] были предложены критерии кристаллизации однокомпонентной жидкости, исходящие из диффузионных параметров вещества.

В работах [13,14] методом компьютерного моделирования Монте-Карло были изучены кластеры из атомов аргона, которые взаимодействовали через потенциал Леннард-Джонса (6-12). Было показано, что при температуре кристаллизации (T_N) коэффициент самодиффузии есть величина постоянная: $D_{\rm f}(T_{\rm N}) \cong 10^{-5} \, {\rm cm}^2/{\rm s}$, не зависящая от размера кластера. В связи с этим в [13,14] предположили, что критерием кристаллизации является $D_{\rm f}(T_{\rm N}) \cong$ const. Но так как величина константы может различаться для различных веществ, это существенно ограничило применимость данного критерия. В работах [15,16], исходя из результатов компьютерного моделирования жидкости методом молекулярной динамики, был предложен "динамический критерий кристаллизации (dynamical criterion for freezing)", согласно которому при температуре кристаллизации выполняется соотношение \mathbf{D} (\mathbf{T})

$$\frac{D_{\rm f}(T_{\rm N})}{D_{\rm f}({\rm IG})} \cong 0.1,$$

где $D_{\rm f}(T_{\rm N})$ — коэффициент самодиффузии в жидкой фазе взаимодействующих частиц при температуре кристаллизации, $D_{\rm f}({\rm IG})$ — коэффициент броуновской самодиффузии для тех же самых частиц без взаимодействия.

Было показано, что данный критерий кристаллизации пригоден для различных потенциалов межатомного взаимодействия, как для трех- (3D), так и для двумерных (2D) систем. Данный критерий нашел применение при компьютерном моделировании кристаллизации 3Dи 2D-жидкостей [17], но для плавления он не применим, ввиду неопределенности функции $D_f(IG)$ для кристалла.

В наших работах [18,19] был предложен делокализационный критерий ФП К-Ж, согласно которому ФП К-Ж (и в прямом, и в обратном направлении) начинается, когда количество делокализованных атомов $N_{\rm d}$ достигнет определенной доли от общего числа атомов в системе

$$x_{\rm d}({\rm S} \leftrightarrow {\rm L}) = rac{N_{\rm d}({\rm S} \leftrightarrow {\rm L})}{N} \cong 10^{-2}.$$
 (1)

Здесь S \leftrightarrow L означает, что данная величина относится к области перехода твердое (S)-жидкое (L), как в прямом, так и в обратном направлении. В работах [18,19] было показано, что делокализационный критерий ФП К-Ж (1) в случае плавления переходит в критерий Линдеманна, а в случае кристаллизации сводится к критерию Лёвена (Löwen), т.е. является обобщающим. В работах [20,21] было показано, что критерий (1) также применим и к переходу жидкостьстекло.

В настоящей работе на основе критерия (1) предложен сравнительно простой аналитический (т. е. без компьютерного моделирования) метод расчета зависимости $T_{\rm m}(P)$. Метод позволяет рассчитать данную зависимость на основании только четырех параметров: парного межатомного потенциала Ми–Леннард-Джонса, структуры кристалла, массы атома и $T_{\rm m}(0)$ — температуры плавления при P = 0.

2. Метод расчета

Для определения функции $x_d(P, T)$ представим систему (кристалл или жидкость однокомпонентного вещества) из N атомов в виде структуры из $N + N_v$ ячеек одинакового размера, в которой N_v ячеек вакантны и однородно распределены по объему системы V. При этом будем полагать, что атомы в системе могут находиться в двух состояниях: локализованном и делокализованном. В локализованном состоянии атом заключен в ячейке, образованной ближайшими соседями, и имеет только колебательные степени свободы. В делокализованном состоянии атому доступен весь объем системы, и он имеет только трансляционные степени свободы. Как было показано в [19,22], доля делокализованных атомов, при данных температуре T и удельном объеме v = V/Nсистемы, описывается неполной гамма-функцией сле-

Физика твердого тела, 2023, том 65, вып. 5

дующего вида:

$$x_{\rm d}(v,T) = \frac{N_{\rm d}(v,T)}{N} = \frac{2}{\sqrt{\pi}} \int_{E_{\rm d}/(k_{\rm B}T)}^{\infty} \sqrt{t} \exp(-t) dt$$
$$= 2 \exp\left(-\frac{E_{\rm d}}{k_{\rm B}T}\right) \sqrt{\frac{E_{\rm d}}{\pi k_{\rm B}T}} + 1 - \exp\left(\sqrt{\frac{E_{\rm d}}{k_{\rm B}T}}\right), \quad (2)$$

где $E_{\rm d}$ — энергия, необходимая для перехода атома из локализованного в делокализованное состояние, $k_{\rm B}$ — постоянная Больцмана, а интеграл вероятностей имеет вид [23]:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^{2}) dt.$$
(3)

Формула (2) есть следствие того, что число делокализованных атомов, имеющих кинетическую энергию из определенного интервала значений, подчиняется распределению Максвелла–Больцмана, которое справедливо не только для газа, но и для жидкой, аморфной и кристаллической фазы [24,25].

Используя для колебательного спектра кристалла модель Эйнштейна, для энергии делокализации атома было получено выражение [18,19,22]:

$$E_{\rm d} = \left(\frac{3}{8\pi^2}\right) m \left(\frac{3c_{\rm o}k_{\rm B}\Theta_{\rm o}}{4\hbar\sqrt[3]{k_{\rm p}}}\right)^2 f_y(y_w). \tag{4}$$

Здесь \hbar — постоянная Планка, m — масса атома, $c_o = [6k_pV/(\pi N)]^{1/3}$ — расстояние между центрами ближайших ячеек в исходной (не срелаксировавшей в активированное вакансиями состояние) безвакансионной (при $N_v = 0$) виртуальной решетке (на это указывает индекс "о"), Θ_o — температура Дебая для безвакансионной решетки, k_p — коэффициент упаковки структуры из $N + N_v$ сферических ячеек.

Функция $f_{y}(y_{w})$ появляется в (4) для учета квантовых эффектов и имеет вид

$$f_y(y_w) = \frac{2[1 - \exp(-y_w)]}{y_w[1 + \exp(-y_w)]}, \ y_w = \frac{3\Theta_o}{4T}$$

Из (1)-(4) следует, что при плавлении кристалла выполняется

$$\frac{E_{\rm d}}{k_{\rm B}T_{\rm m}} = \left(\frac{3}{8\pi^2}\right) \frac{k_{\rm B}m}{T_{\rm m}} \left(\frac{3c_{\rm o}\Theta_{\rm o}}{4\hbar\sqrt[3]{k_{\rm p}}}\right)^2 f_y(y_w) \cong 5.672.$$
(5)

Из (5) следует соотношение, которое функционально согласуется с зависимостью, получаемой по критерию Линдеманна

$$T_{\rm m} = \left(\frac{3}{8\pi^2}\right) \frac{k_{\rm B}m}{5.672} \left(\frac{3c_{\rm o}\Theta_{\rm o}}{4\hbar\sqrt[3]{k_{\rm p}}}\right)^2 f_y(y_w)$$
$$= L_{\rm mE}^2 k_{\rm B} \frac{m}{3} \left(\frac{3c_{\rm o}\Theta_{\rm o}}{4\hbar}\right)^2 f_y(y_w), \tag{6}$$

где параметр Линдеманна для колебательного спектра кристалла по модели Эйнштейна определяется соотношением [19]:

$$L_{\rm mE} = \frac{3}{\pi \sqrt{8 \cdot 5.672 \cdot \sqrt[3]{k_{\rm p}}}} = \frac{0.142}{\sqrt[3]{k_{\rm p}}}.$$

Предполагая, что величина $L_{\rm mE}$ не изменяется с ростом давления, из формулы (6) легко получить выражение

$$T_{\rm m}(P) = T_{\rm m}(0) \left[\frac{c_{\rm o}(P)\Theta_{\rm o}(P)}{c_{\rm o}(0)\Theta_{\rm o}(0)} \right]^2 \frac{f_{y}(y_{w}(P))}{f_{y}(y_{w}(0))}.$$
 (7)

Для расчета зависимости $c_o(P)\Theta_o(P)$ необходимо знать уравнение состояния и коэффициент теплового расширения безвакансионной системы. Для определения этих функций используем метод, предложенный нами в работе [26].

Представим парное межатомное взаимодействие в виде 4-параметрического потенциала Ми–Леннард-Джонса, который имеет вид

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_0}{r} \right)^b - b \left(\frac{r_0}{r} \right)^a \right], \qquad (8)$$

где D и $r_{\rm o}$ — глубина и координата минимума потенциала, b > a > 1 — параметры.

Тогда, как было показано в [27], в рамках приближения "взаимодействия только ближайших соседей" температуру Дебая можно определить в виде

$$\Theta_{\rm o}(k_n^{\rm o}, c_{\rm o}) = A_w(k_n^{\rm o}, c_{\rm o})\xi\left(-1 + \sqrt{1 + \frac{8D}{k_{\rm B}A_w(k_n^{\rm o}, c_{\rm o})\xi^2}}\right),\tag{9}$$

где k_n^{o} — число всех ячеек (как занятых, так и вакантных) ближайших к данному атому, функция $A_w(k_n^{o}, c_o)$ возникает вследствие учета энергии "нулевых колебаний" атомов в системе

$$A_w(k_n^{\rm o}, c_{\rm o}) = K_{\rm R} \, \frac{5k_n^{\rm o} \cdot ab(b+1)}{144(b-a)} \left(\frac{r_{\rm o}}{c_{\rm o}}\right)^{b+2},$$
$$K_{\rm R} = \frac{\hbar^2}{k_{\rm B}r_{\rm o}^2 m}, \quad \xi = \frac{9}{k_n^{\rm o}}.$$
(10)

Исходя из потенциала (8), в рамках приближения "взаимодействия только ближайших соседей", для уравнения состояния P и изотермического модуля упругости B_T можно получить следующие выражения [26]:

$$P = \left[\frac{k_n^{\rm o}}{6}DU'(R) + \frac{9}{4}k_{\rm B}\Theta_{\rm o}\gamma_{\rm o}E_w(y_w)\right]\frac{1}{\upsilon},\qquad(11)$$

$$B_T = -v \left(\frac{\partial P}{\partial v}\right)_T = P + \left[\frac{k_n^o}{18} DU''(R) + \frac{9}{4} k_B \Theta_o \gamma_o(\gamma_o - q_o) E_w(y_w) - 3k_B \gamma_o^2 T F_E(y_w)\right] \frac{1}{v}.$$
 (12)

Здесь $R = r_{\rm o}/c_{\rm o} = (v_0/v)^{1/3}$ — относительная линейная плотность системы,

$$E_{w}(y_{w}) = 0.5 + \frac{1}{[\exp(y_{w}) - 1]},$$

$$F_{E}(y_{w}) = \frac{y_{w}^{2} \exp(y_{w})}{[\exp(y_{w}) - 1]^{2}}, \quad v_{0} = \frac{\pi r_{o}^{3}}{6k_{p}},$$

$$U(R) = \frac{aR^{b} - bR^{a}}{b - a},$$

$$U'(R) = R\left[\frac{\partial U(R)}{\partial R}\right] = \frac{ab(R^{b} - R^{a})}{b - a},$$

$$U''(R) = R\left[\frac{\partial U'(R)}{\partial R}\right] = \frac{ab(bR^{b} - aR^{a})}{b - a}.$$
(13)

Входящие в (11) и (12) выражения для первого (γ_0) и второго (q_0) параметров Грюнайзена для безвакансионной системы можно найти из (9). Они имеют вид

$$\gamma_{o} = -\left(\frac{\partial \ln \Theta_{o}}{\partial \ln v}\right)_{T} = \frac{b+2}{6(1+X_{w})},$$

$$q_{o} = \left(\frac{\partial \ln \gamma_{o}}{\partial \ln v}\right)_{T} = \gamma_{o} \frac{X_{w}(1+2X_{w})}{(1+X_{w})}.$$
(14)

Здесь введена функция $X_w = A_w \xi / \Theta_o$, которая определяет роль квантовых эффектов при расчете параметров Грюнайзена.

Так как согласно (9) температура Дебая не зависит от температуры при изохорическом нагреве системы, то изохорную теплоемкость и изобарный коэффициент теплового объемного расширения для безвакансионной системы можно определить в виде [28]:

$$C_{v} = 3Nk_{\rm B}F_{\rm E}\left(\frac{3\Theta_{\rm o}}{4T}\right),$$

$$\alpha_{p} = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{p} = \gamma \frac{C_{v}}{VB_{T}} = \frac{\gamma C_{v}}{NB_{T}[\pi r_{\rm o}^{3}/(6k_{\rm p})]} \left(\frac{v_{\rm 0}}{v}\right).$$
(15)

Выражения (8)—(15) позволяют определить барическую зависимость функции $c_o(P)\Theta_o(P)$ вдоль определенной изотермы. Для изотермы $T_m(0)$ из (7) получим

$$T_{\rm m}(P, T_{\rm m}(0)) = T_{\rm m}(0) \left[\frac{c_{\rm o}(P, T_{\rm m}(0))\Theta_{\rm o}(P, T_{\rm m}(0))}{c_{\rm o}(0, T_{\rm m}(0))\Theta_{\rm o}(0, T_{\rm m}(0))} \right]^2 \\ \times \frac{f_y(y_w(P, T_{\rm m}(0)))}{f_y(y_w(0, T_{\rm m}(0)))}.$$
(16)

При изотермическом росте давления значение $c_o(P, T_m(0))$ уменьшается, но при этом растет функция $T_m(P, T_m(0))$ из (16). Рост функции $T_m(P, T_m(0))$ должен приводить к соответствующему увеличению функции $c_o(P, T_m(0))$. Для учета этого эффекта рассмотрим, какой вклад вносят входящие в (16) функции. При высоких температурах (т.е. при $T \gg \Theta_o$) функция $f_y(y_w)$ близка к единице: $f_y(y_w \ll 1) \cong 1$. Поэтому отношение этих

функций в (16) можно принять равным единице. При условии (которое выполняется для всех металлов)

$$\frac{8D}{k_{\rm B}A_w(k_n^{\rm o}, c_{\rm o})\xi^2} \gg 1$$

формулу (9) можно упростить до следующего вида:

$$\Theta_{\rm o}(k_n^{\rm o}, c_{\rm o}) \cong \left[\frac{8DA_w(k_n^{\rm o}, c_{\rm o})}{k_{\rm B}}\right]^{1/2} \\ = \left[\frac{5\hbar^2 Dk_n^{\rm o}ab(b+1)}{18k_{\rm B}^2 m r_{\rm o}^2(b-a)} \left(\frac{r_{\rm o}}{c_{\rm o}}\right)^{b+2}\right]^{1/2}$$

Отсюда легко получить соотношение

$$\left[c_{o}(P)\Theta_{o}(P)\right]^{2} \cong \frac{5\hbar^{2}Dk_{n}^{o} \cdot ab(b+1)}{18k_{B}^{o}m(b-a)} \left(\frac{r_{o}}{c_{o}(P)}\right)^{b}.$$

Таким образом, учесть вклад увеличения значения $c_o(P, T_m(0))$ при барическом росте температуры плавления от $T_m(0)$ до $T_m(P, T_m(0))$ можно путем введения в (16) дополнительного сомножителя

$$T_{\rm m}(P) \cong T_{\rm m}(P, T_{\rm m}(0)) \\ \times \exp\left[-\frac{b}{3}\,\alpha_p(P, T_{\rm m}(0)) \left[T_{\rm m}(P, T_{\rm m}(0)) - T_{\rm m}(0)\right]\right], \quad (17)$$

где $\alpha_p(P, T_m(0))$ — коэффициент теплового расширения при давлении *P*, рассчитанный по формуле (15) вдоль изотермы $T_m(0)$.

3. Результаты расчетов

3.1. Золото

Золото (Au, m(Au) = 196.967 a.m.u.) при P = 0 имеет температуру плавления, равную $T_m(0) = 1337$ K [5]. Золото имеет гранецентрированную кубическую (ГЦК/FCC) структуру ($k_n^o = 12$, $k_p = 0.7405$) и не испытывает полиморфных фазовых переходов вплоть до 220 GPa [29]. Именно поэтому ГЦК-Аи используют в качестве эталона давления [30].

Для ГЦК-Аи параметры парного межатомного потенциала (8) были нами определены самосогласованным методом в [31], и они имеют следующие значения:

$$r_{\rm o} = 2.87 \cdot 10^{-10} \,\mathrm{m}, \quad D/k_{\rm B} = 7446.04 \,\mathrm{K},$$

 $b = 15.75, \quad a = 2.79.$ (18)

Уравнение состояния и свойства ГЦК-Аи с параметрами межатомного потенциала (18) были рассчитаны нами методом из (8)–(15) в [26]. Результаты, полученные в [26], показали хорошее согласие с экспериментальными данными. Поэтому для расчета функции $T_{\rm m}(P)$ мы применили (18). При использовании параметров потенциала (18) с помощью формул (9)–(15) на изотерме

Авторы — год	$dT_{\rm m}/dP$, K/GPa	Ref.
Mitra <i>et al.</i> — 1967	59.7 ± 3 (60-66)	[1]
Akella & Kennedy — 1971	57.3 (60-66)	[2]
Mirwald & Kennedy — 1979	57.0	[3]
Errandonea — 2010	$47 \pm 3 \; (37)$	[4]
Hieu & Ha — 2013	(38.18-42.66)	[32]
Weck et al 2020	39.55* (46.6)*	[5]
Ashwini et al 2022	(43.32)	[9]
Van Nghia et al. — 2022	(40.4)	[34]
This work:		
Eq. (16)	(63.410)	
Eq. (17)	(35.824)	

Примечание. * Определено по уравнению (20) с параметрами из указанной статьи.

 $T_{\rm m}(0) = 1337 \, {\rm K}$ при P = 0 для входящих в формулу (16) параметров было получено:

$$c_{\rm o}(0, T_{\rm m}(0)) = 2.93432 \cdot 10^{-10} \,\mathrm{m},$$

10

$$\Theta_{\rm o}(0, T_{\rm m}(0)) = 168.28 \, {\rm K}.$$

На рис. 1 показаны барические зависимости как для температуры плавления $T_{\rm m}(P)$ (левые графики), так и для производной температуры плавления по давлению: $T'_{\rm m}(P) = dT_{\rm m}/dP$ (правые графики) для ГЦК-Аи. Функции $T'_{m}(P)$ были рассчитаны нами путем численного дифференцирования изотермических зависимостей из (16) и (17) по давлению. На верхних графиках показана область низких давлений 0-20 GPa; на средних графиках область давлений 0-150 GPa; на нижних графиках показана область давлений 0-1000 GPa. Пунктирными линиями показаны рассчитанные нами по формулам (16) (верхняя линия) и (17) (нижняя линия) зависимости $T_{\rm m}(P)$ и $T'_{\rm m}(P)$. Символами показаны экспериментальные данные $T_{\rm m}(P)$: крестики — из [2] и кружки из [5]. Сплошные линии — это зависимости, полученные в работах [4] и [5] путем подгонки экспериментальных данных под уравнение Саймона-Глатцеля (Simon-Glatzel equation) следующего вида:

$$T_{\rm m}(P) = T_{\rm m0} \left[1 + \frac{P}{P_0} \right]^{c_s}, \tag{19}$$

$$T'_{\rm m}(P) = \frac{dT_{\rm m}(P)}{dP} = T_{\rm m0} \frac{c_s}{P_0} \left[1 + \frac{P}{P_0} \right]^{c_s - 1}.$$
 (20)

В работе [4] для ГЦК-Аи для области давлений до 6 GPa было получено $T_{\rm m0} = 1339$ K, $P_0 = 16.1$ GPa, $c_s = 0.57$. В работе [5] для ГЦК-Аи для области до 106 GPa было получено $T_{\rm m0} = 1337$ K, $P_0 = 22.265 \pm 1.83$ GPa, $c_s = 0.662 \pm 0.03$.

Также в работе [5] зависимость $T_{\rm m}(P)$ была рассчитана методом молекулярной динамики. Для этой зависимости

Рис. 1. Барические зависимости температуры плавления $T_m(P)$ (левые графики) и функции $T'_m(P)$ (правые графики) для ГЦК-Аu. Символами показаны экспериментальные данные для $T_m(P)$: крестики — из [2], кружки — из [5]. Сплошные линии — зависимости (19) и (20), полученные в [4,5] на основе экспериментальных данных. Штриховые линии — расчетные зависимости (19) и (20), полученные в [5]. Пунктирные линии — наши расчеты по формулам (16) — верхняя линия, и (17) — нижняя линия.

при давлениях до 107 GPa было получено $T_{m0} = 1181$ K, $P_0 = 17.94$ GPa, $c_s = 0.709$. Эта расчетная зависимость показана на рис. 1 штриховой линией.

Как видно из рис. 1 и табл. 1 для ГЦК-Аи, наша зависимость (17) согласуется с экспериментальными

зависимостями из [4,5] лучше, чем зависимость, полученная в [5] методом молекулярной динамики, вплоть до 200 GPa. Но при этом надо учесть, что зависимость (19) была получена в [4] для области давлений до 6 GPa, а в [5] — для области до 106 GPa.

Отметим, что зависимость $T_{\rm m}(P)$ для ГЦК-Аи была также рассчитана различными аналитическими методами в работах [9,32-34], где было получено хорошее согласие с экспериментальными данными (см. табл. 1). работах [9,32] для преобразования объ-Однако в емных зависимостей в барические зависимости были использованы разные феноменологические уравнения. В [9] использовалось уравнение состояния Stacey. В [32] для этих целей использовалось уравнение состояния Вине (Vinet) и соотношение $\gamma = \gamma_0 (V/V_0)^q$, где для второго параметра Грюнайзена постулировалось q = 1. В работах [33,34] расчеты были проведены с помощью статистического метода моментов (statistical moments method, SMM). В основе SMM из [33,34] также используется парный потенциал межатомного взаимодействия Ми-Леннард-Джонса (8). Однако SMM намного сложнее, чем наш метод из (8)-(17). Кроме этого, мы используем параметры потенциала (8), которые были определены самосогласованным способом в рамках метода из (8)-(15) в [31]. При вычислениях в рамках SMM параметры потенциала (8) были взяты из других работ, где эти параметры были определены другими методами. В работе [33] для преобразования объемных зависимостей в барические зависимости использовали степенную аппроксимацию уравнения состояния золота, полученную при T = 0 К. В [34] зависимости P(V, T) для Аи не были представлены. В связи с этим остался открытым вопрос о корректном расчете давления в рамках используемого в работе [34] метода.

3.2. Платина

Экспериментально барическая зависимость $T_{\rm m}(P)$ для платины изучалась в работах [1,35–38]. Платина (Pt, $m({\rm Pt}) = 195.08$ а.m.u.) имеет ГЦК-структуру ($k_n^o = 12$, $k_p = 0.7405$) и не испытывает полиморфных фазовых переходов вплоть до 200 GPa [37,38]. Поэтому платину так же, как и золото, используют в качестве эталона давления [30]. Однако экспериментальные данные из [1,35–38] для зависимости $T_{\rm m}(P)$ очень противоречивы, что обусловлено тугоплавкостью этого металла [39]. При P = 0 температура плавления платины равна $T_{\rm m}(0) = 2041.7$ K [37].

Параметры парного межатомного потенциала (8) для ГЦК-Рt были нами определены самосогласованным методом в [31] на основе расчетов уравнения состояния, коэффициента теплового расширения, модуля упругости и других свойств. Они имеют следующие значения:

$$r_{\rm o} = 2.766 \cdot 10^{-10} \,\mathrm{m}, \quad D/k_{\rm B} = 11400.7 \,\mathrm{K},$$

 $b = 11.65, \quad a = 3.05.$ (21)

При использовании параметров потенциала (21) с помощью формул (9)-(15) на изотерме $T_{\rm m}(0) = 2041.7 \, {\rm K}$

Авторы — год	$dT_{\rm m}/dP$, K/GPa	Ref.
Mitra <i>et al.</i> — 1967	42 ± 7	[1]
Errandonea — 2013	47	[35]
Patel & Sunder — 2018	25	[36]
Anzellini et al 2019	(39.4)*	[37]
Geballe <i>et al.</i> — 2021	$\sim 40~(52)^*$	[38]
This work:		
Eq. (16)	(45.441)	
Eq. (17)	(33.185)	

Примечание. * Определено по уравнению (20) с параметрами из указанной статьи.

при *P* = 0 для входящих в формулу (16) параметров было получено

$$c_{\rm o}(0, T_{\rm m}(0)) = 2.82146 \cdot 10^{-10} \,{\rm m},$$

 $\Theta_{\rm o}(0, T_{\rm m}(0)) = 221.477 \,{\rm K}.$

На рис. 2 показаны барические зависимости для температуры плавления $T_{\rm m}(P)$ (левые графики) и для производной температуры плавления по давлению: $T'_{\rm m}(P) = dT_{\rm m}/dP$ (правые графики) для ГЦК-Рt. На верхних графиках показана область низких давлений 0–20 GPa; на средних графиках — область давлений 0–150 GPa; на нижних графиках показана область давлений 0–1000 GPa. Пунктирными линиями показаны рассчитанные нами по формулам (16) (верхняя линия) и (17) (нижняя линия) зависимости $T_{\rm m}(P)$ и $T'_{\rm m}(P)$. Сплошными кружками показаны экспериментальные данные $T_{\rm m}(P)$ из [38]. Сплошные линии — это зависимости, полученные в работах [35,36,38] путем подгонки экспериментальных данных под уравнение Саймона–Глатцеля (19) с параметрами

$$T_{\rm m0} = 2042$$
 K, $P_0 = 21.5$ GPa, $c_s = 0.50$ из [35],
 $T_{\rm m0} = 2046$ K, $P_0 = 23.0$ GPa, $c_s = 0.28$ из [36],
 $T_{\rm m0} = 2041$ K, $P_0 = 15.1$ GPa, $c_s = 1/2.6 = 0.3846$ из [38].

Штриховыми линиями на рис. 2 показаны расчетные зависимости (19) и (20), полученные в работе [37] из первых принципов с помощью Z-метода, которые были аппроксимированы зависимостью (19) с параметрами

$$T_{\rm m0} = 2041.7 \,\mathrm{K}, \ P_0 = 44.0 \,\mathrm{GPa}, \ c_s = 0.85.$$

Как видно из рис. 2 и табл. 2 для ГЦК-Рt, наша зависимость (17) согласуется с экспериментальными точками из [38] лучше, чем зависимость, рассчитанная в [37] с помощью Z-метода. При этом надо учесть, что параметры зависимости (19) были получены в [35] для области давлений до 30 GPa, а в [38] — для области до 107 GPa.

Рис. 2. Барические зависимости температуры плавления $T_m(P)$ (левые графики) и функции $T'_m(P)$ (правые графики) для ГЦК-Рt. Сплошными кружками показаны экспериментальные данные $T_m(P)$ из [38]. Сплошные линии — зависимости (19) и (20), полученные в работах [35,36,38] на основе экспериментальных данных. Штриховые линии — расчетные зависимости (19) и (20), полученные в [37]. Пунктирные линии — наши расчеты по формулам (16) — верхняя кривая, и (17) — нижняя кривая.

3.3. Ниобий

Ниобий более тугоплавкий метал чем платина: $T_{\rm m}(0) = 2750 \,\mathrm{K}$ [40]. Поэтому экспериментально зависимость $T_{\rm m}(P)$ для ниобия была измерена только недавно в работе [40]. Ниобий (Nb, $m(\mathrm{Nb}) = 92.9064 \,\mathrm{a.m.u.}$) име-

ет объемно-центрированную кубическую (ОЦК/ВСС) структуру ($k_n^o = 8$, $k_p = 0.6802$), хотя есть указания, что при P > 6 GPa OЦК-Nb может переходить в орторомбическую (orthorhombic) Рпта-фазу [40]. Теоретически зависимость $T_m(P)$ для OЦК-Nb была рассчитана в работах [40–44] различными методами.

Рис. 3. Барические зависимости температуры плавления $T_m(P)$ (левые графики) и функции $T'_m(P)$ (правые графики) для ОЦК-Nb. Сплошными линиями показаны зависимости (19) и (20), экспериментально полученные в работе [40]. Штриховые линии — теоретические зависимости (19) и (20), полученные в работе [40]. Штрих-пунктирными кривыми показаны теоретические зависимости (23), полученные в [41]. Пунктирные линии — наши расчеты по формулам (16) — верхняя кривая, и (17) — нижняя кривая.

Для ОЦК-Nb параметры парного межатомного потенциала (8) были определены самосогласованным методом в [42], и они имеют следующие значения:

$$r_{\rm o} = 2.8648 \cdot 10^{-10} \,\mathrm{m},$$

 $D/k_{\rm B} = 30200 \,\mathrm{K}, \quad b = 5.81, \quad a = 1.88.$ (22)

Уравнение состояния и различные свойства ОЦК-Nb с параметрами межатомного потенциала (22) были рассчитаны в [42,43] методом из (8)–(15). В работе [42] барические зависимости различных свойств ОЦК-Nb были рассчитаны вдоль изотерм 300 и 3000 К в интервале давлений P = 0-200 GPa, и результаты показали хорошее согласие с экспериментальными и расчетными данными других авторов. В [43] эти расчеты были обобщены на случай нанокристалла из конечного числа атомов, и были изучены изменения барических зависимостей при уменьшении размера или при деформации формы нанокристалла ОЦК-Nb. Однако зависимость $T_m(P)$ для ОЦК-Nb в [42,43] была рассчитана по формуле (16) при $T_{\rm m}(0) = 2742$ К. Здесь же мы рассчитали зависимость $T_{\rm m}(P)$ по формулам как (16), так и (17) при $T_{\rm m}(0) = 2750$ К.

При использовании параметров потенциала (22) с помощью формул (9)-(15) на изотерме $T_{\rm m}(0) = 2750$ К при P = 0 для входящих в формулу (16) параметров было получено

$$c_{\rm o}(0, T_{\rm m}(0)) = 2.94338 \cdot 10^{-10} \,\mathrm{m},$$

 $\Theta_{\rm o}(0, T_{\rm m}(0)) = 255.4587 \,\mathrm{K}.$

На рис. З показаны барические зависимости для температуры плавления $T_{\rm m}(P)$ (левые графики) и для производной температуры плавления по давлению $T'_{\rm m}(P) = dT_{\rm m}/dP$ (правые графики) для ОЦК-Nb. На верхних графиках показана область низких давлений 0–20 GPa; на нижних графиках — область давлений

Таблица 3. Экспериментальные и теоретические (в скобках) значения наклона линии плавления при P = 1 bar для ОЦК-Nb

Авторы — год	$dT_{\rm m}/dP$, K/GPa	Ref.
Errandonea <i>et al.</i> -2020	25.8(36.5)	[40]
Kramvnin & Ahmedov — 2019	(53.9 ± 0.3) (62)	[41] [42]
Kramynin — 2022	(65.8)	[43]
Hieu <i>et al.</i> — 2022	(22.4)	[44]
Eq. (16)	(63.730)	
Eq. (17)	(52.568)	

0–250 GPa. Пунктирными линиями показаны рассчитанные нами по формулам (16) (верхняя линия) и (17) (нижняя линия) зависимости $T_m(P)$ и $T'_m(P)$. Сплошной линией показана зависимость, полученная в работе [40] путем подгонки семи экспериментальных точек, измеренных на интервале 0–120 GPa, под уравнение Саймона–Глатцеля (19) с параметрами

$$T_{\rm m0} = 2750 \,{\rm K}, \ P_0 = 48 \,{\rm GPa}, \ c_s = 0.45.$$

Штриховая линия — это зависимость, полученная в работе [40] путем подгонки шести точек, рассчитанных на интервале от -7.9 до 287 GPa, методом квантовой молекулярной динамики под уравнение Саймона– Глатцеля (19) с параметрами

$$T_{\rm m0} = 2750 \,{\rm K}, \ P_0 = 22.6 \,{\rm GPa}, \ c_s = 0.30.$$

Штрих-пунктирной кривой показана зависимость, полученная в [41] путем аппроксимации 11 точек $T_{\rm m}(P)$, которые были рассчитаны методом молекулярной динамики на интервале 0–2.5 GPa. Эта зависимость имеет вид

$$T_{\rm m}(P) = T_{\rm m0} + \alpha P + \beta P^2, \ T'_{\rm m}(P) = \alpha + 2\beta P,$$
 (23)

где $T_0 = 2685.8 \pm 0.2$ K, $\alpha = 53.9 \pm 0.3$ K/GPa, $\beta = -3.4 \pm 0.1$ K/GPa².

Как видно из рис. 3 и табл. 3 для ОЦК-Nb, наша зависимость (17) заметно отклоняется от экспериментальной зависимости из [40] и от теоретических зависимостей, полученных как методом молекулярной динамики в [40], так и аналитически, с помощью статистического метода моментов в [44]. Однако при вычислениях в [44] параметры межатомного потенциала (8) были взяты из других работ, где они были определены другими методами. Кроме этого, в работе [44] не были представлены результаты расчета уравнения состояния, т.е. зависимости P(V, T), для ОЦК-Nb в рамках статистического метода моментов, по которому рассчитывалась зависимость $T_m(P)$. В связи с этим остался открытым вопрос о корректном расчете давления.

Отклонение нашей зависимости $T_{\rm m}(P)$ от экспериментальной из [40] можно объяснить как приближенностью наших расчетов для ОЦК-Nb, так и другими причинами. Например, можно указать следующие причины.

1. Это может быть обусловлено уменьшением параметра Линдеманна из критерия (6) с ростом давления. Аналогичное уменьшение параметра Линдеманна с ростом давления было обнаружено в [10] при изучении методом квантовой молекулярной динамики кривых плавления циркония (Zr) и гафния (Hf).

2. Это может быть связано с перераспределением электронов на s-d-орбиталях при сжатии переходных металлов с ОЦК-структурой. Данный эффект был экспериментально обнаружен в работе [45] при изучении электронных и упругих свойств монокристаллического молибдена (Мо). Изменение электронной плотности с ростом давления должно привести к изменению параметров парного потенциала межатомного взаимодействия (8).

4. Заключение

Предложен сравнительно простой аналитический (т. е. без компьютерного моделирования) метод расчета зависимости температуры плавления однокомпонентного кристалла от давления. Метод основан на парном 4-параметрическом потенциале межатомного взаимодействия Ми–Леннард-Джонса и делокализационном критерии плавления, и не содержит подгоночных констант.

Показано, что используемый нами делокализационный критерий фазового перехода кристалл-жидкость (1) в случае плавления переходит в критерий Линдеманна, а в случае кристаллизации сводится к критерию Лёвена.

Разработанным методом были рассчитаны барические зависимости температуры плавления и ее производной по давлению для золота, платины и ниобия в интервале давлений P = 0-1000 GPa. Показано, что рассчитанные этим методом зависимости для золота и платины лучше согласуются с экспериментальными данными, чем зависимости, полученные методами компьютерного моделирования.

Для ниобия рассчитанная зависимость $T_{\rm m}(P)$ оказалась более крутой, т.е. величина $T'_{\rm m}(P)$ получилась больше, чем экспериментальные данные, полученные в работе [40]. Указано, что это расхождение может быть обусловлено разными причинами: например, уменьшением параметра Линдеманна с ростом давления [10], или перераспределением электронов на s-d-орбиталях при сжатии переходных металлов с ОЦК-структурой [45].

Благодарности

Автор выражает благодарность С.П. Крамынину, Н.Ш. Газановой, З.М. Сурхаевой и М.М. Гаджиевой за плодотворные дискуссии и помощь в работе.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

- N.R. Mitra, D.L. Decker, H.B. Vanfleet. Phys. Rev. 161, 3, 613 (1967). https://doi.org/10.1103/PhysRev.161.613
- J. Akella, G.C. Kennedy. J. Geophys. Res. 76, 20, 4969 (1971). https://doi.org/10.1029/JB076i020p04969
- [3] P.W. Mirwald, G.C. Kennedy. J. Geophys. Res.: Solid Earth 84, *B12*, 6750 (1979). https://doi.org/10.1029/JB084iB12p06750
 [4] D. F. L. L. D. L. 100, 2, 022517 (2010)
- [4] D. Errandonea. Appl. Phys. 108, 3, 033517 (2010). https://aip.scitation.org/doi/abs/10.1063/1.3468149
- [5] G. Weck, V. Recoules, J.A. Queyroux, F. Datchi, J. Bouchet, S. Ninet, G. Garbarino, M. Mezouar, P. Loubeyre. Phys. Rev. B 101, 1, 014106 (2020).
- https://doi.org/10.1103/PhysRevB.101.014106
- [6] P. Parisiades. Crystals 11, 4, 416 (2021). https://doi.org/10.3390/cryst11040416
- [7] Q.S. Mei, K. Lu. Progress. Mater. Sci. 52, 8, 1175 (2007). https://doi.org/10.1016/j.pmatsci.2007.01.001
- [8] J. Ma, W. Li, G. Yang, S. Zheng, Y. He, X. Zhang, X. Zhang, X. Zhang. Phys. Earth. Planetary Interiors **309**, 106602 (2020). https://doi.org/10.1016/j.pepi.2020.106602
- [9] D. Ashwini, V.S. Sharma, K. Sunil. Eur. Phys. J. Plus 137, 545, 1 (2022). https://doi.org/10.1140/epjp/s13360-022-02733-4
- [10] D.V. Minakov, M.A. Paramonov, G.S. Demyanov, V.B. Fokin, P.R. Levashov. Phys. Rev. B 106, 21, 214105 (2022). https://doi.org/10.1103/PhysRevB.106.214105
- [11] F.A. Lindemann. Physikalische Zeitschrift 11, 14, 609 (1910).
- [12] J.J. Gilvarry. Phys. Rev. 102, 2, 308 (1956). https://doi.org/10.1103/PhysRev.102.308
- [13] J.P. Adams, R.M. Stratt. J. Chem. Phys. 93, 2, 1332 (1990). https://doi.org/10.1063/1.459145
- [14] J.P. Adams, R.M. Stratt. J. Chem. Phys. 93, 2, 1358 (1990). https://doi.org/10.1063/1.459146
- [15] H. Löwen, T. Palberg, R. Simon. Phys. Rev. Lett. 70, 10, 1557 (1993). DOI: https://doi.org/10.1103/PhysRevLett.70.1557
- [16] H. Löwen. Phys. Rev. E 53, 1, R29 (1996).
 https://doi.org/10.1103/PhysRevE.53.R29
- [17] S.A. Khrapak. Phys. Rev. Res. 2, 1, 012040 (2020). https://doi.org/10.1103/PhysRevResearch.2.012040
- [18] М.Н. Магомедов. Письма в ЖТФ 33, 19, 65 (2007).
 [М.N. Magomedov. Tech. Phys. Lett. 33, 10, 837 (2007). https://doi.org/10.1134/S1063785007100094]
- [19] М.Н. Магомедов. Физика металлов и металловедение 105, 2, 127 (2008). [М.N. Magomedov. Phys. Met. Metallography 105, 2, 116 (2008). https://doi.org/10.1134/S0031918X08020038]
- [20] Д.С. Сандитов. ЖЭТФ **142**, *I*, 123 (2012). [D.S. Sanditov. JETP **115**, *I*, 112 (2012).
 - https://doi.org/10.1134/S1063776112060143]
- [21] Д.С. Сандитов, Б.С. Сыдыков. ЖТФ 84, 5, 52–54 (2014).
 [D.S. Sanditov, B.S. Sydykov. Tech. Phys. 59, 5, 682 (2014). https://doi.org/10.1134/S1063784214050272]
- [22] М.Н. Магомедов. ФТТ 64, 4, 485 (2022). https://doi.org/10.21883/FTT.2022.04.52189.240
 [M.N. Magomedov. Phys. Solid State 64, 4, 469 (2022). https://doi.org/10.21883/PSS.2022.04.53504.240]
- [23] Справочник по специальным функциям / Под ред. М. Абрамовица и И. Стиган, Наука, М. (1979). 832 с. [Handbook of Mathematical Functions / Eds M. Abramowitz, I. Stegun. National Bureau of Standards, N.Y. (1964). 1046 p.]

- [24] А.Г. Чирков, А.Г. Пономарев, В.Г. Чудинов. ЖТФ 74, 2, 62 (2004).
 [A.G. Chirkov, A.G. Ponomarev, V.G. Chudinov. Tech. Phys. 49, 2, 203 (2004). https://doi.org/10.1134/1.1648956]
- [25] Г.М. Полетаев, М.Д. Старостенков. ФТТ 51, 4, 686 (2009).
 [G.M. Poletaev, M.D. Starostenkov. Phys. Solid State 51, 4, 727 (2009). https://doi.org/10.1134S106378340904012X]
- [26] М.Н. Магомедов. ФТТ 64, 7, 765 (2022). https://doi.org/10.21883/FTT.2022.07.52559.319
 [M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). https://doi.org/10.21883/PSS.2022.07.54579.319]
- [27] М.Н. Магомедов. ЖТФ 83, 9, 56 (2013). [М.N. Magomedov. Tech. Phys. 58, 9, 1297 (2013). https://doi.org/10.1134/S106378421309020X]
- [28] Л. Жирифалько. Статистическая физика твердого тела. Мир, М. (1975). 383 с. [L.A. Girifalco. Statistical Physics of Materials. J. Wiley & Sons Ltd., N.Y. (1973). 346 p.]
- [29] R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Panella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. **123**, *4*, 045701 (2019). https://doi.org/10.1103/PhysRevLett.123.045701
- [30] D.E. Fratanduono, M. Millot, D.G. Braun, S.J. Ali, A. Fernandez-Pañella, C.T. Seagle, J.-P. Davis, J.L. Brown, Y. Akahama, R.G. Kraus, M.C. Marshall, R.F. Smith, E.F. O'Bannon III, J.M. Mcnaney, J.H. Eggert. Science 372, 6546, 1063 (2021). https://doi.org/10.1126/science.abh0364
- [31] М.Н. Магомедов. ФТТ 63, 9, 1415 (2021). https://doi.org/10.21883/FTT.2021.09.51279.080
 [M.N. Magomedov. Phys. Solid State 63, 9, 1495 (2021). https://doi.org/10.1134/S1063783421090250]
- [32] H.K. Hieu, N.N. Ha. AIP Adv. **3**, *11*, 112125 (2013). https://doi.org/10.1063/1.4834437
- [33] P.D. Tan, P.D. Tam. Vacuum **198**, 110815 (2022). https://doi.org/10.1016/j.vacuum.2021.110815
- [34] N. Van Nghia, N.D. Chinh, H.K. Hieu. Vacuum 202, 111189 (2022). https://doi.org/10.1016/j.vacuum.2022.111189
- [35] D. Errandonea. Phys. Rev. B 87, 5, 054108 (2013). https://doi.org/10.1103/PhysRevB.87.054108
- [36] N.N. Patel, M. Sunder. AIP Conf. Proc. AIP Publ. LLC 1942, *I*, 030007 (2018). https://doi.org/10.1063/1.5028588
- [37] S. Anzellini, V. Monteseguro, E. Bandiello, A. Dewaele, L. Burakovsky, D. Errandonea. Sci. Rep. 9, 13034 (2019). https://doi.org/10.1038/s41598-019-49676-y
- [38] Z.M. Geballe, N. Holtgrewe, A. Karandikar, E. Greenberg, V.B. Prakapenka, A.F. Goncharov. Phys. Rev. Mater. 5, 3, 033803 (2021). https://doi.org/10.1103/PhysRevMaterials.5.033803
- [39] J.-M. Joubert, J.-C. Crivello, G. Deffrennes. Calphad 74, 102304 (2021).

https://doi.org/10.1016/j.calphad.2021.102304.hal-03295408

- [40] D. Errandonea, L. Burakovsky, D.L. Preston, S.G. MacLeod, D. Santamaría-Perez, S. Chen, H. Cynn, S.I. Simak, M.I. McMahon, J.E. Proctor, M. Mezouar. Commun. Mater. 1, *1*, 60 (2020). https://doi.org/10.1038/s43246-020-00058-2
- [41] M.R. Fellinger, H. Park, J.W. Wilkins. Phys. Rev. B 81, 14, 144119 (2010). https://doi.org/10.1103/PhysRevB.81.144119
- [42] С.П. Крамынин, Э.Н. Ахмедов. Физика металлов металловеление 120, 11, 1123 (2019). И S.P. DOI: 10.1134/S0015323019110093 Kramynin, E.N. Ahmedov. Phys. Met. Metallography 120, 11, 1027 (2019). https://doi.org/10.1134/S0031918X19110097]

- [43] С.П. Крамынин. Физика металлов и металловедение
 123, 2, 119 (2022). DOI: 10.31857/S0015323022020061
 [S.P. Kramynin. Phys. Met. Metallography 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065]
- [44] H.K. Hieu, H. Hoang, P.T.M. Hanh, T.T. Hai. Vacuum 206, 111507 (2022). https://doi.org/10.1016/j.vacuum.2022.111507
- [45] C. Yang, Y. Zhang, N.P. Salke, Y. Bi, A. Alatas, A.H. Said, J. Hong, J.F. Lin. Phys. Rev. B 105, 9, 094105 (2022). https://doi.org/10.1103/PhysRevB.105.094105

Редактор Е.В. Толстякова