05

Исследование первичных нанотрещин атомарно-гладких металлов

© В.М. Юров¹, В.И. Гончаренко², В.С. Олешко²

¹ Карагандинский технический университет, Караганда, Казахстан

² Московский авиационный институт (Национальный исследовательский университет), Москва, Россия E-mail: exciton@list.ru, oleshkovs@mai.ru

Поступило в Редакцию 11 января 2023 г. В окончательной редакции 20 февраля 2023 г. Принято к публикации 21 февраля 2023 г.

> Предложена новая аналитическая модель расчета характеристик первичных трещин, возникающих в атомарно-гладких металлах. Разработана методика расчетов длины нанотрещин атомарно-гладких металлов, основанная на изучении физических свойств кристаллов. Впервые проведены вычисления параметров первичных трещин на примере атомарно-гладких металлов. Проведено сравнение полученных на основе разработанной методики результатов с результатами применения известных моделей образования нанотрещин. Показано, что полученные нами данные согласуются с ранее известными результатами.

> Ключевые слова: поверхность, поверхностная энергия, поверхностный слой, наноструктура, температура плавления, атомный объем, атомарно-гладкий кристалл.

DOI: 10.21883/PJTF.2023.08.55136.19504

Кристалл металла состоит из поверхностного слоя толщиной R_1 , который будем называть фазой $\gamma 1$, и основного вещества, которое будем называть фазой у2. Поскольку поверхностная энергия у1 слоя фазы у1 в 3 раза меньше поверхностной энергии у2 объемной фазы, разрушение металла начинается с поверхностного слоя. Для кристаллов с одинаковыми атомами доля пространства, занятого ими в одном кубе, составляет для ОЦК- и ГЦК-переходных металлов 68 и 74% соответственно. Остальная часть таких кристаллов (32 и 26% для металлов с ОЦК- и ГЦК-решетками соответственно) представляет собой незаполненное пространство. После релаксации или реконструкции это пространство будем называть максимальным полем первичных трещин. Для нас важно то, что длина этой трещины L равна толщине поверхностного слоя металла R₁. Эта длина трещины отражает особенность, которая связана не только с геометрией кристаллических решеток, но и с физическими свойствами кристаллов.

Каковы размеры первичных нанотрещин в атомарно-гладких металлах? Этот вопрос является сложным и не решен до сих пор, поскольку нанотрещины и их рост определяют условия разрушения твердого тела [1–7]. Ряд моделей образования нанотрещин представлен в [1,8–10]: модель Гриффитса (рассмотрел изменение энергии тела с трещиной при нагружении и получил энергетический критерий разрушения [1]), модели Зинера-Стро-Петча, Коттрелла, Баллафа-Гилмана, Орвана-Стро, Кобле, Набарро-Херринга и некоторые другие. Однако в названных моделях не представлены результаты расчетов длины нанотрещины.

По нашему мнению, первопричиной возникновения нанотрещин даже для атомарно-гладких кристаллов являются напряжения, связанные с формированием поверхностного наноструктурного слоя металлов из-за процессов релаксации или реконструкции поверхности, которые приводят к образованию пор, нормальных и латеральных дислокаций. Нами предложена модель определения толщины приповерхностного слоя металла R_1 [11] и ее анизотропии [12]. Экспериментально R_1 можно определить в высоком вакууме рентгеновскими или другими методами (для германия $R_1 = 3.2$ nm, а для золота $R_1 = 1.2$ nm) [13,14].

Целью настоящей работы являются разработка методики и проведение расчетов длины нанотрещин некоторых металлов с кубическими кристаллическими решетками, а также сравнение результатов расчетов с теорией Гриффитса.

Размерные эффекты в слое толщиной R_1 определяются всем коллективом атомов в системе (коллективные процессы). Такие "квазиклассические" размерные эффекты наблюдаются только в наночастицах и наноструктурах [11,12,15]. Экспериментально их можно наблюдать на очень чистых монокристаллах при скользящем падении рентгеновского излучения, когда угол падения равен или меньше критического угла полного внутреннего отражения.

В работе [11] нами получено

$$L = R_1 = 0.17 \cdot 10^{-9} v \,[\text{m}]. \tag{1}$$

Уравнение (1) показывает, что слой толщиной R_1 определяется молярным (атомным) объемом металла $v = M/\rho$ (M — молярная масса, ρ — плотность). В работе [15] показано, что поверхностная энергия объемного металла γ_2 с точностью до 3% равна

$$\gamma_2 = 0.78 \cdot 10^{-3} T_m \,[\text{J/m}^2]. \tag{2}$$

Представленная на рисунке работа по разъединению ϕ аз $\gamma 1$ и $\gamma 2$, называемая работой адгезии W_a , определя-

Работа адгезии W_a по разделению фаз металла у1 и у2.

ется из выражения Дюпре [16]:

$$W_a = \gamma_1 + \gamma_2 - \gamma_{12} \approx \gamma_1 + \gamma_2 = 1.3\gamma_2 \approx 10^{-3} T_m \, [\text{J/m}^2],$$
(3)

где γ_{12} — поверхностная энергия на границе раздела фаз, которая пренебрежимо мала в силу фазового перехода второго рода. При этом, как показано нами в работе [15], $\gamma_1 \approx 0.3\gamma_2$.

Внутренние напряжения σ_{is} между фазами $\gamma 1$ и $\gamma 2$ можно рассчитать по формуле [16]:

$$\sigma_{is} = (W_a E/R_1)^{1/2} \,[\text{Pa}].$$
 (4)

Сила адгезии для металла равна

$$F_1 = \gamma_1 R_1. \tag{5}$$

Чтобы оценить анизотропию для металлов, нужно использовать данные работы [17]:

*Im*3*m*,
$$Z = 2$$
, $l_{100} = R_1$, $l_{110} = R_1 2^{1/2}$, $l_{111} = R_1/(3^{1/2})$,
*Fm*3*m*, $Z = 4$, $l_{100} = R_1$, $l_{110} = R_1/(2^{1/2})$, $l_{111} = 2R_1/(3^{1/2})$.
(6)

Исходные данные для расчетов по формулам (1)-(6) для некоторых ОЦК (Im3m)- и ГЦК (Fm3m)-переходных металлов представлены в таблице: толщина поверхностного слоя (длина трещины) $R_1 = L$ (здесь же в скобках дано число монослоев металла $n = R_1/a$, где a — постоянная решетки), работа W_a и сила F_1 адгезии, величины внутренних напряжений σ_{is} , длина трещины по Гриффитсу L_G .

Сила адгезии F_1 (сила межмолекулярного взаимодействия) у переходных металлов составляет $(0.2-0.6) \cdot 10^{-9}$ N. Для сравнения сила притяжения между электроном и протоном в атоме водорода $F = 0.2 \cdot 10^{-9}$ N, сила звукового давления в ухе человека у порога слышимости $F = 2 \cdot 10^{-9}$ N. Величина внутренних напряжений σ_{is} максимальна у тугоплавких металлов (вольфрам). Данные таблицы показывают, что для *d*-элементов переходных металлов толщина слоя R_1 , как и длина трещины *L*, не превышает 2 nm, а для *f*-элементов она составляет около 4 nm, т.е. в 2 раза больше. В ряду Li \rightarrow Cs (в таблице не приведены) изменение $R_1 = L$ происходит от 2.2 до 12.1 nm. У *d*-металлов число монослоев *n* не превышает 3–5, а для f-металлов составляет около 11 (Eu). Для лития число монослоев n = 6, для цезия n = 20.

Известен [1] энергетический критерий, на основе которого можно определить условие, когда твердое тело разрушается в результате роста нанотрещины. Согласно этому энергетическому критерию, разрушение твердого тела происходит в том случае, если изменение упругой энергии будет больше или равно энергии адгезии. Изменение энергии при этом описывается формулой

$$\Delta W = \left((\sigma_{is})^2 \pi (L_G)^2 / 2E \right) + 2(\gamma_1 + \gamma_2) L_G, \tag{7}$$

где ΔW — изменение энергии при плоском напряженном состоянии рассматриваемого твердого тела, σ_{is} приложенное к твердому телу напряжение, L_G – размер трещины, E — модуль Юнга, γ_1 , γ_2 — удельные поверхностные энергии слоя толщиной R_1 и внутренних слоев рассматриваемого твердого тела.

При развитии нанотрещины образуются новые поверхности, обладающие поверхностной энергией, удельные значения которой представлены в формуле (7) величинами γ_1 и γ_2 .

Значение критических напряжений, при которых трещина способна к нестабильному росту, может быть найдено из условий

$$\partial W/\partial L = 0,$$
 $(\sigma_{is})^2 \pi L_G/E = 2(\gamma_1 + \gamma_2).$ (8)

Рассчитанные по формуле (8) длины трещины L_G приведены в таблице и отличаются от длины трещин L в среднем на 9%, что подтверждает работоспособность нашей модели, где длина первичных трещин описывается выражением $L = 0.17 \cdot 10^{-9} M/\rho$. Эта модель справедлива не только для металлов, но и для любых твердых тел, включая полимеры и минералы.

Таким образом, в большинстве работ по образованию нанотрещин в твердых телах начиная с работ Гриффитса (20-е годы прошлого столетия) не была дана количественная оценка длины нанотрещины. Нами показано, что первичная нанотрещина возникает из-за нескомпенсированности с атомами, которые находятся на поверхности и в объеме. При этом возникает поверхностный слой толщиной R_1 , в котором происходит атомная релаксация или реконструкция поверхности и возникают внутренние напряжения, приводящие к возникновению дислокаций. Эти дислокации и приводят к образованию пор и нанотрещин, размеры которых зависят от массы и плотности элементов кристалла.

Предложенная нами модель является универсальной. Отметим, что до сих пор никто не предложил метод определения толщины поверхностного слоя простым способом для любых соединений. Эту толщину R_1 мы сопоставляем с длиной нанотрещины L, которая возникает из-за напряжений, обусловленных релаксацией поверхности, и определяет разрушение любых конструкционных материалов.

С учетом размеров нанотрещин (см. таблицу) время их образования составляет несколько наносекунд, что

Металл	$R_1 = L$, nm (n)	$F_1, 10^{-9} \mathrm{N}$	W_a , J/m ²	σ_{is} , MPa	L_G , nm
Cr	1.23 (4)	0.61	2.130	21977	1.02
Мо	1.60 (5)	0.68	2.896	24413	1.33
W	1.62 (5)	0.86	3.695	30611	1.35
Mn	1.30 (2)	0.35	1.517	15199	1.08
Fe	1.21 (4)	0.42	1.812	17776	1.01
Ni	1.12 (3)	0.40	1.726	17550	0.93
Cu	1.21 (3)	0.32	1.357	12000	1.01
Ag	1.75 (4)	0.29	1.235	7665	1.41
Au	1.73 (4)	0.31	1.337	7810	1.44
Ce	3.52 (7)	0.29	1.072	3198	3.04
Eu	4.93 (11)	0.26	1.099	2015	4.25
Yb	4.22 (8)	0.26	1.097	2272	4.26
Th	3.35 (7)	0.47	2.028	6914	2.78

Исходные данные и результаты расчетов

было продемонстрировано в работах [18,19]. Этот метод основан на фрактолюминесценции, когда в процессе разрушения твердого тела возникает сигнал света (люминесценция) при разрыве атомных связей на поверхности нанотрещин с временным разрешением от 1 до 2 ns. В работе [19] получен спектр фрактолюминесценции олигоклаза при разрушении его поверхности. Длительность сигналов составила около 50 ns, а интервал времени между ними изменялся от 0.1 до 1.0 µs. Спектр содержал четыре максимума, которые возникали при преодолении четырех барьеров дислокациями по плоскостям скольжения. В этом случае дислокации образуют первичные трещины размером от 10 до 20 nm. Олигоклаз представляет собой смесь из 10-30% анортита CaAl₂Si₂O₈ и 70-90% альбита NaAlSi₃O₈. Проведенный нами по формуле (5) расчет дал $L = R_1 = 16.8 - 17.2$ nm, что неплохо согласуется с результатами эксперимента [19].

Нанотрещины в настоящее время еще недостаточно изучены, особенно в металлах и металлических конструкциях. Нами предложена модель расчета длины первичных трещин, возникающих в металлах из-за наличия поверхностного слоя толщиной R_1 . Полученные в работе результаты расчета длины первичных нанотрещин, основанного на разработанной нами новой методике, хорошо согласуются с полученными ранее результатами. Наш расчет длины трещины L_G по Гриффитсу дал среднее значение, которое отличается от длины трещин L в среднем на 9%, что свидетельствует в пользу нашей модели. Эта модель справедлива не только для металлов, но и для любых твердых тел, включая полимеры и минералы.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- В.Т. Беликов, Изв. РАН. Механика твердого тела, № 2, 28 (2020). DOI: 10.31857/S0572329920010055 [V.T. Belikov, Mech. Solids, 55 (2), 177 (2020). DOI: 10.3103/S0025654420020089].
- [2] Э.Б. Завойчинская, Вестн. Моск. ун-та. Сер. 1: Математика. Механика, № 2, 29 (2019). [Е.В. Zavoichinskaya, Moscow Univ. Mech. Bull., 74 (2), 36 (2019). DOI: 10.3103/S002713301902002X].
- В.П. Федоров, М.Н. Нагоркин, Л.Г. Вайнер, Вестн. Брянск. гос. техн. ун-та, № 11(108), 49 (2021).
 DOI: 10.30987/1999-8775-2021-11-36-50
- [4] А.И. Попелюх, А.Г. Тюрин, А.И. Бардин, Металловедение и термическая обработка металлов, № 12(798), 58 (2021). DOI: 10.30906/mitom.2021.12.58-63
- [5] M.M. Кантор, B.B. Судьин, К.А. Солнцев, Неорган. материалы, 57 (6), 670 (2021).DOI: 10.31857/S0002337X2106004X M.M. Kantor, V.V. Sudin, K.A. Solncev, Inorg. Mater., 57 (6), 641 (2021). DOI: 10.1134/S0020168521060042].
- [6] К.А. Минков, А.Н. Минков, А.А. Хлыбов, Изв. вузов.
 Черная металлургия, 62 (9), 681 (2019).
 DOI: 10.17073/0368-0797-2019-9-681-685
- [7] А.О. Белорус, А.М. Васюков, А.И. Пастухов, Фундаментальные проблемы радиоэлектронного приборостроения, 17 (1), 239 (2017).
- [8] В.С. Ерасов, Е.И. Орешко, А.Н. Луценко, Тр. ВИАМ, № 2 (62), 101 (2018). DOI: 10.18577/2307-6046-2018-0-2-12-12
- [9] Ю.Н. Симонов, М.Ю. Симонов, *Физика прочности и механические испытания металлов* (Перм. нац. исслед. политехн. ун-т, Пермь, 2020).
- [10] В.А. Скуднов, А.С. Сафронов, А.А. Хлыбов, Изв. вузов. Черная металлургия, 62 (1), 25 (2019). DOI: 10.17073/0368-0797-2019-1-25-33
- [11] В.М. Юров, Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, № 11, 389 (2019). DOI: 10.26456/pcascnn/2019.11.389
- [12] V.M. Yurov, V.I. Goncharenko, V.S. Oleshko, Eurasian Phys. Tech. J., 18 (1), 9 (2021).
 DOI: 10.26456/pcascnn/2021.13.522

- [13] Г.В. Фетисов, УФН, **190** (1), 2 (2020). DOI: 10.3367/UFNr.2018.10.038435 [G.V. Fetisov, Phys. Usp., **63** (1), 2 (2020). DOI: 10.3367/UFNe.2018.10.038435].
- [14] К.В. Ларионов, П.Б. Сорокин, УФН, 191 (1), 30 (2021). DOI: 10.3367/UFNr.2020.03.038745 [K.V. Larionov, P.B. Sorokin, Phys. Usp., 64 (1), 28 (2021). DOI: 10.3367/UFNe.2020.03.038745].
- [15] В.М. Юров, С.А. Гученко, В.Ч. Лауринас, Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов, № 10, 691 (2018). DOI: 10.26456/pcascnn/2018.10.691
- [16] Л.Н. Маскаева, Е.А. Федорова, В.Ф. Марков, *Технология тонких пленок и покрытий* (Изд-во Урал. ун-та, Екатеринбург, 2019).
- [17] В.П. Бокарев, Развитие физико-химических принципов оценки влияния поверхностной энергии на свойства материалов и процессы для технологии микроэлектроники, докт. дис. (НИИ молекулярной электроники, М., 2020).
- [18] В.И. Веттегрень, А.В. Пономарев, В.Б. Кулик, Р.И. Мамалимов, И.П. Щербаков, Геофизические исследования, 21 (4), 35 (2020). DOI: 10.21455/gr2020.4-3
- [19] В.И. Веттегрень, А.В. Пономарев, Р.И. Мамалимов, И.П. Щербаков, Физика Земли, № 6, 87 (2021). DOI: 10.31857/S0002333721060119 [V.I. Vettegren, A.V. Ponomarev, R.I. Mamalimov, I.P. Shcherbakov, Izv. Phys. Solid Earth, 57 (6), 894 (2021). DOI: 10.1134/S1069351321060112].