07

Электротермооптические характеристики и предельные энергетические возможности мощных AlGaN-светодиодов глубокого ультрафиолетового диапазона ($\lambda \approx 270$ nm)

© А.Л. Закгейм¹, А.Е. Иванов¹, А.Е. Черняков^{1,2}

¹ НТЦ микроэлектроники РАН, Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия E-mail: zakgeim@mail.ioffe.ru

Поступило в Редакцию 1 февраля 2023 г. В окончательной редакции 22 февраля 2023 г. Принято к публикации 28 февраля 2023 г.

Исследованы токовые и температурные зависимости электрических, энергетических и спектральных характеристик мощных светодиодов глубокого ультрафиолетового диапазона ($\lambda \approx 270$ nm). С привлечением *ABC*-модели на основе экспериментальных зависимостей внешнего квантового выхода от тока рассчитаны основные параметры, определяющие энергетическую эффективность светодиода: внутренний квантовый выход и коэффициент экстракции излучения. Оценено влияние токорастекания, электрических потерь и теплового сопротивления как факторов, ограничивающих энергетические возможности.

Ключевые слова: AlGaN, ультрафиолетовый светодиод, квантовый выход, коэффициент экстракции излучения, температурная зависимость, *ABC*-модель.

DOI: 10.21883/PJTF.2023.09.55318.19519

За последнее десятилетие значительные усилия были предприняты по созданию AlGaN-светодиодов (СД) глубокого ультрафиолетового (УФ) диапазона (UV-C, 200–280 nm). В первую очередь интерес к таким излучателям связан с бактерицидным действием коротковолнового ($\lambda < 280$ nm) УФ-излучения, а следовательно, с их применением для стерилизации воды, воздуха и т.д. [1]. Несмотря на масштабные исследования, энергетические параметры УФ СД — оптическая мощность и КПД — остаются заметно меньшими, чем у "родственных" по структуре AlInGaN-светодиодов видимого диапазона ($\lambda = 450-490$ nm) [2,3].

Выявление факторов, играющих главную роль в ограничении энергетики УФ СД, представляет значительный научный и практический интерес. В целом их можно разделить на "физические", определяемые транспортом носителей в активную область (AO) и их последующей рекомбинацией, и "конструкционные", обусловленные устройством излучающего кристалла: способностью обеспечивать равномерное токораспределение, малые джоулевы потери, эффективный вывод излучения и теплоотвод. Наиболее информативным методом разделения и оценки перечисленных факторов является экспериментальное исследование токовых и температурных зависимостей электрических, энергетических и спектральных характеристик СД, что и составляет предмет настоящей работы.

Объектом исследования являлись мощные УФ СД 4550 Mil Bare Chip (Bolb Inc., США) на основе AlGaN-гетероструктур с длиной волны излучения $\lambda_{peak} \approx 270$ nm. Для генерации такого излучения требуется гетероструктура с шириной запрещенной зо-

ны в АО $E_g \approx 4.5 \,\text{eV}$, что отвечает составу квантовой ямы Al_{0.4}Ga_{0.6}N. Излучающий кристалл размером 1250 × 1125 μ m (общая площадь $S = 1.4 \,\text{mm}^2$, активная — под *p*-контактом — $S_{act} = 0.75 \,\text{mm}^2$) имел "флип-чип"-конструкцию с распределенной многоуровневой системой *p*- и *n*-контактов на тыльной стороне, которая является наиболее эффективной с точки зрения вывода света и отвода тепла [4]. Для обеспечения токового растекания использовалась встречно-штыревая геометрия контактов, когда основной по площади *p*-контакто окружен "вилочным" *n*-контактом.

На рис. 1, *а* представлена фотография излучающего кристалла с тыльной ("контактной") стороны, а на рис. 1, *b* — его фотография с лицевой излучающей стороны при рабочем токе I = 350 mA в ИК-тепловизионном микроскопе. Однородность температуры по излучающей площади (светлые пятна связаны не с разогревом, а с излучательной способностью отдельных элементов) свидетельствует об однородном токорастекании и соответственно о возможности использования средней плотности тока *J*. Тепловое сопротивление *p*-*n*-переход-плоскость монтажа $R_{th} \approx 10$ K/W [5].

Мощностные и спектральные характеристики УФ СД при комнатной температуре и умеренных токах измерялись в непрерывном режиме в установке OL770-LEDUV/VIS High-speed LED Test and Measurement System. При больших токах использовался импульсный режим ($\tau = 100-300$ ns, F = 100 Hz), который обеспечивался генератором Agillent 8114A с усилителем PicoLASLDP-V80-100V3.3. Оптический сигнал регистрировался быстродействующим фотопри-

Рис. 1. Фотографии излучающего "флип-чип"-кристалла со стороны контактной группы (*a*) и со стороны излучающей поверхности при рабочем токе *I* = 350 mA в ИК-тепловизионном микроскопе (*b*).

Рис. 2. *a* — ВАХ в полулогарифмическом масштабе для температур 353 (1), 293 (2) и 203 К (3); *b* — нормированные спектры излучения для значений плотности тока 5 (1), 50 (2), 500 (3) и 2500 А/ст² (4) при *T* = 293 К.

емником THORLABS DET02AFC и осциллографом Tektronix TDS3044. Диапазон температур задавался криостатом с оптическим окном Janis CCS-450.

Энергетическая эффективность УФ СД анализировалась исходя из общих выражений для внешнего квантового выхода η_{EOE} и КПД (wall-plug-efficiency — WPE) [6]:

$$\eta_{\rm EQE} = \eta_{inj} \eta_{\rm IQE} \eta_{ext},\tag{1}$$

WPE =
$$\frac{P_{opt}}{IU} = \frac{\eta_{EQE}Ih\nu/q}{IU} = \eta_{EQE}\frac{h\nu}{qU} = \eta_{EQE}\eta_{elect.}$$
 (2)

Здесь η_{inj} — коэффициент инжекции, η_{IQE} — внутренний квантовый выход излучения, η_{ext} — коэффициент экстракции излучения, P_{opt} — выходная оптическая

мощность, hv — энергия кванта излучения, q — заряд электрона, I и U — ток и напряжение на СД, электрическая эффективность η_{elect} учитывает насколько энергия, затраченная на инжекцию электрона в АО, больше энергии излученного кванта света.

На рис. 2, *а* представлено семейство вольт-амперных характеристик (ВАХ) УФ СД для набора температур в диапазоне 200–350 К. В области токов $I = 10^{-9} - 10^{-2}$ А ($J = 10^{-7} - 1$ А/сm²) ВАХ измерялась в непрерывном режиме, затем при $I = 10^{-2} - 2 \cdot 10^2$ А ($J = 1 - 2.5 \cdot 10^3$ А/сm²) — в импульсном. Наблюдаются три характерные области диодной характеристики. Ниже напряжения, соответствующего началу открытия p-n-перехода ($U_f \approx 3.5$ V при T = 293 K), доминирует

Puc. 3. a — зависимости P_{opt} (1) и η_{EQE} (2) от тока в широком диапазоне токов 10^{-3} —20 A при 293 K; b — зависимость от тока η_{EQE} для температур 353 (1), 293 (2) и 203 K (3).

ток утечки, далее в диапазоне напряжений, отвечающих открытию p-n-перехода ($U_f = 3.5 - 4.5 \text{ V}$), ВАХ имеет вид по Шокли

$$I = I_s \exp\left(\frac{qU_f}{\gamma kT}\right),\tag{3}$$

где *I*_s — ток насыщения, *q* — заряд электрона, *γ* — фактор идеальности, к — постоянная Больцмана. Из наклона экспоненциального участка ВАХ получаем $\gamma \approx 2.65$, что близко к значениям $\gamma \approx 2.4$ для высокоэффективных синих InGaN-светодиодов и может рассматриваться как свидетельство приемлемой инжекционной составляющей тока. При пониженных температурах T < 250 K фактор идеальности возрастает до значений $\gamma \approx 4-5$, что связано с эффектом "вымораживания" дырок падением их равновесной концентрации в р-области, ростом утечки электронов и снижением η_{inj} [7]. После открытия p-n-перехода ($U_f > 4.5 \text{ V}$) ВАХ определяется последовательным сопротивлением, которое можно оценить как весьма малое $R_s \approx 1 \Omega$. Таким образом, электрические характеристики УФ СД представляются некритичными для его энергетических параметров.

На рис. 2, *b* представлены спектральные характеристики УФ СД в диапазоне плотностей тока, охватывающем примерно три порядка: $J \approx 5-2500 \text{ A/cm}^2$. Исходя из них можно отметить следующее:

— коротковолновое смещение максимума спектра при росте тока на три порядка составляет всего $\Delta\lambda_{peak} \approx 1.5-2$ nm, а ширина спектра на половине максимума (FWHM) остается стабильной, не превосходя FWHM $\approx 10-12$ nm, что значительно меньше, чем в случае синих AlInGaN-светодиодов ($\Delta\lambda_{peak} \approx 25$ nm и FWHM ≈ 32 nm), и свидетельствует об отсутствии заметной спонтанной поляризации AO и квантово-размерного эффекта Штарка;

— отсутствие длинноволнового смещения λ_{peak} и постоянство наклона коротковолнового плеча спектра в зависимости от энергии изучения позволяют считать

температуру АО в используемом режиме измерений не зависящей от тока (без саморазогрева).

На рис. 3 представлены основные энергетические характеристики СД: токовые зависимости P_{opt} и η_{EQE} . При этом на рис. 3, а зависимости приведены в широком диапазоне до $I = 20 \text{ A} (J = 2.5 \text{ kA/cm}^2)$ при T = 293 K, а на рис. 3, b представлены только зависимости η_{EQE} от тока, но в увеличенном масштабе для малых и средних токов при различных температурах. Как видно из рис. 3, для УФ СД наблюдается типичное для нитридных структур заметное отклонение от линейности характеристики свет-ток за счет падения $\eta_{\rm EOE}$ с током ("efficiency droop"). Максимальное значение $\eta_{\rm FOE}^{\rm max}$ составило 3.4% при плотности тока $J \approx 5 \, {\rm A/cm^2}$; при возрастании плотности тока до $J > 2 \, \text{kA/cm}^2$ наблюдается падение $\eta_{\rm EOE}$ до $\sim 1\%$ (для сравнения отметим, что для близких по конструкции лучших синих СД на основе AlInGaN значения $\eta_{\rm FOE}^{\rm max} \sim 70\%$, а при больших токах — $\eta_{\rm EQE} \sim 30\%$). Для выяснения причин столь кардинальной разницы в эффективности УФ и синих СД обратимся к анализу зависимостей $\eta_{\text{EOE}} = f(I)$ при разных температурах (рис. 3, b).

Из поведения η_{EQE} на рис. 3, *b* следуют два важных вывода. Во-первых, с уменьшением температуры значения η_{EQE} плавно растут, и положение η_{EQE}^{max} смещается в область меньших токов за счет падения темпа безызлучательной рекомбинации по Шокли–Риду–Холлу. Во-вторых, при достижении низких температур T < 230 К возможна четкая фиксация положения η_{EQE}^{max} на токовых зависимостях $\eta_{EQE} = f(I)$, что позволяет применить *ABC*-модель для вычисления абсолютных значений η_{IQE} [8]. В *ABC*-модели η_{EQE} определяется конкуренцией трех механизмов рекомбинации:

$$\eta_{\rm EQE} = \eta_{ext} \eta_{\rm IQE} = \eta_{ext} \frac{Bn^2}{An + Bn^2 + Cn^3}, \qquad (4)$$

где А, В, С — коэффициенты, отвечающие механизмам безызлучательной рекомбинации по

Шокли–Риду–Холлу, излучательной бимолекулярной рекомбинации и безызлучательной оже-рекомбинации соответственно; n — концентрация инжектированных носителей в АО. С использованием известных преобразований [9] при построении экспериментальных зависимостей приведенного квантового выхода $\eta_{\rm EQE}^{\rm max}/\eta_{\rm EQE}$ от суммы корней приведенных мощностей $(p^{1/2} + p^{-1/2})$, где $p = P_{opt}/P_{opt}^{\rm max}$, а $P_{\rm EQE}^{\rm max}$, получаем выражение для определения параметров рекомбинации

$$\eta_{\rm EQE}^{\rm max}/\eta_{\rm EQE} = \eta_{\rm IQE}^{\rm max} + \frac{p^{1/2} + p^{-1/2}}{Q+2},$$
 (5)

где $Q = B/(AC)^{1/2}$ — "фактор качества", фундаментальная характеристика СД. Исходя из графика, полученного на основе (5), при его экстраполяции к значению $(p^{1/2} + p^{-1/2}) \rightarrow 0$ можно определить $\eta_{\text{IQE}}^{\text{max}}$, а с учетом $\eta_{\text{EQE}} = \eta_{ext}\eta_{\text{IQE}}$, зная рассчитанный $\eta_{\text{IQE}}^{\text{max}}$ и экспериментальный $\eta_{\text{EQE}}^{\text{max}}$, можно получить и η_{ext} , т.е. найти главные параметры, определяющие энергетику СД.

Результаты соответствующей обработки $\eta_{EQE} = f(J)$ (кривая 3 на рис. 3, b) дали значения $\eta_{IQE}^{max} = 0.85$, а $\eta_{ext} = 0.048$. Таким образом, эффективность вывода излучения составляет менее 5% и является главным фактором, ограничивающим энергетические возможности УФ СД. Предполагая, что η_{ext} не зависит от температуры, связываем падение η_{EQE} с уменьшением η_{IQE} до значений 0.74 и 0.65 при 293 и 323 К соответственно, т. е. и при повышенных температурах η_{IQE} остается много больше η_{ext} .

Резюмируя, можно заключить, что η_{IQE} УФ СД $(\lambda \sim 270 \text{ nm})$ при умеренных токах и температурах T = 220-350 К лежит в пределах $\eta_{IQE} \approx 80-65\%$. Низкие значения $\eta_{EQE} \sim 2.5-4.5\%$ и КПД ($R_s \sim 1\,\Omega$ не вносит значительного вклада в потери) обусловлены малостью η_{ext} вследствие отсутствия эффекта "многопроходности" света из-за поглощения на контактах. Дальнейшее повышение энергетических параметров УФ СД возможно путем повышения отражательной способствующих выводу света из кристалла: брэгговских отражателей, микродисковой меза-структуры и т. п.

Благодарности

Исследования параметров светодиодов выполнены в ЦКП "Элементная база радиофотоники и наноэлектроники: технология, диагностика, метрология".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 V. Sharma, H. Demir, ACS Photon., 9 (5), 1513 (2022). DOI: 10.1021/acsphotonics.2c00041

- [2] Q. Chen, J. Dai, X. Li, Y. Gao, H. Long, Z. Zhang, C. Chen, H. Kuo, IEEE Electron Dev. Lett., 40 (12), 1925 (2019).
 DOI: 10.1109/LED.2019.2948952
- [3] А.Л. Закгейм, А.В. Аладов, А.Е. Иванов, Н.А. Тальнишних, А.Е. Черняков, Письма в ЖТФ, 48 (13), 33 (2022). DOI: 10.21883/PJTF.2022.13.52742.19182
 [A.L. Zakgeim, A.V. Aladov, A.E. Ivanov, N.A. Talnishnikh, A.E. Chernyakov, Tech. Phys. Lett., 48 (7), 29 (2022). DOI: 10.21883/TPL.2022.07.54033.19182].
- [4] Д.А. Закгейм, Г.В. Иткинсон, М.В. Кукушкин, Л.К. Марков, О.В. Осипов, А.С. Павлюченко, И.П. Смирнова, А.Е. Черняков, Д.А. Бауман, ФТП, **48** (9), 1287 (2014).
 [D.A. Zakheim, G.V. Itkinson, M.V. Kukushkin, L.K. Markov, O.V. Osipov, A.S. Pavlyuchenko, I.P. Smirnova, A.E. Chernyakov, D.A. Bauman, Semiconductors, **48** (9), 1254 (2014). DOI: 10.1134/S1063782614090267].
- [5] А.Л. Закгейм, А.Е. Иванов, А.Е. Черняков, в сб. Радиоэлектронная техника (УлГТУ, Ульяновск, 2022), с. 86.
- [6] Ф.Е. Шуберт, Светодиоды, пер. с англ. под ред. А.Э. Юновича (Физматлит, М., 2008). [F.E. Schubert, Light-emitting diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006). DOI: 10.1017/CBO9780511790546].
- [7] А.С. Павлюченко, И.В. Рожанский, Д.А. Закгейм, ФТП,
 43 (10), 1391 (2009). [А.S. Pavluchenko, I.V. Rozhansky,
 D.A. Zakheim, Semiconductors, 43 (10), 1351 (2009).
 DOI: 10.1134/S1063782609100170].
- [8] S.Yu. Karpov, Opt. Quant. Electron., 47 (6), 1293 (2015).
 DOI: 10.1007/s11082-014-0042-9
- I. Titkov, S. Karpov, A. Yadav, V. Zerova, M. Zulonas, B. Galler, M. Straßburg, I. Pietzonka, H. Lugauer, E.U. Rafailov, IEEE J. Quant. Electron., 50 (11), 911 (2014). DOI: 10.1109/JQE.2014.2359958