02

Характерные особенности низкочастотной области инфракрасных спектров и кластерная модель строения жидкостей

© Г.А. Мельников¹, Н.М. Игнатенко¹, К.Н. Болдырев², О.А. Манжос¹, А.С. Громков¹

 ¹ Юго-Западный государственный университет, 305040 Курск, Россия
 ² Институт спектроскопии РАН, 108840 Москва, Троицк, Россия
 e-mail: melnikovga@mail.ru, inmkstu@bk.ru, kn.boldyrev@gmail.com

Поступила в редакцию 17.01.2023 г. В окончательной редакции 09.02.2023 г. Принята к публикации 11.02.2022 г.

Проанализированы результаты экспериментального и теоретического исследований низкочастотной области инфракрасных спектров и спектров комбинационного рассеяния света в жидких циклических углеводородах (аренах) и их галогенозамещенных. Приведены результаты экспериментальных исследований 13 жидкостей в области 20–700 сm⁻¹ с помощью всеволнового вакуумного фурье-спектрометра высокого разрешения (Bruker IFS 125 HR). Показано, что появление спектральных полос в низкочастотной области (области "бозонного" пика) инфракрасных спектров жидкостей обусловлено процессами формирования и распада кластерных образований в структуре жидкости.

Ключевые слова: инфракрасные спектры, углеводороды (арены), спектральные полосы, кластерная модель, "бозонный" пик.

DOI: 10.21883/OS.2023.03.55386.4535-22

Введение

Экспериментальные и теоретические исследования в низкочастотной области инфракрасных (ИК) спектров различными авторами показали, что в области частот $20-120 \,\mathrm{cm^{-1}}$ в стеклах, полимерах и кристаллах наблюдается характерный пик, который получил название "бозонного пика" [1–4].

Для объяснения природы бозонного пика предложен ряд физических моделей. В работе [5] выдвинута гипотеза о существовании резонанса между акустическими колебаниями и низкочастотными избыточными колебаниями, причем избыточные низкочастотные колебания возникают при вращении спаренных молекул (димеров) SiO₂ в структуре тетраэдра.

В работах [6] предполагается, что бозонный пик возникает из локализованных колебательных мод, связанных с долгоживущими локально предпочтительными структурами, которые присущи жидкому состоянию и случайным образом распределены в структуре нормальной жидкости. В этой модели объясняется зависимость интенсивности пика бозона от температуры, давления и хрупкости, а также отмечается тесная корреляция между пиком бозона и первым резким дифракционным пиком. Отмечено, что в равновесной жидкости могут формироваться долгоживущие кристаллические кластеры.

В работе [7] изучена роль локального поля, ангармонизма, степени неупорядоченности в формировании бозонного пика. Рассчитан спектр комбинационного рассеяния света малых частот модельного кристалла полиметилметакрилата с элементами неупорядоченности с использованием метода атом-атом потенциалов при учете влияния локальных полей на спектр.

Довольно подробно исследован бозонный пик для воды [8,9]. Установлено, что в аморфных льдах и в переохлажденной воде форма бозонного пика является универсальной.

В работе [10] проанализированы низкочастотные особенности фононных спектров неупорядоченных твердых растворов, в которых возможно возникновение возбуждений типа бозонных пиков. Предполагается, что основной причиной возникновения таких возбуждений является обусловленная разупорядочением дополнительная положительная дисперсия звуковых волн. Показано, что аномалии, подобные кроссоверу Иоффе-Регеля и бозонному пику, могут возникать не только в неупорядоченных системах, но и в упорядоченных кристаллических структурах со сложной решеткой. Полученные результаты в работах [9,10] позволяют сделать выводы о существенной роли ангармонических колебаний в кластерах, в которых "мягкие" низкочастотные осцилляторы окружены высокочастотными осцилляторами, при этом кластеры становятся механически неустойчивыми.

В работах [11,12] предлагается структурная интерпретация либрационного спектра воды и растворов ацетонитрила в воде. Установлено, что полоса либрационных колебаний асимметрична, причем форма высокочастотного края полосы хорошо описывается гауссовой функцией.

Краткий анализ публикаций, касающихся физической природы бозонного пика, позволяет сделать вывод об

Жидкость и химическая формула	$\mu 10^3$, kg/mol	ρ^{20} , kg/m ³	$ ho_{\rm crit}$, kg/m ³	T _{boil} , K	T _{melt} , K	n ^D ₂₀
Бензол С ₆ Н ₆	78.11	879.2	304	352.75	278.66	1.5010
Толуол С7Н8	92.14	866.9	290	382.85	178.14	1.4966
<i>о</i> -Ксилол <i>о</i> -С ₈ H ₁₀	106.16	875.1	287	415.95	247.97	1.5023
Этилбензол С ₈ Н ₁₀	106.16	866.7	290	408.95	178.17	1.4959
Фторбензол С ₆ Н ₅ F	96.10	1020.4	357	358.15	231.25	1.4662
Хлорбензол C ₆ H ₅ Cl	112.55	1106.2	365	405.15	227.57	1.5246
Бромбензол C ₆ H ₅ Br	157.01	1494.8	485	429.35	242.33	1.5602
о-Фтортолуол о-С7Н7F	110.13	1004.1	326	386.65	211.15	1.473
<i>т</i> -Фтортолуол <i>т</i> -С ₇ H ₇ F	110.13	998.6	326	388.15	186.15	1.469
<i>р</i> -Фтортолуол <i>р</i> -С ₇ Н ₇ F	110.13	1000.7	326	389.15	217.15	1.468
о-Хлортолуол о-С7H7Cl	126.58	1082.5	357	432.15	237.15	1.525
<i>т</i> -хлортолуол <i>т</i> -С ₇ H ₇ Cl	126.58	1072.2	343	434.15	225.15	1.522
<i>p</i> -Хлортолуол <i>p</i> -С ₇ H ₇ Cl	126.58	1069.7	351	435.55	280.65	1.520
2,4-дихлортолуол С7H7Cl2	161.03	1249.8	124	473.15	259.65	1.546
2,6-дихлортолуол С ₇ H ₇ Cl ₂	161.03	1268.6	_	469.15	275.15	1.550

Таблица 1. Некоторые характеристики объектов исследования

Примечание. Приведенные термодинамические свойства жидкостей являются заводскими паспортными данными соответствующих химических реактивов, критическая плотность рассчитана по методике Лидерсена.

определяющей роли свойств кластерных образований в структуре жидкостей на характеристики бозонного пика.

В рамках кластерной модели строения жидкостей показано, что формирование бозонного пика в низкочастотной области ИК спектра и комбинационного рассеяния света обусловлено либрационными колебаниями димеров в структуре кластеров. Предложенная модель позволила описать взаимное расположение спектральных полос в ИК спектре в области бозонного пика [13,14].

Объекты исследования

Спектры пропускания были зарегистрированы на всеволновом вакуумном спектрометре высокого разрешения Bruker IFS 125 HR. Для измерения использовалась кювета с полиэтиленовыми окнами. Измерения производились при комнатной температуре (20°С). Кювета заполнялась исследуемой жидкостью, помещалась в кюветный отдел, в котором с помощью турбомолекулярного насоса создавался вакуум $\sim 10^{-4}$ Torr. Источником длинноволнового излучения служила ртутная лампа низкого давления, в качестве светоделителя использовалась 6-микронная лавсановая пленка с германиевым просветлением, детектором излучения служил глубокоохлаждаемый (4.2 K) гелиевый болометр с алмазным фильтром.

Шаг сканирования выбирался исходя из актуальной ширины наблюдаемых полос и составлял 2 сm⁻¹ для

всех соединений. Точность определения волнового числа спектрометра лучше, чем $5\cdot 10^{-7}$ от измеряемого волнового числа.

Проведены исследования для чистых жидких аренов и их галогеносодержащих — циклических углеводородов, в основе молекулярного строения которых лежит бензольное кольцо, причем в галогенозамещенных аренах один или несколько атомов водорода замещены атомами галогенов (F, Cl, Br). Выбранный класс жидкостей для исследований имеет широкое практическое применение в химических технологиях, парфюмерной промышленности и в процессах получения органических растворителей. В теоретическом плане арены и их галогеносодержащие используются как модельные жидкости для апробации различных моделей. В частности, благодаря присутствию межмолекулярного взаимодействия типа галоген-водород (Н...F, Н...Cl, Н...Br) в структуре этих жидкостях возможно формирование кластерных систем, спектроскопические свойства которых проявляются в далекой (низкочастотной) области ИК спектров. Одна из возможных моделей межмолекулярного взаимодействия рассмотрена в работе [14].

Исследуемый класс жидкостей можно разделить на две группы: первая группа — бензол и его галогеносодержащие, в которых замещение одного или нескольких атомов водорода атомами галогенов приводит к понижению температуры кристаллизации по сравнению с родоначальной жидкостью (табл. 1); вторая группа — толуол

Рис. 1. ИК спектры жидких *о*-ксилола, этилбензола и галогензамещенных бензола: *а* — *о*-ксилол; *b* — этилбензол; *с* — фторбензол; *d* — хлорбензол; *e* — бромбензол.

и его галогеносодержащие, в которых замещение одного или нескольких атомов водорода атомами галогенов приводит к повышению температуры кристаллизации по сравнению с родоначальной жидкостью. Выявлены также различия в спектрах для выделенных двух групп исследуемых жидкостей. В табл. 1 приведены некоторые характеристики объектов исследования.

Результаты экспериментального исследования

ИК спектры жидких о-ксилола, этилбензола и галогензамещенных бензола представлены на рис. 1.

ИК спектры жидких галогензамещенных толуола представлены на рис. 2.

Анализ ИК спектров жидких аренов и их галогензамещенных позволил сделать следующие выводы.

1. В области частот $20-120 \,\mathrm{cm}^{-1}$ обнаружен максимум поглощения для всех исследуемых жидкостей, который можно трактовать как "бозонный" пик в ИК спектрах жидкостей. В ИК спектрах исследованных жидкостей в области частот $20-700 \,\mathrm{cm}^{-1}$ обнаружены явно выраженные спектральные полосы в режиме пропускания, причем первая низкочастотная полоса $(20-120 \,\mathrm{cm}^{-1})$ обычно трактуется как бозонный пик в ИК спектрах (или рамановских спектрах) конденсированных сред.

2. Наличие бозонного пика в низкочастотной области ИК спектра в конденсированных средах объясняется процессами формирования и распада кластерных систем в их структуре. В жидкостях и плотных газах с хаотич-

363

Рис. 2. ИК спектры жидких галогензамещенных толуола: *a* — *o*-фтортолуол; *b* — *m*-фтортолуол; *c* — *p*-фтортолуол; *d* — *o*-хлортолуол; *e* — *m*-хлортолуол; *f* — *p*-хлортолуол; *g* — 2,4-дихлортолуол; *h* — 2,6-дихлортолуол.

ным движением частиц характерно формирование малых кластеров, содержащих в своем составе до 1000 частиц, причем в условиях динамического равновесия устанавливается распределение кластеров по числу частиц, содержащихся в их составе.

Распределение кластеров по численному составу можно описать двухпараметрической функцией плотности

вероятностей Эрланга [13,14]

$$f(Z) = \frac{\lambda^m}{(m-1)!} Z^{m-1} e^{-\lambda Z},$$
(1)

которая позволила вычислить среднее число частиц в кластере в среде по ее плотности и критической

плотности

$$\bar{Z} = \int_{0}^{\infty} Zf(Z)dZ = \frac{m!}{(m-1)!} \frac{1}{\lambda} = \frac{m}{\lambda} = m\theta = \exp\frac{\rho}{\rho_{\text{crit}}}.$$
(2)

Функция распределения (1) позволяет найти функцию распределения частот в ИК спектре жидкости [14]

$$f(\omega_*) = \frac{\lambda^4}{3} \,\omega_*^7 e^{-\lambda \omega_*^2}.\tag{3}$$

Здесь $\omega_* = \omega / \omega_{\min}$ — приведенная частота.

По ширине спектра на уровне $1/2f_{\max}(\omega_*)$ оценивается время жизни наиболее вероятного кластера при выбранных параметрах состояния жидкости

$$\tau = \frac{1}{\Delta\omega_*} = \frac{1}{\omega_*'' - \omega_*'}.$$
(4)

Бозонный пик имеет тонкую структуру, включающую в себя серию низкоэнергетических спектральных линий, взаимное расположение которых связано с рядом чисел Фибоначчи. Математически спектральную серию в структуре бозонного пика можно описать простым соотношением [14,15]

$$\frac{\omega_i}{\omega_{\min}} = \omega_* = \sqrt{F_i}.$$
 (5)

Низкочастотная граница бозонного пика ω_{\min} определяется при числе Фибоначчи F = 1 в формуле (5) и определяется выражением [14,15]

$$\omega_{\rm min} = \sqrt{\frac{2\Delta H_{\rm dim}}{J_{\rm dim}}},\tag{6}$$

где $J_{\rm dim}$ — момент инерции димера относительно главных осей для различных конфигураций димера в структуре кластера, $\Delta H_{\rm dim}$ — энтальпия образования димерной конфигурации.

В неупорядоченных конденсированных средах (плотных газах, жидкостях) с хаотичным движением частиц возможны процессы самоорганизации частиц в кластерные системы на основе эффекта Ефимова [16–21]. В результате взаимодействия сформированного кластера с одиночными частицами среды число частиц в кластере может стать равным одному из чисел Фибоначчи. В этом случае кластер начинает делиться согласно "золотой" пропорции, образуя цепное деление до развала на свободные, хаотично движущие частицы.

На рис. 3 представлена схема распада кластера Фибоначчи с числом частиц 8, причем на каждом этапе распада переизлучается квант электромагнитного излучения. Этими процессами объясняется появление спектральных полос в низкочастотной области ИК спектров органических жидкостей.

3. Независимо от внутреннего строения и изометрии молекул жидкости их спектры в низкочастотной области носят универсальный характер, причем взаимное расположение приведенных частот для каждой жидкости описывается формулой (5) по набору чисел Фибоначчи.

Низкочастотная граница бозонного пика является индивидуальной спектроскопической характеристикой жидкости и определяется формулой (6). В табл. 2 приведены результаты расчетов низкочастотной границы бозонного пика (эти частоты выделены жирным шрифтом) и частот в структуре бозонного пика по числам Фибоначчи, сравнение с экспериментальными данными для жидкостей различной молекулярной структуры.

В табл. 3 приведены сравнения низкочастотных ИК спектров для углеводородов и их галогеносодержащих различной структуры, полученных авторами, с расчетами частот по числам Фибоначчи.

Исследования свойств систем из нескольких частиц в рамках квантовой теории рассеяния позволили получить систему уравнений типа уравнений Фаддеева [16–18], фундаментальное решение которых было выполнено Ефимовым для трехчастичной системы путем использования для координат частиц соотношений Якоби [19–21].

В гиперсферических координатах уравнение Шредингера записывается в виде [19–21]

$$\left(-\frac{\partial^2}{\partial R^2} + V_n(R) - k^2\right)\sqrt{R} F_n(R) = 0, \qquad (7)$$

$$V_n(R) = \frac{s_n^2 - 1/4}{R^2},$$
(8)

где $V_n(R)$ — гиперрадиальный потенциал Ефимова, R — гиперрадиус.

Решения уравнения (7) с потенциалом (8) являются действительными, однако, как показали расчеты, при значении параметра $s_n = s_0 \approx \pm 1.00624i$ решение становится мнимым. В этом случае потенциал (8) становится отталкивающим и трактуется как центробежный барьер для свободного движения трехчастичной системы, при этом приводит к эффективному притяжению трех тел [21].

Присутствие "золотого" сечения в структуре кластера предполагает определенный закон взаимодействия между частицами [22]. Воспользуемся степенным потенциалом Г. Ми [23,24]

$$\varphi(r_{ij}) = \frac{\varepsilon_0}{n-m} \left(\frac{n^n}{m^m}\right)^{\frac{1}{n-m}} \left[\left(\frac{\sigma}{r_{ij}}\right)^n - \left(\frac{\sigma}{r_{ij}}\right)^m \right], \quad (9)$$

$$C_{ij} = \frac{n}{(n-m)} \left(\frac{n}{m}\right)^{\frac{m}{n-m}}, \quad \sigma_0 = \left(\frac{m}{n}\right)^{\frac{1}{n-m}} R_1.$$
(10)

При значениях параметров *m* = 2 и *n* = 3 потенциал (9) принимает вид

$$\varphi(r_{ij}) = \frac{9}{4} \varepsilon_0 \left[\left(\frac{\sigma_0}{r_{ij}} \right)^3 - \left(\frac{\sigma_0}{r_{ij}} \right)^2 \right].$$
(11)

Расчет/эксперимент	$\omega, \mathrm{cm}^{-1},$ при F_i									
	1	2	3	5	8	13	21	34	55	89
Бензол										
Расчет (5), (6)	23.5	33.2	40.7	52.5	66.5	84.7	108	138	174	222
Эксперимент [26]	_	34.0	-	_	-	87	-	131	169	228
Эксперимент [27]	-	_	-	_	-	-	96	130	198	255
Эксперимент [28,29]	Ι	31.4	-	—	61	87	112	128	179	214
Хлорбензол										
Расчет (5), (6)	-	30	36	47	59	76	96	122	156	198
Эксперимент [30]	21	33	37	47	56	81	92	118	155	202
		-		Бромбензо	ОЛ					
Расчет (5), (6)	25	35	43	56	71	90	115	146	185	236
Эксперимент [26]	29	34	-	_	-	90	_	130	198	230
Эксперимент [28,29]	_	_	—	—	—	89	_	_	182	245
		1	m	-Хлортолу	уол		r	r	r	
Расчет (5), (6)	30.4	43	53	68	86	110	139	177	225	287
Эксперимент [26]	—	43	50	—	—	125	-	228	247	—
			m	-Бромтол	уол					
Расчет (5), (6)	33.0	47	57	74	93	119	151	192	245	311
Эксперимент [26]	33	_	-	_	-	120	_	_	242	314
Эксперимент [28,29]	Ι	_	-	_	Ι	Ι	171	197	225	306
				о-Крезол	[
Расчет (5), (6)	28.3	40	49	63	80	102	130	165	211	269
Эксперимент [26]	Ι	40	-	68	85	90	-	-	190	280
Эксперимент [28,29]	Ι	_	-	-	Ι	Ι	-	-	190	274
				т-Крезол	I					
Расчет (5), (6)	26.3	37	46	59	74	95	121	153	195	248
Эксперимент [26]	-	_	-	-	-	95	-	-	219	249
Эксперимент [28,29]	-	_	-	-	_	-	_	_	214	239
Анизол										
Расчет (5), (6)	26.8	38	46	60	76	97	123	156	199	253
Эксперимент [26]	_	-	-	60	75	97	126	-	-	226
Эксперимент [28,29]	_	_	—	—	—	_	_	_	210	264

Таблица 2. Низкочастотные спектры для углеводородов и их галогенсодержащих различной структуры

Особенность потенциалов (8) и (11) заключается в том, что в трехчастичной системе Ефимова возникающее слабое, "затравочное" взаимодействие сопровождается возникновением более сильного взаимодействия, пропорционального R^{-2} . В этом случае в многочастич-

ной системе возникает иерархия взаимодействий, когда слабые взаимодействия приводят к более сильным [25]. Это является причиной образования связанного состояния трех частиц с последовательным формированием дискообразной кластерной системы [31].

Расчет/эксперимент	ω , ст $^{-1}$, при F_i									
	1	2	3	5	8	13	21	34	55	89
			•	о-Ксил	ол					
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	35	50	58	79	94	127	_	_	255
				Этилбен	ізол					
Расчет (5)	-	35	43	56	71	90	115	146	185	236
Эксперимент авторов	25	35	42	58	71	87	112	158	_	245
				Фторбен	ізол					
Расчет (5)	—	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	39	—	—	_	_	Ι	158	197	241
				Хлорбен	ізол					
Расчет (5)	—	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	33	48	-	_	_	125	158	195	258
				Бромбен	нзол					
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	33	_	-	_	94	127	_	_	_
	-			о-Фторто	луол					
Расчет (5)	—	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	35	48	56	-	_	125	—	_	_
	-			т-Фторто	олуол					
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	40	48	-	—	—	125	158	212	245
	•			р-Фторто	луол					
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	40	48	-	—	—	125	158	204	258
	•			о-Хлорто	луол					
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	40	48	56	—	—	125	166	204	255
	•		1	т-Хлортс	олуол					
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	40	48	-	—	—	127	—	—	—
	•		1	р-Хлорто	луол	1				
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	40	48	56	—	—	133	—	204	255
		T	2	,4-Дихлор	толуол	[]				
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	42	50	64	—	—	133	—	202	272
	-	1	2	,6-Дихлор	толуол	1			-	
Расчет (5)	-	38	47	60	76	97	124	157	200	255
Эксперимент авторов	27	42	50	64	79	_	118	166	_	255

Таблица 3. Сравнения низкочастотных ИК спектров для углеводородов и их галогеносодержащих различной структуры, полученных авторами, с расчетами частот по числам Фибоначчи

Рис. 3. Схема распада кластера (F = 8).

Выводы

Экспериментальные исследования ИК спектров жидких углеводородов (аренов) и их галогензамещенных показали, что в низкочастотной области спектров ($20-120 \,\mathrm{cm}^{-1}$) наблюдается полоса пропускания, которая в кристаллах, стеклах и полимерах носит название "бозонного пика". Со стороны малых частот полоса пропускания ограничена предельным значением частоты (низкочастотная граница бозонного пика — $20-30 \,\mathrm{cm}^{-1}$), которая является однозначной характеристикой жидкости.

В рамках предложенной кластерной модели строения жидкостей удается предсказать наличие бозонного пика в низкочастотной области ИК и рамановских спектров в конденсированных средах, наличие которого объясняется процессами формирования и распада кластерных систем в структуре вещества. В жидкостях и плотных газах характерно формирование малых кластеров, содержащих в своем составе до 1000 частиц, причем в условиях динамического равновесия устанавливаются распределения кластеров по числу частиц, содержащихся в их составе. Математически распределение кластеров по численному составу можно описать двухпараметрической функцией Эрланга.

Низкочастотная граница бозонного пика в рамках предложенной модели определяется характеристиками димерного образования (энергией образования определенной конфигурации димера $\Delta H_{\rm dim}$, моментом инерции

конфигурации J_{dim}) в структуре кластера согласно соотношению (6).

Вычисления низкочастотной границы бозонного пика показали, что их значения лежат в пределах $15-40 \text{ cm}^{-1}$ в зависимости от состава и структуры конденсированных сред. Для простых органических жидкостей и их растворов низкочастотная граница бозонного пика составляет $20-30 \text{ cm}^{-1}$.

Взаимное расположение спектральных полос с приведенными наиболее вероятными частотами в области бозонного пика является универсальной функцией для всех жидкостей с различной молекулярной структурой и атомным составом молекул и может быть описано с погрешностью 1–2% рядом чисел Фибоначчи по формуле (5).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Д. Браун, А. Флойд, М. Сейнзбери. Спектроскопия органических веществ (Мир, М., 1992).
- [2] В.А. Рыжов. Опт. и спектр., 127 (6), 895 (2019).
 DOI: 10.21883/OS.2019.12.48682.340-18 [V.A. Ryzhov. Opt. Spectrosc., 127 (6), 979 (2019).
 DOI: 10.1134/S0030400X1912021X].
- [3] В.А. Рыжов, В.А. Берштейн. ФТТ, **50** (10), 1901 (2008).

- [4] В.А. Рыжов. ФТТ, 44 (12), 2229 (2002).
- [5] A.I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T. Asthalter, R. Rüffer, O. Leupold, W. Petry. Phys. Rev. Lett., 92 (24), P. 245508 (2004).
 DOI: 10.1103/PhysRevLett.92.245508
- [6] E. Duval, A. Boukenter, T. Achibat. J. Physics: Condensed Matter., 2 (51), P. 10227 (1990). DOI: 10.1088/0953-8984/2/51/001
- [7] М.А. Коршунов, В.Ф. Шабанов. Автометрия, 52 (6), 61 (2016). DOI: 10.15372/AUT20160608
- [8] J.C. Li, A.I. Kolesnikov. Physica B: Condensed Matter., 316– 317, 493 (2002). DOI: 10.1016/S0921-4526(02)00552-5
- P. Kumar, K.T. Wikfeldt, D. Schlesinger, L.G.M. Pettersson, H.E. Stanley. Scientific Reports, 3, P. 1980 (2013). DOI: 10.1038/srep01980
- [10] И.А. Господарев, В.И. Гришаев, А.В. Котляр, К.В. Кравченко, Е.В. Манжелий, Е.С. Сыркин, С.Б. Феодосьев. Физика низких температур, 34 (8), 829 (2008).
- [11] А.И. Сидорова, И.Н. Кочнев, Л.В. Моисеева, В.И. Нарзиев. Журн. структ. химии, 9 (4), 607 (1968). URL: https://jsc.niic.nsc.ru/article/48952/
- [12] J.Á. Padró, J. Martí. J. Chem. Phys., 118 (1), 452 (2003).
 DOI: 10.1063/1.1524619
- [13] Г.А. Мельников. Кластерная теория и релаксационные процессы в жидкостях (КГУ, Курск, 2010).
- [14] Г.А. Мельников, Н.М. Игнатенко. Кластерные модели строения неупорядоченных конденсированных сред (ЗАО "Университетская книга", Курск, 2017).
- [15] G.A. Melnikov, O.A. Manzhos, N.M. Ignatenko, A.S. Gromkov. In: 7th International Congress on Energy Fluxes and Radiation Effects (EFRE, 2020), p. 945. DOI: 10.1109/EFRE47760.2020.9241975
- [16] Л.Д. Фаддеев. ЖЭТФ, **39** (5), 1459 (1961). [L.D. Faddeev. Sov. Phys. JETP, **12** (5), 1014 (1961). URL: http://jetp.ras.ru/cgi-bin/dn/e_012_05_1014.pdf].
- [17] Р.А. Минлос, Л.Д. Фаддеев. ЖЭТФ, 41 (6), 1850 (1962).
 [R.A Minlos, L.D. Faddeev. Sov. Phys. JETP, 14 (6), 1315 (1962).
 - URL: http://jetp.ras.ru/cgi-bin/dn/e_014_06_1315.pdf].
- [18] С.П. Меркурьев, Л.Д. Фаддеев. Квантовая теория рассеяния для систем нескольких частиц (Наука, М., 1985).
- [19] V.N. Efimov. Phys. Lett. B., 33 (8), 563 (1970).
 DOI: 10.1016/0370-2693(70)90349-7
- [20] P. Naidon, S. Endo. Reports on Progress in Physics, 80 (5),
 P. 056001 (2017). DOI: 10.1088/1361-6633/aa50e8
- [21] К.А. Тер-Мартиросян, Г.В. Скорняков. ЖЭТФ, **31** (5), 775 (1956). [G.V. Skorniakov, К.А. Ter-Martirosian. Sov. Phys. JETP, **4** (5), 648 (1956). URL: http://jetp.ras.ru/cgibin/dn/e_004_05_0648.pdf].
- [22] Г.А. Мельников, Н.М. Игнатенко, А.С. Громков. Вестник Воронежского государственного университета. Серия: Физика. Математика, 3, 5 (2022). URL: http://www.vestnik.vsu.ru/pdf/physmath/ 2022/03/2022-03-01.pdf
- [23] G. Mie. Annalen der Physik, **316** (8), 657 (1903).
 DOI: 10.1002/andp.19033160802
- [24] A. Kratzer. Zeitschrift f
 ür Physik, 3 (5), 289 (1920).
 DOI: 10.1007/BF01327754
- [25] С.А. Позднеев. Краткие сообщения по физике ФИАН, 5, 3 (2003).
- [26] D.C. Biswas. Indian J. Phys., 29, 503 (1955).

- [27] F.L. Galeener, P.N. Sen. Phys. Rev. B, 17, 1928 (1978).
 DOI: 10.1103/PhysRevB.17.1928
- [28] G.W. Chantry, H.A. Gebbie, B. Lassier, G. Wyllie. Nature, 214, 163 (1967). DOI: 10.1038/214163b0
- [29] E. Knözinger, D. Leutloff, R. Wittenbeck. J. Molec. Struct.,
 60, 115 (1980). DOI: 10.1016/0022-2860(80)80044-5
- [30] G. Chantry, H. Gebbie. Nature, 208, 378 (1965).DOI: 10.1038/208378a0
- [31] G.A. Melnikov, N.M. Ignatenko, A.S. Gromkov. In: 8th International Congress on Energy Fluxes and Radiation Effects (EFRE, 2022): Abstracts, p. 420. URL: https://efre2022.hcei.tsc.ru/publication/abstracts.html