Осцилляции Шубникова-де Гааза в двумерном электронном газе с анизотропной подвижностью

© Д.В. Номоконов, А.К. Бакаров, А.А. Быков

Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

E-mail: nomokonov@isp.nsc.ru

Поступила в Редакцию 16 декабря 2022 г. В окончательной редакции 22 февраля 2023 г. Принята к публикации 2 марта 2023 г.

Исследованы осцилляции Шубникова-де Гааза в селективно-легированных одиночных GaAs-квантовых ямах со сверхрешеточными барьерами AlAs/GaAs при температуре T = 4.2 К в магнитных полях B < 1 Тл. В изучаемых высокоподвижных гетероструктурах с тонким спейсером, выращенных при помощи молекулярно-лучевой эпитаксии на (001) GaAs-подложках, подвижности двумерного электронного газа в кристаллографических направлениях [110] и [$\overline{1}$ 10] отличаются более чем на 50%. Для корректного анализа осцилляций Шубникова-де Гааза в образцах с анизотропной подвижностью используется адаптированное для этих целей выражение для амплитуды этих осцилляций Шубникова-де Гааза на мостиках Холла, ориентированных вдоль направлений [110] и [$\overline{1}$ 10], отличаются не более чем на 5%. Полученные результаты показывают, что квантовое время жизни в двумерной электронной системе с анизотропной подвижностью является изотропной подвижностью.

Ключевые слова: осцилляции Шубникова-де Гааза, анизотропная подвижность, квантовое время жизни, сверхрешеточные барьеры.

DOI: 10.21883/FTP.2023.02.55329.4459

В высокоподвижных селективно-легированных гетероструктурах GaAs/AlGaAs с толстым спейсером $(d_{S} > 50 \,\mathrm{HM})$ низкотемпературная подвижность двумерного (2D) электронного газа ограничивается не только рассеянием на удаленных ионизированных донорах и фоновых примесях, но и на шероховатостях гетерограниц [1]. Подвижность (µ) 2D электронного газа в таких гетероструктурах, выращенных методом молекулярнолучевой эпитаксии на (001) GaAs-подложках, является анизотропной. Максимальная электронная подвижность $(\mu = e \tau_t / m^*$, где τ_t — транспортное время рассеяния, *m*^{*} — эффективная масса электрона) наблюдается в кристаллографическом направлении [110], а минимальная — в направлении [110]. Анизотропия подвижности μ в этом случае обусловлена рассеянием на шероховатостях гетерограниц, вытянутых вдоль направления [110] и имеющих высоту порядка атомного монослоя [1].

Анизотропное рассеяние электронов на шероховатостях гетерограниц проявляется не только в высокоподвижных гетероструктурах GaAs/AlGaAs с толстым спейсером и соответственно низкой концентрацией 2D электронного газа $n_e \sim 3 \cdot 10^{15} \text{ m}^{-2}$, но и в высокоподвижных гетероструктурах GaAs/AlAs с тонким спейсером ($d_S < 50 \text{ нм}$) и, соответственно, более высокой электронной концентрацией $n_e \sim 10^{16} \text{ m}^{-2}$ [2,3]. Исследуемая гетероструктура GaAs/AlAs представляет собой одиночную GaAs-квантовую яму с короткопериодными AlAs/GaAs сверхрешеточными барьерами [4]. Подавление рассеяния 2D электронов на случайном потенциале ионизированных доноров в такой структуре достигается

не только за счет пространственного разделения областей легирования и транспорта, но еще и за счет экранирующего действия X-электронов, локализованных в слоях AlAs [4–7]. В таких селективно-легированных гетероструктурах с тонким спейсером, выращенных на (001) GaAs-подложках, подвижность μ_y в направлении [110] может превышать подвижность μ_x в направлении [110] в несколько раз [3].

Процессы рассеяния электронов 2D электронного газа характеризуются не только величиной транспортного времени рассеяния τ_t , но еще и квантовым временем жизни $\tau_q = 2\Gamma/\hbar$, где Γ — полуширина квантовых энергетических уровней. В общем случае $au_t \neq au_q$, так как au_t определяется преимущественно процессами рассеяния на большие углы, а τ_q — на все углы [8,9]. При этом в 2D системах с анизотропным рассеивающим потенциалом квантовое время τ_q , измеренное с помощью осцилляций Шубникова-де Гааза (ШдГ), должно быть эффективно изотропной величиной [10]. Обусловлено это тем, что результаты индивидуальных актов рассеяния усредняются при движении электрона по циклотронным орбитам [10]. Этот вывод согласуется с результатами изучения квантового транспорта в GaAs-квантовых ямах с анизотропной подвижностью μ [11,12], но не согласуется с результатами работ на некоторых других 2D системах [13-15]. Причины такого разногласия остаются до сих пор дискуссионными и требуют дальнейшего изучения осцилляций ШдГ в различных 2D электронных системах с анизотропной подвижностью. Исследование анизотропного транспорта в одиночных GaAs-квантовых ямах с короткопериодными AlAs/GaAs сверхрешеточными барьерами актуально еще и в связи с тем, что такие структуры в настоящее время широко используются как для фундаментальных исследований [16], так и для практических приложений [17].

В изотропных 2D системах подвижности μ_x и μ_y в основных взаимно перпендикулярных направлениях x, y равны, и, соответственно, диссипативное сопротивление $\rho_d = \rho_{xx} = \rho_{yy}$. В этом случае слабополевые осцилляции ШдГ в условиях $\omega_c \tau_q \sim 1$ описываются следующим соотношением [18–20]:

$$\rho_d^{\rm SdH} = 4\rho_{0d}X(T)\exp(-\pi/\omega_c\tau_q)\cos(2\pi\varepsilon_{\rm F}/\hbar\omega_c-\pi), \quad (1)$$

где ρ_{0d} — сопротивление в нулевом магнитном поле, $X(T) = (2\pi^2 k_{\rm B}T/\hbar\omega_c)/\sinh(2\pi^2 k_{\rm B}T/\hbar\omega_c), \ \omega_c = eB/m^*,$ $\varepsilon_{\rm F}$ — энергия Ферми. Используя результаты работы [19], нетрудно обобщить формулу (1) на 2D систему с анизотропной подвижностью, когда $\mu_x \neq \mu_y$. Обобщение производится путем замены изотропной проводимости Друде в исходных выражениях работы [19] на анизотропную проводимость:

$$\sigma_{xx}(B) = \frac{e^2}{m^*} \frac{\tau_x n}{1 + \omega_c^2 \tau_x \tau_y}, \ \sigma_{yy}(B) = \frac{e^2}{m^*} \frac{\tau_y n}{1 + \omega_c^2 \tau_x \tau_y}, \ (2)$$

$$\sigma_{xy}(B) = -\sigma_{yx}(B) = e \frac{\partial N}{\partial B} - \frac{e^2}{m^*} \frac{\omega_c \tau_x \tau_y n}{1 + \omega_c^2 \tau_x \tau_y}, \quad (3)$$

где $n = n_0(1 + \Delta g/g_0)$, n_0 — концентрация носителей в нулевом магнитном поле, $\Delta g/g_0$ — величина относительного возмущения плотности состояний в магнитном поле, $\tau_x = \tau_{0x}(1 - \Delta g/g_0)$, $\tau_y = \tau_{0y}(1 - \Delta g/g_0)$ транспортные времена жизни при движении электрона в направлении x и y соответственно, τ_{0x} и τ_{0y} транспортные времена в нулевом поле, N — число состояний ниже энергии Ферми на единицу площади.

Обращение тензора проводимости $\hat{\sigma}(B)$, выражаемого формулами (2) и (3), дает возможность получить тензор удельного сопротивления $\hat{\rho}(B)$. В линейном приближении по малому возмущению ($\Delta g/g_0 \ll 1$) его диагональные компоненты:

$$\rho_{xx}(B) = \frac{\sigma_{yy}(B)}{\det\hat{\sigma}} \approx \frac{m^*}{e^2 \tau_x n} \left(1 + 2\frac{B}{n}\frac{\partial N}{\partial B}\right), \qquad (4)$$

$$\rho_{yy}(B) = \frac{\sigma_{xx}(B)}{\det\hat{\sigma}} \approx \frac{m^*}{e^2 \tau_y n} \left(1 + 2\frac{B}{n}\frac{\partial N}{\partial B}\right), \quad (5)$$

где det $\hat{\sigma} \equiv \sigma_{xx}\sigma_{yy} + \sigma_{xy}^2$. Следуя данным работы [19], используем то, что $\tau_x n = \tau_{0x}n_0$, $\tau_y n = \tau_{0y}n_0$. В итоге окончательно получим:

$$\rho_{xx}(B) \approx \rho_{0xx}(1 + 2\Delta g/g_0),$$

$$\rho_{yy}(B) \approx \rho_{0yy}(1 + 2\Delta g/g_0),$$
 (6)

Физика и техника полупроводников, 2023, том 57, вып. 2

где

$$\rho_{0xx} = \frac{m^*}{e^2 \tau_{0x} n_0}$$
и $\rho_{oyy} = \frac{m^*}{e^2 \tau_{0y} n_0}$

— удельные сопротивления в нулевом магнитном поле в направлении по x и по y соответственно. Из выражений (6) видно, что

$$\frac{\rho_{xx}(B) - \rho_{0xx}}{\rho_{0xx}} = \frac{\rho_{yy}(B) - \rho_{0yy}}{\rho_{0yy}} \approx 2\frac{\Delta g}{g_0}.$$
 (7)

Из формул (7) следует, что для построения графиков Дингла для каждого из направлений надо брать свою величину ρ_{0d} . В анизотропной структуре в зависимости от рассматриваемого направления ρ_d заменяется соответственно на ρ_{xx} или ρ_{yy} , а в формуле (1) ρ_{0d} заменяется соответственно на ρ_{0xx} или ρ_{0yy} . В этом состоит адаптация известной формулы (1) [18–20] на случай учета анизотропии 2D электронного газа. Тогда нормированные амплитуды осцилляций ШдГ в анизотропной системе определяются следующими выражениями:

$$A_x^{\text{SdH}} = \Delta \rho_x^{\text{SdH}} / \rho_{0xx} X(T) = A_{0x}^{\text{SdH}} \exp(-\pi/\omega_c \tau_{qx}), \quad (8)$$

$$A_{y}^{\text{SdH}} = \Delta \rho_{y}^{\text{SdH}} / \rho_{0yy} X(T) = A_{0y}^{\text{SdH}} \exp(-\pi/\omega_{c} \tau_{qy}), \quad (9)$$

где $\Delta \rho_x^{\text{SdH}}$ и $\Delta \rho_y^{\text{SdH}}$ — амплитуды осцилляций ШдГ, измеренные в соответствующих направлениях, $A_{0x}^{\text{SdH}} = A_{0y}^{\text{SdH}} = 4$. В соответствии с (8) и (9), зависимости $A_x^{\text{SdH}}(1/B)$ и $A_y^{\text{SdH}}(1/B)$ в полулогарифмическом масштабе являются линейными с наклонами, которые определяются величинами τ_{qx} и τ_{qy} , и с начальными точками $A_x^{\text{SdH}}(1/B = 0) = A_y^{\text{SdH}}(1/B = 0) = 4$.

Исследуемые селективно-легированные гетероструктуры GaAs/AlAs были выращены методом молекулярнолучевой эпитаксии на полуизолирующих GaAs (100) подложках. Гетероструктуры представляли собой одиночные GaAs-квантовые ямы шириной d_{SQW} с короткопериодными сверхрешеточными барьерами AlAs/GaAs, состоящими из тонких слоев AlAs и GaAs [4]. Источниками свободных электронов служили два *б*-слоя Si, расположенных в тонких слоях GaAs на расстоянии d_S от верхней и нижней гетерограниц одиночных GaAsквантовых ям. На основе выращенных гетероструктур при помощи оптической литографии и жидкостного травления были изготовлены L-образные холловские мостики (см. вставку на рисунке), ориентированные вдоль кристаллографических направлений [110] и [110]. Сопротивление мостиков измерялось на переменном токе $(I_{\rm ac} < 1$ мкА, $f_{\rm ac} \sim 0.5$ кГц) при T = 4.2 К в магнитных полях В < 1 Тл. Параметры исследуемых гетероструктур приведены в таблице.

Экспериментальные зависимости $\rho_{xx}(B)$ и $\rho_{yy}(B)$ для структуры 1 (рисунок, *a*) показывают, что осцилляции ШдГ в исследуемой 2D электронной системе при T = 4.2 К начинают проявляться при B > 0.5 Тл. В более слабых магнитных полях наблюдаются квантовое положительное магнетосопротивление [21,22] и осцилляции, обусловленные рассеянием 2D электронного газа

Параметры гетероструктур

Номер структуры	$d_{ m SQW}$ (нм)	<i>ds</i> (нм)	$n_{ m Si} \over (10^{16} { m m}^{-2})$	$n_e \ (10^{15} \mathrm{m}^{-2})$	μ_y m ² /(B·c)	$\mu_x \ { m m}^2/({ m B}{ m \cdot}{ m c})$	μ_y/μ_x
1	14	32.5	2.3	6.59	287	170	1.69
2	13	29.4	3.2	7.48	124	80.5	1.54

Примечание. d_{SQW} — толщина одиночной GaAs квантовой ямы; d_S — толщина спейсера; n_{Si} — суммарная концентрация удаленных Si-доноров в тонких δ легированных слоях GaAs; n_e — концентрация 2D электронного газа в одиночной GaAs-квантовой яме; μ_y и μ_x — подвижности в направлениях [$\overline{110}$] и [110] соответственно.

а — экспериментальные зависимости ρ_{xx} и ρ_{yy} от *B*, измеренные на *L*-образном мостике при T = 4.2 К для структуры 1: $I - \rho_{xx}$, $2 - \rho_{yy}$. На вставке изображена геометрия *L*-образного мостика. b — зависимости A_x^{SdH} и A_y^{SdH} от 1/B: I и 2 — структура 1; 3 и 4 — структура 2. Символы — экспериментальные данные. Сплошные линии — расчет по формулам (8) и (9): $I - A_{0x}^{\text{SdH}} = 6.05$, $\tau_{qx} = 5.61$ пс; $2 - A_{0y}^{\text{SdH}} = 4.94$, $\tau_{qy} = 5.85$ пс; $3 - A_{0x}^{\text{SdH}} = 5.02$, $\tau_{qx} = 1.44$ пс; $4 - A_{0y}^{\text{SdH}} = 4.57$, $\tau_{qy} = 1.38$ пс.

на акустических фононах [23,24]. Осцилляции ШдГ имеют различную амплитуду для ρ_{xx} и ρ_{yy} , что согласуется с формулами (8) и (9). На рисунке, *b* представлены экспериментальные (символы) и расчетные (сплошные линии) зависимости A_x^{SdH} и A_y^{SdH} от 1/B в полулогариф-мическом масштабе для структур 1 и 2. Зависимости $A_x^{\text{SdH}}(1/B)$ и $A_y^{\text{SdH}}(1/B)$ в полулогарифмическом масштабе линейны и для каждой из структур с точностью 5%

имеют одинаковый наклон. При этом имеющиеся величины A_{0x}^{SdH} и A_{0y}^{SdH} незначительно отличаются от теоретической величины $A_{0x}^{\text{SdH}} = A_{0y}^{\text{SdH}} = 4$.

Одинаковый наклон для зависимостей $A_v^{
m SdH}(1/B)$ и $A_x^{\text{SdH}}(1/B)$ показывает, что в исследуемой системе квантовое время жизни τ_q , измеренное при помощи осцилляций ШдГ, является величиной изотропной (с точностью 5%). Квантовое время жизни, полученное из анализа осцилляций ШдГ, по необходимости является эффективно изотропной величиной, так как оно является усредненным по циклотронным орбитам движения электрона в магнитном поле [10]. Поэтому, с нашей точки зрения, обнаруженная в работах [13,15] анизотропия τ_q связана с некорректным использованием метода Ван дер Пау [25]. Метод Ван дер Пау для систем с анизотропной проводимостью позволяет измерять ρ_{xx} и ρ_{yy} лишь для B = 0 [26]. В анизотропной системе извлечь зависимости $\rho_{xx}(B)$ и $\rho_{yy}(B)$ из измеренных методом Ван дер Пау зависимостей сопротивлений $R_{xx}(B)$ и $R_{yy}(B)$ непосредственно нельзя. Для этого сначала необходимо для каждого значения магнитного поля В заново численно решать соответствующую нестандартную краевую задачу для нахождения распределения потенциала [26]. Поэтому при наличии анизотропии и магнитного поля использовать метод Ван дер Пау для определения τ_q из анализа осцилляций ШдГ некорректно. Правильный учет анизотропии проводимости при исследовании магнетотранспортных характеристик изучаемых структур необходим не только при использовании геометрии Ван дер Пау, но также и при использовании анизотропных дисков Корбино [27]. Анизотропия τ_{q} , обнаруженная, по мнению авторов [14], при анализе осцилляций ШдГ, измеренных на мостиках Холла, также вызывает у нас сомнения. Возможно, что причиной неверного, по нашему мнению, вывода об анизотропии τ_a являются неточности при обработке данных и относительно малый диапазон полей, доступный для обработки.

Таким образом, в работе исследованы осцилляции Шубникова—де Гааза в 2D электронном газе с анизотропной подвижностью в селективно-легированных одиночных GaA-квантовых ямах с короткопериодными GaAs/AlAs сверхрешеточными барьерами. Анизотропия подвижности μ_y/μ_x в изучаемых гетероструктурах в кристаллографических направлениях [$\bar{1}10$] и [110] превышала 1.5. Для корректного анализа осцилляций Шубникова-де Гааза в анизотропном 2D электронном газе использовалась надлежащим образом адаптированная формула для амплитуды осцилляций ШдГ. Экспериментально установлено, что величины квантового времени жизни, измеренные при помощи эффекта Шубникова-де Гааза на мостиках Холла, ориентированных вдоль направлений [110] и [110], равны с точностью 5%.

Финансирование работы

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 20-02-00309.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Y. Tokura, T. Saku, S. Tarucha, Y. Horikoshi. Phys. Rev. B, 46, 15558 (1992).
- [2] А.А. Быков, А.К. Бакаров, А.В. Горан, А.В. Латышев, А.И. Торопов. Письма ЖЭТФ, **74**, 182 (2001).
- [3] K.-J. Friedland, R. Hey, O. Bierwagen, H. Kostial, Y. Hirayama, K.H. Ploog. Physica E, 13, 642 (2002).
- [4] K.-J. Friedland, R. Hey, H. Kostial, R. Klann, K. Ploog. Phys. Rev. Lett., 77, 4616 (1996).
- [5] Д.В. Дмитриев, И.С. Стрыгин, А.А. Быков, С. Дитрих, С.А. Виткалов. Письма ЖЭТФ, 95, 467 (2012).
- [6] M. Sammon, M.A. Zudov, B.I. Shklovskii. Phys. Rev. Mater., 2, 064604 (2018).
- [7] А.А. Быков, И.С. Стрыгин, А.В. Горан, Д.В. Номоконов, А.К. Бакаров. Письма ЖЭТФ, 112, 475 (2020).
- [8] J.P. Harrang, R.J. Higgins, R.K. Goodall, P.R. Jay, M. Laviron, P. Delescluse. Phys. Rev. B, **32**, 8126 (1985).
- [9] S. Das Sarma, Frank Stern. Rev. B, 32, 8442 (1985).
- [10] A.C. Churchill, G.H. Kim, A. Kurobe, M.Y. Simmons, D.A. Ritchie, M. Pepper, G.A.C. Jones. J. Phys.: Condens. Matter, 6, 6131 (1994).
- [11] А.А. Быков, Д.Р. Исламов, А.В. Горан, А.К. Бакаров. Письма ЖЭТФ, 86, 891 (2007).
- [12] А.А. Быков, А.В. Горан, В. Майер, С.А. Виткалов. Письма ЖЭТФ, 98, 811 (2014).
- [13] S. Elhamri, W.C. Mitchel, W.D. Mitchell, R. Berney, G.R. Landis. J. Electron. Mater., 35, 599 (2006).
- [14] C. Morrison, M. Myronov. Appl. Phys. Lett., 111, 192103 (2017).
- [15] L. Yang, J. Wang, T. Wang, M. Wu, P. Wang, D. Wang, X. Yang, F. Xu, W. Ge, X. Wu, X. Wang, B. Shen. Appl. Phys. Lett., **115**, 152107 (2019).
- [16] M.L. Savchenko, A. Shuvaev, I.A. Dmitriev, S.D. Ganichev, Z.D. Kvon, A. Pimenov. Phys. Rev. B, 106, L161408 (2022).
- [17] А.Б. Пашковский, С.А. Богданов, А.К. Бакаров, К.С. Журавлев, В.Г. Лапин, В.М. Лукашин, С.Н. Карпов, Д.Ю. Протасов, И.А. Рогачев, Е.В. Терешкин. Письма ЖТФ, 48 (12), 11 (2022).
- [18] И.М. Лифпин, А.М. Косевич. ЖЭТФ, 29, 730 (1955). [Sov. Phys. JETP, 2, 636 (1956)].

- [19] A. Isihara, L. Smrcka. J. Phys. C: Solid State Phys., 19, 6777 (1986).
- [20] P.T. Coleridge. Phys. Rev. B, 44, 3793 (1991).
- [21] M.G. Vavilov, I.L. Aleiner. Phys. Rev. B, 69, 035303 (2004).
- [22] S. Dietrich, S. Vitkalov, D.V. Dmitriev, A.A. Bykov. Phys. Rev. B, 85, 115312 (2012).
- [23] А.А. Быков, А.К. Калагин, А.К. Бакаров. Письма ЖЭТФ, 81, 646 (2005).
- [24] O.E. Raichev. Phys. Rev. B, 80, 075318 (2009).
- [25] S.H. Simon. Phys. Rev. Lett., 83, 4223 (1999).
- [26] O. Bierwagen, R. Pomraenke, S. Eilers, W.T. Masselink. Phys. Rev. B, 70, 165307 (2004).
- [27] D.V. Nomokonov, A.V. Goran, A.A. Bykov. J. Appl. Phys., 125, 164301 (2019).

Редактор А.Н. Смирнов

Shubnikov-de Haas oscillations in 2D electron gas with anisotropic mobility

D.V. Nomokonov, A.K. Bakarov, A.A. Bykov

Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract Shubnikov-de Haas oscillations in selectively doped GaAs single quantum wells with AlAs/GaAs superlattice barriers has been studied at temperature T = 4.2 K in magnetic fields B < 1 T. High-mobility heterostructures with thin spacer had been grown by molecular-beam epitaxy on (001) GaAs substrates. The mobilities of two-dimensional electron gas measured in two crystallographic directions [110] and [$\overline{1}10$] differ from each other more than 50%. Properly adapted expression for Shubnikov-de Haas oscillations amplitudes in anisotropic samples has been used for correct analysis of this oscillations. It was stated that quantum lifetime in our heterostructures as measured by Shubnikov-de Haas oscillations on Hall bars oriented in the directions [110] and [$\overline{1}10$] varies less than 5%. Obtained results show that quantum life-time in two-dimensional electron system with anisotropic mobility is isotropic with aforementioned accuracy.