
Physics of the Solid State, 2023, Vol. 65, No. 2

03,07,13

On the brittleness of elementary semiconductors
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It is shown that the brittleness of a single-component covalent crystal (diamond, Si, Ge) is due to the
”
duplicity“

of the paired potential of interatomic interaction for elastic (reversible) and for plastic (irreversible) deformation.

This leads to the fact that the specific surface energy during plastic deformation of a covalent crystal is more than

two times less than the specific surface energy during elastic deformation. Therefore, with a small deformation

of a covalent crystal, it is energetically more advantageous to create a surface by irreversible breaking than by

reversible elastic stretching. It is indicated that the brittle-ductile transition in a single-component covalent crystal

is accompanied by metallization of covalent bonds on the surface. It is shown that the brittle-ductile transition

temperature (TBDT ) for single-component covalent crystals under static load has an upper limit: TBDT /Tm < 0.45,

where Tm — is the melting temperature.
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1. Introduction

Brittleness is defined as the property of a material that

fractures without visible permanent strain. For brittle

materials, elongation at break is not higher than 2−5%, and

in some cases it is equal to decimal places of one percent.

Elemental semiconductors: diamond (C-dia), silicon (Si),
germanium (Ge) feature brittleness due to covalent type

of bond [1–5]. They have different brittle-ductile transition

temperature (TBDT ), but brittleness remains up to the

temperatures that are much higher than metal melting

temperature (Tm) [4]. In this case, the brittle-ductile

transition temperature grows with the decrease in metallic

bond share.

TBDT(C-dia) > TBDT (Si) > TBDT (Ge).

At temperatures higher than TBDT , the material undergoes

ductile fracture, below TBDT the material undergoes brittle

fracture. Depending on any defects and impurities, strain

rate and specimen illumination, TBDT in elemental semicon-

ductors may vary in a wide temperature range [1–6]. For

example, for Si, the following was determined [6]:

0.32 ≤
TBDT

Tm
≤ 0.7.

The origin of brittleness of elemental semiconductors is

still unexplained [5–10]. Moreover, it is not clear why

the fracture is formed without any visible plastic flow

under bending of these crystals at T < TBDT? The existing

brittle fracture theories are based on the classical theory

of reversible small-strain elasticity [7–10]. When these

theories address fracture propagation in a substance, they

generally do not address the fracture initiation issue. The

existing theories do not consider that elastic deformation is

a reversible process and fracture initiation is an irreversible

process. Moreover, a facture is generally initiated on the

surface rather than within a deformed body. Brittle-ductile

properties of a substance are governed by the surface

conditions (Rehbinder effect) [11]. This is also indicated

by the change in brittle-ductile properties of crystals when

their surface is illuminated [8].

Earlier publications suggested that transition from brittle

to ductile fracture of crystal was due to linear defects —
dislocations — occurring during deformation [2–4]. Howe-

ver, dislocations, like other less energy-consuming defects

(vacancies, interstitial atoms, etc.) propagate within the

crystal structure. They accompany the growth of the existing

fracture, shield it and influence on the fracture propagation

rate. But the dislocation model still could not explain

the fracture initiation on a crystal surface and could not

offer any brittle-ductile transition temperature calculation

method in single-component covalent crystals [7–10]. In

addition, the dislocation model cannot explain glass or

ceramics brittleness because a dislocation (either edge or

screw dislocation) is a linear defect in a crystal structure.

Therefore, a new approach to this problem is offered

herein. Based on the pair covalent bond model offered

in [12], this publication explains reasons of fracture initiation

on a semiconductor crystal surface at T < TBDT and

transition to ductile state at T > TBDT . In addition, no

assumption on dramatic generation of dislocations (or other
defects) at brittle-ductile transition temperature will not be

used herein.
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2. Pair interatomic covalent bond energy

We present a pair interatomic interaction in a single-

component crystal in the form of the Mie−Lennard-Jones

potential as follows:

ϕ(r) =
D

(b − a)

[

a
(r0

r

)b
− b

( r0
r

)a
]

, (1)

where D and r0 are the depth and coordinate of the poten-

tial minimum and b > a > 1 are numerical parameters.

Since for carbon subgroup elements,
”
zero point“ energy

of atoms is two to three orders lower than the interatomic

bond energy, then the following expressions may be used

with good accuracy in order to determine r0, b and

a [12,13]:

r0 =

(

6k pV00

πNA

)1/3

, b = 6γ00 − 2,

a = 3
[

B ′(P)00 − 2
]

− b. (2)

Here, V is the molar volume, NA is the Avo-

gadro number, k p is the structure packing factor,

γ = −[∂ ln(2)/∂ ln(V )]T is the Grüneisen parameter, 2 is

the Debye temperature, B = −V (∂P/∂V )T is the isothermal

modulus of elasticity, B ′(P) = (∂B/∂P)T is the derivative of

the modulus of elasticity by pressure. Index
”
00“ means that

this value was defined at zero temperatures and pressures,

i.e. at T = 0K and P = 0.

The depth of the potential well can be determined by

two ways: from the modulus of elasticity B00 and from

the atomization energy (per atom) L00 at T = 0K and

P = 0 [12,13]:

Db =
18B00V00

knabNA
= Ds + 1D, Ds =

L00

kn/2
, (3)

where kn is the first coordination number, 1D = Db − Ds is

the variation in results.

For metals, Db and Ds are usually the same, i.e. 1D = 0.

However, for covalent crystals Db ≫ Ds as shown in

Table 1. And in transition from diamond to Si, Ge and

α-Sn, 1D is gradually decreasing with the increase in

atom weight (m), and becomes close to zero for lead:

1D(Pb) ≈ 0 (see Table 1). For C-dia, Si, Ge and α-Sn,

the following condition is met: 1D = (Db/2) + d ≈ Db/2.

Therefore, the pair interatomic bond in a covalent crystal

may be presented in a form of two bonds, where each

A
1

A
2

e
1

e
2

Figure 1. Diagram of pair interatomic bond in a covalent crystal.

Table 1. Interatomic potential parameters (1) calculated using

expressions (2) and (3), and 1D and d = 1D − (Db/2) calculated
on their basis

Element r0, b a
Db, Ds , 1D, d,

1D/D
m, a.m.u. Å eV eV eV eV

C-dia
1.545 3.79 2.21 8.43 3.68 4.75 0.535 1.291

12.01

Si
2.351 4.00 2.48 5.54 2.32 3.22 0.450 1.388

28.09

Ge
2.450 4.30 2.75 4.03 1.94 2.09 0.075 1.077

72.59

α-Sn
2.798 4.43 2.79 3.15 1.56 1.59 0.015 1.019

118.7

Pb
3.500 14.2 2.38 0.378 0.338 0.04 −0.149 0.118

207.2

of them is formed by a valence electron in each of the

interacting atoms [12]. Two shared electrons in the covalent

bond make two bonds each: with
”
own“ ion (strong bond)

and with
”
alien“ ion (weak bond). According to this,

covalent bond between the pair of atoms may be presented

in the form of two links which are shown schematically in

Figure 1.

Figure 1 shows a symmetrical double interatomic bond

(consisting of two asymmetrical single bonds) formed

by two shared valence electrons. The total pair in-

teratomic bond energy is equal to: Db = Ds + 1D
= Ds + (Db/2) + d = 2(Ds + d). The single bond energy

is: Db/2 = Ds + d . Here, Ds/2 = L00/kn is the weak

single bond energy, i.e. the bond energy of a shared

electron in a covalent bond with
”
alien“ ion. This bond

is schematically shown by a solid line: A1 − e2 or A2 − e1.

1D/2 = (Ds/2) + d is the strong single bond energy, i. e.

this is the energy of bond between the electron and its

”
own“ ion. This bond is shown by a double (solid and

dashed) line: A1 = e1 or A2 = e2, where the solid line

shows Ds/2, and the dashed line shows the difference

between the strong and weak bond energies, i. e. this is

a difference between the bond energies of the electron

and its
”
own“ ion and the electron and the

”
alien“ ion:

d = 1D − (Db/2) − Ds = (1D − Ds )/2. The single bond

energy provided by each shared valence electron is equal to:

Db/2 = (L00/kn) + (1D/2) = Ds + d . In case of metallic

covalent bonding, links connecting the electrons with their

”
own“ ions (double lines A1 = e1 and A2 = e2 whose

energy is 1D = Ds + 2d) are broken and only one metallic

bond remains, i.e. one solid line A1−A2 whose energy

is Ds .

As we have shown before in [14–18], in case of elastic

(reversible) deformation of a covalent crystal, strong and

weak covalent bond links are involved simultaneously and

the potential depth (1) is equal to Db . This is Db that

shall be used for calculation of such parameters which are
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measured without breaking interatomic bonds: speed of

sound, Debye temperature, thermal expansion coefficient.

In case of plastic (irreversible) deformation of a covalent

crystal, only weak bond links are broken and the potential

depth (1) is defined by Ds . Therefore, Ds defines the

parameters (associated with interatomic bond breakage)
such as sublimation energy L00, specific surface energy,

vacancy formation and self-diffusion energy. As shown

in [15] for Si or Ge semiconductor phase, the equation of

state is described on the basis of elastic-type interatomic

potential, and for pressure-bonded Si or Ge phases — the

equation of state is described on the basis of plastic-type

interatomic potential. Due to this
”
duplicity“ of the pair

interatomic potential for a covalent crystal, no single inter-

atomic potential has been offered so far on the basis of more

complex (than (1)) functionalities that include a greater

number of fitting parameters than potential (1) [5,16].

3. Fracture initiation condition

When a new surface is formed under infinitely low

bending of a covalent crystal, then this infinitely low

increase in the surface area δS may be achieved by two

methods.

1. By reversible elastic surface tension. Then the specific

(per unit area) surface energy σb will be derived from the

elastic-type potential, i.e. from Db .

2. By irreversible brittle surface fracture. Then σs will be

derived from the plastic-type potential, i.e. from Ds .

For a covalent crystal, the following energy shall be

input in the first case: Eb = σbδS, and in the second

case: Es = σsδS. Therefore, the following inequality is a

prerequisite for brittle fracture

1E = Eb − Es = (σb − σs )δS ≥ 0. (4)

Condition (4) means that formation of a surface by means of

brittle fracture is more beneficial in term of energy than by

means of elastic deformation. Condition (4) also indicates

the presence of two energy levels in the system, i.e. the

system is also able to form a surface by means of fracture, in

addition to elastic deformation. For an equilibrium metallic

single crystal, i.e. a crystal without metastable stress or

nanostructured areas, 1E = 0 is met.

The following inequality is a prerequisite for brittle

fracture

1E = (σb − σs)δS ≥ σsδS. (5)

Condition (5) means that the advantage in energy under

brittle fracture is higher than the energy required for

formation of a new surface. It is evident that the higher

1E/(σsδS) = (σb − σs )/σs , the higher the probability of

brittle fracture of a covalent crystal under deformation is.

Thus, according to (5), the brittle-ductile transition

temperature may be calculated as follows

σb(TBDT) = 2σs (TBDT ). (6)

Using the interatomic potential (1) and the
”
only nearest

neighbors interaction“ approximation and using the Einstein

model for crystal vibration spectrum, the following expres-

sion was obtained for the specific face surface energy (100)
of a crystal [17–19]:

σ (100) = −
knDR2

12α2/3r20

[

U(R) +
18γ

b + 2

kB2E

Dkn
Ew

(

2E

T

)]

.

(7)
Here, kB is the Boltzmann constant, R = r0/c is the

linear density, c = (6k pν/π)1/3 is the distance between

centers of the nearest atoms, ν = V/N is the specific volume

(per atom), α = π/(6k p), 2E is the Einstein temperature

associated with the Debye temperature as follows [13]:
2 = (4/3)2E , other functions are as follows

U(R) =
aRb − bRa

b − a
, Ew(y) = 0.5 +

1

[exp(y) − 1]
,

y =
2E

T
=

32

4T
. (8)

Using the interatomic potential (1) and the
”
only nearest

neighbors interaction“ approximation, the Debye tempera-

ture can be calculated as [20]:

2(kn, c) = Aw(kn, c)ξ

[

−1 +

(

1 +
8D

kBAw(kn, c)ξ2

)1/2]

,

(9)
where function Aw takes into account

”
zero ascillations“ of

crystal atoms

Aw(kn, c) = KR
5knab(b + 1)

144(b − a)

(r0
c

)b+2

,

KR =
~
2

kBr20m
, ξ =

9

kn
. (10)

Here: m is the atomic mass, ~ is the Planck’s constant.

From equation (9), the Grüneisen parameter is expressed

as:

γ = −

(

∂ ln2

∂ ln ν

)

T

=
b + 2

6(1 + Xw)
, (11)

where function Xw = AW ξ/2 is introduced to define the role

of quantum effects.

Equations (7), (9) and (11) were tested for many

substances at various temperatures and pressures and agreed

well with the specific surface energy [14,17–19], Debye

temperature and Grüneisen parameter [20] measurements.

Therefore we used these equations to calculate functions

σb(T ) and σs (T ).

4. Brittle-ductile transition temperature

According to [14,17–19], actual specific surface energy

for a crystal with covalent bond shall be derived from Ds .

σs values calculated in this way meet the measured and

calculated (in brackets) specific surface energies shown for
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Table 2. Specific surface energies of the face (100) at T = 0K and P = 0 calculated using (7)−(11). (σb was calculated from Db and

σs was calculated from Ds . Lower lines show the experimental and theoretical (in brackets) specific surface energies of the face (100)
from [21-26])

Crystal
σb , σs , σb − σs ,

(σb − σs)/σs
10−3 J/m2 10−3 J/m2 10−3 J/m2

C-dia [17] 14025.0 6104.5 7920.50 1.297

Experiment (9720ideal − 5710recons)
1) [23],

and (theory) (6231.9ideal − 4969.1recons)
1) [24],

(4458) [26]

Si [18] 4001.10 1673.42 2327.68 1.391

Experiment 2130 [21], 1360 [22],

and (theory) (2390ideal − 1410recons)
1) [23],

(1879.8ideal − 1010.9recons)
1) [24],

(1280) [25], (1314) [26]

Ge [19] 2681.50 1290.32 1391.18 1.078

Experiment 1835 [21],

and (theory) (1710ideal − 1000recons)
1) [23],

(1657.2ideal − 883.1recons)
1) [24],

(870) [25], (1002) [26]

No t e. 1) Design surface energies of ideal (nonrelaxed) and reconstructed (relaxed) surfaces (100).

each crystal in the lower lines in Table 2. As shown

in Table 2,
”
elastic“ specific surface energy σb(T = 0K)

derived from Db is much higher than the measured value.

During isobaric temperature growth as a result of thermal

covalent bonding, function σb(T ) is reduced. Therefore, it

can be calculated using the following expression:

σb(T ) = σb(0)

[

1− exp

(

−
Hs

kBT

)]

, (12)

where Hs is the energy required for covalent bonding on

the crystal surface.

At the melting temperature (Tm) due to full covalent

bonding within the crystal structure, function σb(T ) must

satisfy the following condition

σb(Tm) = σs (Tm). (13)

From (12) and (13), he following expressions may be

derived

Hs = −kBTm ln

[

1−
σs (Tm)

σb(0)

]

,

σb(T ) = σb(0)

{

1−

[

1−
σs (Tm)

σb(0)

]Tm/T
}

. (14)

Since at TBDT , condition (6) is met, then the following

equation can be easily derived from (14)

TBDT

Tm
= ln

[

1−
σs (Tm)

σb(0)

]

/

ln

[

1−
2σs (TBDT )

σb(0)

]

=
ln(1− x)

ln(1− 2x + 1)
. (15)

The following notations are introduced here

x =
σs (Tm)

σb(0)
< 1, 1 =

2[σs (TBDT ) − σs (Tm)]

σb(0)
≪ 1. (16)

Table 3 shows values TBDT at 1 = 0 calculated using

equation (15). For calculations, measured melting temper-

atures at P = 1 atm were taken from [27]. σb(0) values

were taken from Table 2. σs(Tm) was determined using two

approaches.

1. Calculation of σs (Tm)s for defect-free solid crystal

using (7). This data is shown for each crystal in the first

line in Table 3.

2. The use of a measured value for metallized liquid phase

σ (Tm)l < σs (Tm)s . This data from [28] for each crystal, are

shown in the second lines in Table 3.

The data in Table 3 shows that good agreement with

the measurements for TBDT is achieved when measured

σ (Tm)l for liquid phase was used in (15). This indicates

that covalent bonds in solid phase of the specified crystals

at Tm have not been metallized completely. In this case it

should be taken into account that these calculations have

been carried out for thermodynamic equilibrium state, i.e.

without taking into account the deformation rate. According

to the experiments [29], with growing deformation rate, the

brittle-ductile transition temperature grows.

The following facts may be provided to prove that

metallized of covalent bonding on the surface is the reason

of brittle-ductile transition:

1. TBDT for diamond meets the intensive surface graphi-

tizing initiation temperature of diamond in vacuum:

1570−1600K [1,30].
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Table 3. Melting temperatures from [27], σs(Tm) values calculated for solid phase (first line) and measured values for liquid phase

(second line), TBDT values calculated using equation (15) at 1 = 0 and measured brittle-ductile transition temperatures from [1-4]

Crystal
Tm [27], σs (Tm),

σs (Tm)/σb(0)
Hs , TBDT /Tm

TBDT , K TBDT , K

K 10−3 J/m2 eV calculated experimental

C-dia 42351
4975 0.355 0.160 0.354 1501

1470−1615 [1,4]
∼ 28052 ∼ 0.22 0.073 0.437 1850

Si 1685
1565 0.391 0.072 0.325 548

820−1225 [2,4]
746 [28]3 0.186 0.029 0.442 745

Ge 1210
1216 0.455 0.063 0.254 308

630−695 [3,4]
605 [28]3 0.226 0.027 0.426 516

No t e. 1) Calculated value. 2) Estimate for liquid phase. 3) Measured value for liquid phase at P = 1 atm and Tm .
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x = σ (T )/σ (0)
s m b

ln
(1

 –
x
)/

ln
(1

 –
2
x
 –
∆

)

Figure 2. Variation of function (15) at different 1 values

from (16).

2. Surface metallized of temperatures for Si(100)
(T > 900K [31]) and Ge(110) (T > 750 ± 50K [32]) are

very close to measured TBDT values for these crystals.

Tables 2 and 3 show that the following inequalities are

met for argument x from (15) and (16):

0.186 <
σs (Tm)l

σb(0)
< x =

σs (Tm)s

σb(0)
<

σs (0)

σb(0)
< 0.482. (17)

Figure 2 shows the dependence of function (15) vs.

argument x at 1 from (16) from 1 = 0 to 1 = 0.5.

Figure 2, (15) and (17) show that the following conditions

are met for covalent crystals

max

[

TBDT

Tm

]

= 0.45, max

[

σs (TBDT )

σb(0)

]

= 0.5. (18)

And it should be understood that these conditions have

been derived from brittle-ductile transition under static load,

i.e. at infinitely low deformation speed. With deformation

rate growth, TBDT/Tm increases [29].

It should be noted that brittleness of tempered or

pressure-textured polycrystalline metals at low temperatures

can also be explained by two possible interatomic potential

values. For medium without intercrystalline boundaries

(i.e. for an ideal equilibrium macrocrystal), use a
”
stable“

potential (1) with depth Ds , which may be determined

from the atomization energy. For a metastable medium

with strained polycrystalline structure, use a
”
metastable“

potential (1) with a depth Db, which can be derived

from the measured modulus of elasticity of this metastable

structurally stressed medium. It is apparent that these

potentials will give two different specific surface energies,

for which conditions (6) and (13) may be used. But the

values shown in (18) for an equilibrium covalent crystal,

may be another for the metastable state.

For glass, this a metastable state of the substance,

which may be also considered as a nanostructured single

crystal [33].

5. Conclusion

A new analytical (without computer-based simulation)
brittle-ductile transition temperature calculation method for

single-component covalent crystals is offered.

It is shown that the covalent crystal brittleness is caused

by
”
duplicity“ of a pair interatomic potential for elastic

(reversible) and plastic (irreversible) deformation.

It is shown that the specific surface energy for a covalent

crystal under plastic deformation is more than twice as low

as the specific surface energy under elastic deformation.

Therefore, at low deformation of a covalent crystal, it is

more beneficial in terms of energy to form a surface by

fracture than by elastic surface tension.

It is pointed out that the brittle-ductile transition in

a single-component covalent crystal is followed by the

metallization of paired covalent bonds on the surface.

It is shown that the brittle-ductile transition temperature

for single-component covalent crystals under static load has

an upper limit: TBDT/Tm < 0.45.

4 Physics of the Solid State, 2023, Vol. 65, No. 2
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