12.4

Снижение механических напряжений в тонкостенной квазибессиловой магнитной системе, внесенной во внешние скрещенные магнитные поля

© Г.А. Шнеерсон, В.В. Титков, К.В. Волошин

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия E-mail: gashneerson@mail.ru

Поступило в Редакцию 20 января 2023 г. В окончательной редакции 20 февраля 2023 г. Принято к публикации 27 февраля 2023 г.

> Механические напряжения в тонкостенной квазибессиловой обмотке соленоида, возникающие при получении сильного импульсного магнитного поля, могут быть значительно уменьшены, если обмотка находится в области между двумя магнитами, создающими скрещенные поля. Показано, что при рациональном выборе амплитуды и формы импульсов внешних полей напряжения могут быть снижены до значений, составляющих менее одной десятой от магнитного давления генерируемого поля.

Ключевые слова: сильные магнитные поля, квазибессиловое поле, уравновешенная обмотка.

DOI: 10.21883/PJTF.2023.09.55317.19510

Генерация полей 50-100 Т связана с возникновением высоких механических напряжений в обмотке и изоляции. Эти напряжения являются одним из основных факторов, препятствующих получению сильных магнитных полей. Для обеспечения прочности современных магнитов с рекордными полями в них используются катушки с равнонагруженными многослойными обмотками [1-3]. В таких магнитных системах внешний радиус связан с внутренним отношением $\exp(B_0^2/2\mu_0\sigma_0)$, где $σ_0$ — предел прочности. Расчеты показывают, что при генерации сверхсильных полей имеет место резкий рост габаритов обмотки и энергии системы [4]. Альтернативным направлением является использование квазибессиловых магнитных систем, в которых электромагнитные силы существенно снижены без увеличения габаритов и энергии магнитной системы [4-7].

Одной из возможных реализаций такой магнитной системы является магнит с дополнительными магнитными полями [8]. В настоящей работе рассматривается применимость этого способа для снижения механических напряжений в системе, работающей в импульсном режиме. Поскольку в данной системе можно избежать недопустимого нагрева обмотки, она представляет наибольший практический интерес, в частности, при конструировании магнитов малого объема [7].

В стационарном режиме можно, пренебрегая кривизной стенки, считать, что плотность тока постоянна по толщине проводников обмотки и ее абсолютное значение составляет $\delta_0 = B_0/\mu_0 \Delta$, где B_0 — индукция на оси магнита, Δ — толщина стенки соленоида. При этом имеет место линейный закон распределения аксиальной и азимутальной компонент индукции по толщине стенки: $B_z = B_0(1 - x/\Delta)$, $B_{\varphi} = B_0(x/\Delta)$, где x = r - R (r — радиальная координата точки, R — внутренний радиус соленоида). Вычисления по формулам теории

упругости, выполненные в работе [6] и подтвержденные численными расчетами, показали, что в тонкостенной обмотке, концы которой закреплены, с витками, уложенными под углом 45° к оси, отношение эквивалентного механического напряжения σ_M , рассчитанного по формуле фон Мизеса, к магнитному давлению поля на оси $\eta = 2\mu_0\sigma_M/B_0^2$ принимает значение около 0.2. Дополнительное снижение этого напряжения может быть получено в магнитной системе, описанной в работе [8], где внутри соленоида с основной квазибессиловой обмоткой 1 расположен проводник 2 с аксиальным током, создающий поле с индукцией $B_{\varphi 1}$, а снаружи — магнит 3, создающий аксиальное поле с индукцией B_{z1} (рис. 1).

При равенстве граничных значений этих индукций $(B_{\varphi 1}(0) = B_{z1}(\Delta) = B_1)$ установившиеся распределения индукции, компонент плотности тока и электромагнитной силы в проводнике, внесенном в скрещенное внешнее магнитное поле, имеют вид

$$B_z = B_0(1 - x/\Delta) + B_1 x/\Delta,$$

$$B_{\varphi} = B_1(1 - x/\Delta) + B_0 x/\Delta,$$

$$\delta_z = \delta_{\varphi} = (B_0 - B_1)/\mu_0 \Delta,$$

$$f(x) = (B_0 - B_1)^2 (1 - 2x/\Delta)/\mu_0 \Delta.$$

Характерной величиной является равнодействующая этих сил, которая определяется формулой

$$F(x) = \int_{0}^{x} f(x)dx = P_{M}(0) - P_{M}(x)$$
$$= (B_{0} - B_{1})^{2}(x - x^{2}/\Delta)/\mu_{0}\Delta.$$
(1)

Рис. 1. Магнитная система. *I* — соленоид с квазибессиловой обмоткой, *2* — проводник с аксиальным током, *3* — магнит, создающий аксиальное поле.

где $P_M(x) = B(x)^2/2\mu_0$ — магнитное давление. Эта величина принимает максимальное значение в середине слоя: $F_{\text{max}} = (B_0 - B_1)^2/4\mu_0$. Компоненты тензора механических напряжений при условии $\Delta \ll R$ принимают значения [6,9]:

$$\sigma_r \approx -F(x) \approx (B_0 - B_1)^2 (x - x^2/\Delta)/\mu_0 \Delta, \qquad (2)$$

$$\sigma_{\phi}(x) \approx -\theta F(x) - \frac{1-\theta}{\Delta} \int_{0}^{\Delta} F(x) dx \approx -(B_{0} - B_{1})^{2} \times \left[\theta \left(x - \frac{x^{2}}{\Delta} \right) + (1-\theta) \frac{\Delta}{6} \right] / \mu_{0} \Delta.$$
(3)

Соотношения являются справедливыми при заполнении межвиткового пространства соленоида высокомодульным диэлектриком [4,10,11]. У обмотки с закрепленными концами $\theta = \mu/(1-\mu)$, где μ — коэффициент Пуассона, принят равным 0.3. Максимальные значения модулей напряжения имеют место в середине слоя ($x = \Delta/2$):

$$\begin{aligned} |\sigma_{r,\max}| &= F_{\max},\\ \sigma_{\phi,\max}| &= F_{\max}(\theta+2)/3 = (2-\mu)/3(1-\mu)F_{\max}. \end{aligned}$$

В отсутствие скрещенных внешних полей $B_1 = 0$ и $F_{\text{max}} = B_0^2/4\mu_0$. При условии, что $B_1 = (\sqrt{2} - 1)B_0 \approx 0.414B_0$, магнитное давление в средней точке равно $P_M(\Delta/2) = (1/2\mu_0)B_0^2$, а на границе $P_M(0) = (1/2\mu_0)(1 + (\sqrt{2} - 1)^2)B_0^2$ (рис. 2, *a*). При этом $F_{\text{max}} = 0.172B_0^2/2\mu_0$, а нормированное напряжение принимает значение $\eta_{\text{max}} \approx 0.07$. Этот эффект достигается при использовании внешних полей с индукцией, существенно меньшей, чем индукция поля на оси магнита B_0 .

В соответствии с поставленной задачей в работе рассматриваются механические напряжения, возникающие в импульсном режиме, когда длительность протекания тока в обмотке соизмерима с характерным временем диффузии магнитного поля в проводник $\tau \approx \mu_0 \Delta^2 / \rho$, где ρ — удельное сопротивление.

Специфику формирования напряженного состояния обмотки в таком режиме показывает пример, когда внешние поля с граничными значениями индукции на границах В1 после их установления мгновенно выключаются. В результате абсолютные значения индукции на обеих границах становятся равными Во. В рассмотренном выше примере в средней точке обмотки на время, много меньшее времени диффузии поля, индукция сохраняет свое значение: $B_{z}(\Delta/2) = B_{\omega}(\Delta/2) = B_{0}/\sqrt{2}$. При этом магнитное давление на границе принимает такое же значение, как в средней точке: $P_M(0) = P_M(\Delta/2) = B_0^2/2\mu_0$. В указанной точке равнодействующая и напряжения становятся равными нулю. Рис. 2, b показывает, что после отключения внешнего поля по всей толще витка нормированное напряжение не превосходит значения 0.02, т.е. оно снижается приблизительно в 3 раза по сравнению с его значением в статическом режиме. Однако со временем напряжения возрастают в процессе затухания дополнительного поля во всем объеме проводника. Это показывают зависимости равнодействующей и нормированного напряжения от времени (рис. 2, *c*). К моменту $t \approx 0.07\tau$ нормированное напряжение достигает значения 0.07, и далее система возвращается в состояние, характерное для статического режима без внешних полей ($\eta = 0.2$). Поэтому при реализации квазибессилового магнита в импульсном режиме работы целесообразно произвести отключение основного поля раньше времени установления стационарного состояния.

Возможность снижения механических напряжений в импульсном поле в случаях, представляющих практический интерес, рассмотрена на двух примерах.

Рис. 2. a — случай стационарного поля: B_z , B_{φ} — результирующие компоненты индукции, η и F' — нормированные значения эквивалентного механического напряжения и равнодействующей ($F' = 2\mu_0 F/B_0^2$); b — те же зависимости в момент $t = 0.005\tau$ после мгновенного отключения дополнительных полей; c — временные зависимости η и F' для середины слоя.

B_{1}/B_{0}	t_0/ au	sin-crowbar			crowbar-crowbar			
		t_1/ au	t_2/τ	$\eta_{ m max}$	t_1/ au	t_2/τ	t_3/τ	$\eta_{ m max}$
0.5	1.5	0.85	2.06	0.073	0.86	1.78	1.46	0.074
0.5	2	1.37	1.75	0.063	1.37	1.90	2.00	0.063
0.5	2.5	1.84	1.68	0.057	1.84	1.62	2.16	0.057
0.4	1.5	1.00	1.70	0.086	1.00	1.66	1.50	0.086
0.4	2	1.45	1.24	0.080	1.45	1.28	1.73	0.080
0.4	2.5	1.93	1.66	0.077	1.93	1.91	1.78	0.077
0.3	1.5	1.07	1.61	0.111	1.08	1.65	1.30	0.111
0.3	2	1.54	1.92	0.105	1.54	1.90	1.54	0.105
0.3	2.5	2.05	2.00	0.103	2.04	2.00	1.81	0.103

Нормированные механические напряжения

1. Зависимость от времени импульсного поля основной обмотки имела вид одной полуволны синусоиды длительностью $2t_0$ и амплитудой B_0 , а внешние поля включались одновременно с основным, нарастали во времени по синусоидальному закону до амплитудного значения B_1 за время t_1 , а затем затухали по экспоненциальному закону с постоянной времени t_2 (режим sin-crowbar).

2. Основное и внешние поля включались одновременно, нарастали во времени по синусоидальному закону до амплитудного значения B_0 и B_1 за время t_0 и t_1 соответственно, а затем затухали по экспоненциальному закону с постоянной времени t_3 и t_2 соответственно (режим crowbar-crowbar).

При заданных величинах B_0 , t_0 и B_1 выполнены расчеты по минимизации максимума нормированных механических напряжений η_{max} . Параметры t_1/τ , t_2/τ , t_3/τ , обеспечивающие минимальное значение η_{max} , представлены в таблице. Эти данные позволяют выбрать параметры импульса, руководствуясь приемлемым уровнем η_{max} . На рис. 3 представлены примеры зависимостей от времени величин, характеризующих процесс формирования механических напряжений в основной обмотке. Приведенные временные зависимости этих величин для

Рис. 3. Временные зависимости индукции B_z , B_{φ} на границах и в середине проводящего слоя, а также нормированных механических напряжений η и равнодействующей F' в середине слоя. a — sin-crowbar, b — crowbar.

импульсов с параметрами $t_0 = 1.5\tau$, $B_1 = 0.4B_0$ показывают, что в этих примерах отклонение максимального значения нормированных эквивалентных механических напряжений на протяжении всего импульса не превышает значения $\eta_{\text{max}} = 0.086$, что мало отличается от результата расчета статического режима.

Различия между двумя режимами невелики. Основной фактор, влияющий на значение нормированных эквивалентных напряжений η_{max} , — это отношение амплитуд B_1/B_0 . Даже небольшое внешнее поле $(B_1/B_0 = 0.3)$ в сравнении со случаем его отсутствия $(B_1/B_0 = 0)$ снижает η_{max} приблизительно в 2 раза.

Таким образом, достигнута цель работы, ее результаты подтверждают возможность существенного снижения механических напряжений в квазибессиловой обмотке соленоида, внесенного в скрещенные внешние поля, не только в статическом, но и в импульсном поле. В примере, представленном на рис. 3, при значении $\eta_{\rm max} = 0.086$ эквивалентное механическое напряжение 1 GPa имеет место в поле с индукцией около 170 Т. Это показывает перспективность использования описанного метода при получении импульсных магнитных полей мегагауссного уровня в неразрушаемых магнитах.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 18-19-00230).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 D.N. Nguyen, J. Michel, C.H. Mielke, IEEE Trans. Appl. Supercond., 26 (4), 4300905 (2016).
 DOI: 10.1109/TASC.2016.2515982

- [2] T. Peng, F. Jiang, Q.Q. Sun, Y. Pan, F. Herlach, L. Li, IEEE Trans. Appl. Supercond., 26 (4), 4300504 (2016). DOI: 10.1109/TASC.2015.2513366
- [3] T. Peng, S.B. Liu, Y. Pan, Y.L. Lv, H.F. Ding, X.T. Han, H.X. Xiao, S. Wang, S. Jiang, L. Li, IEEE Trans. Appl. Supercond., **32** (6), 4300104 (2022). DOI: 10.1109/TASC.2022.3148049
- [4] A.S. Nemov, A.D. Lagutkina, G.A. Shneerson, IEEE Trans. Magn., 58 (3), 8000609 (2022).
 DOI: 10.1109/TMAG.2022.3140925
- [5] А.А. Кузнецов, ЖТФ, **31** (6), 650 (1961).
- [6] Г.А. Шнеерсон, О.С. Колтунов, В.Ю. Хозиков, ЖТФ, 72 (1), 110 (2002). [G.A. Shneerson, O.S. Koltunov, V.Yu. Khozikov, Tech. Phys., 47 (1), 107 (2002). DOI: 10.1134/1.1435948].
- [7] Г.А. Шнеерсон, А.А. Парфентьев, В.В. Титков, С.И. Кривошеев, А.Д. Лагуткина, А.С. Немов, А.П. Ненашев, С.А. Шиманский, Письма в ЖТФ, 47 (11), 40 (2021).
 DOI: 10.21883/PJTF.2021.11.51007.18639 [G.A. Shneerson, A.A. Parfentiev, V.V. Titkov, S.I. Krivosheev, A.D. Lagutkina, A.S. Nemov, A.P. Nenashev, S.A. Shimansky, Tech. Phys. Lett., 47, 573 (2021). DOI: 10.1134/S1063785021060134].
- [8] Г.А. Шнеерсон, Письма в ЖТФ, 37 (19), 51 (2011).
 [G.A. Shneerson, Tech. Phys. Lett., 37 (10), 914 (2011).
 DOI: 10.1134/S1063785011100129].
- [9] S.P. Timoshenko, J.N. Goodier, *Theory of elasticity*, 3rd ed. (McGraw-Hill, N.Y., 1970).
- [10] G.A. Shneerson, A.V. Khlybov, A.A. Belov, A.P. Nenashev, A.A. Parfentiev, S.A. Shimanskiy, Mater. Phys. Mech., 48 (3), 355 (2022). DOI: 10.18149/MPM.4832022_6
- [11] A.P. Nenashev, A.A. Parfentiev, G.A. Shneerson, I.A. Vecherov, S.A. Shimanskiy, IEEE Trans. Plasma Sci., 46 (9), 3209 (2018). DOI: 10.1109/TPS.2018.2852007