06.3;08.1

Получение цветного наноструктурированного слоя аморфного кремния при травлении в хлорсодержащей плазме

© И.И. Амиров, А.Н. Куприянов, М.О. Изюмов, Л.С. Мазалецкий

Ярославский филиал Физико-технологического института им. К.А. Валиева РАН, Ярославль, Россия E-mail: ildamirov@yandex.ru

Поступило в Редакцию 28 сентября 2022 г. В окончательной редакции 10 февраля 2023 г. Принято к публикации 20 февраля 2023 г.

Показано, что в режиме самоформирования в плазменном процессе травления аморфного кремния структур (α -Si)/SiO₂/Si и (α -Si)/Pt/SiO₂/Si в хлорсодержащей плазме (Cl₂/Ar) можно получить разноцветную поверхность из наноконусных и нанопроволочных структур α -Si. Обсуждается механизм образования таких структур при плазмохимическом травлении. Приведены спектры отражения цветных пленок. Яркие цвета поверхности обусловлены резонансным отражением света в слоях наноконусных и нанопроволочных структур α -Si с подслоем α -Si нанометровой толщины.

Ключевые слова: аморфный кремний, хлорсодержащая плазма, травление, интерферограмма, наноконусные структуры.

DOI: 10.21883/PJTF.2023.08.55133.19376

Нанопроволочные (НП) и наноконусные (НК) кремниевые структуры, обладающие уникальными оптическими и сенсорными свойствами, используются при изготовлении солнечных элементов, оптических фильтров, фотодетекторов, газовых сенсоров [1-5]. Сильно поглощающие в видимом диапазоне свет неупорядоченные НП- и НК-структуры ("черный кремний") можно получить методом самоформирования с использованием плазменных процессов травления [2,6,7]. Разноцветную поверхность из упорядоченных наностолбчатых или нанодисковых Si-структур обычно получают с использованием литографии и травления [1,5,7-9]. Возникновение цветной поверхности обусловлено резонансным отражением света от упорядоченного массива кремниевых наноструктур. Цветные поверхностные наноструктуры можно получить также в двухстадийном процессе травление/осаждение Si во фторсодержащей плазме [10]. Получение НП- и НК-структур в процессе самоформирования в плазме ввиду своей простоты является наиболее привлекательным [11,12]. В настоящей работе показано, что при травлении структур *α*-Si/SiO₂/Si и *α*-Si/Pt/SiO₂/Si в плазме Cl₂/Ar в режиме самоформирования можно получить яркую разноцветную поверхность из НК- и НП-структур α -Si.

Эксперименты проводились в двухкамерном реакторе плазмы высокочастотного индукционного разряда (f = 13.56 MHz), конструкция которого представлена в [13]. Плазма генерировалась в кварцевой разрядной камере и распространялась в реакционную металлическую камеру (диаметр 300 mm, высота 300 mm), в которой был установлен высокочастотный (ВЧ) электрод. На электрод помещалась анодированная Аl-пластина, на которую устанавливались образцы. Для управления энергией ионов на электрод подавалась определенная

ВЧ-мощность отдельного генератора (f = 13.56 MHz). Энергия ионов определялась возникающим потенциалом самосмещения U_{sb} [13]. Образцами служили окисленные (толщина SiO₂ составляла 980 nm) пластинки Si с нанесенным магнетронным способом слоем аморфного кремния толщиной 350 nm (образцы № 1) и пластинки Si, на окисленную поверхность которых также магнетронным способом были нанесены слои Pt (100 nm) и α -Si (990 nm) (образцы № 2). Размер образцов № 1 и 2 составлял ~ 9 × 9 mm. Они вырезались из стандартных окисленных пластин Si (100) диаметром 100 mm, на которые был нанесен слой α -Si или Pt, а затем α -Si.

Скорость травления α -Si определялась лазерно-интерферометрическим способом. Луч He–Ne-лазера ($\lambda = 633$ nm) направлялся на поверхность образца, отраженный сигнал которого регистрировался фотодетектором, а затем через плату сопряжения компьютером. Скорость травления определялась по времени периода интерферограммы, за которое стравливалось 75 nm α -Si ($d = \lambda/2n$). Показатель преломления α -Si равнялся 4.2. Типичный вид интерферограммы приведен на рис. 1, *а*. Травление начиналось в момент времени t_0 и заканчивалось в момент t_{end} , когда сигнал переставал изменяться.

Исследование морфологии поверхности после плазменной обработки проводилось с использованием сканирующего электронного микроскопа (СЭМ) Supra 40 (Carl Zeiss). Спектр отражения в видимом диапазоне измерялся с помощью спектрофотометра Leitz MPV-SP.

Условия проведения экспериментов были следующими: давление P = 0.6 Ра, мощность, подаваемая на индуктор, $W_{ind} = 800$ W. Расходы Аг и Cl₂ были одинаковыми и равнялись 25 sccm. Мощность ВЧ-смещения изменялась в диапазоне от 0 до 20 W.

Рис. 1. a — интерферограмма травления образца α -Si/SiO₂/Si в плазме Cl₂/Ar; b — вид разноцветной наноструктурированной поверхности образца с НК-структурами α -Si (цветной вариант рисунка представлен в электронной версии статьи).

Поверхность разного цвета была получена при травлении образцов при низкой энергии ионов ($E_i < 100 \, \text{eV}$). Вынос образца № 1 на атмосферу после травления в плазме Cl₂/Ar при энергии ионов $\sim 70 \, \text{eV}$ (интерферограмма приведена на рис. 1, а) показал, что поверхность образца стала разноцветной (рис. 1, b, цветной вариант рисунка представлен в электронной версии статьи). При этом на поверхности обнаруживались высокоаспектные наноконусные структуры (рис. 2, a). СЭМ-снимки поверхности показали наличие на поверхности разного цвета одинаково однородного массива наноконусных структур высотой от 100 до 250 nm с плотностью, равной $2.3 \cdot 10^{10} \text{ cm}^{-2}$. Размеры наноконусов на вершине равнялись 10-20 nm, а в основании — 40-50 nm. Поскольку травление пленки *α*-Si прошло не на всю ее толщину, в основании наноконусов оставался подслой α -Si, толщина h которого (рис. 2, a) линейно увеличивалась приблизительно с 30 до 90 nm вдоль линии скола от левого края к правому краю (по линейке на рис. 1, b).

При этом разной толщине *h* соответствовал разный цвет поверхности.

Можно полагать, что возникновение разного цвета поверхности обусловлено не диаметром, высотой или плотностью наноконусов, которые были приблизительно одинаковыми, а толщиной нестравленного слоя α -Si. Хотя известно, что цвет структурированной поверхности определяется диаметром наностолбчатых структур, в нашем случае он определяется в основном интерференцией света в подслое α -Si разной толщины. Влияние дополнительно нанесенного диэлектрического слоя на резонансное отражение α -Si отмечалось в [14]. Цвет такой НК-поверхности не изменялся в зависимости от угла обзора, что является характерным признаком такой структурированной цветной поверхности [7,14]. Можно отметить, что если механически стереть наноконусные структуры, то яркий цвет поверхности пропадает.

Возникновение наноконусов при травлении α -Si в плазме Cl₂/Ar обусловлено тремя факторами: наличием на поверхности естественного неоднородного слоя SiO₂ нанометровой толщины, высокой анизотропностью травления α -Si и высокой селективностью травления α -Si по отношению к SiO₂. Эксперименты показали, что селективность травления α -Si/SiO₂ в хлорсодержащей плазме при низкой энергии ионов (< 60 eV) была более 1000. Так как естественная окисная пленка на поверх-

Рис. 2. Вид структур на поверхности образца. a — образец с НК-структурами α -Si под углом 70°; b — НП-структуры α -Si на сколе образца α -Si/Pt/SiO₂/Si.

Рис. 3. Спектры отражения поверхности образцов α -Si/SiO₂/Si с НК-структурами в оранжевой области (*a*) и α -Si/Pt/SiO₂/Si с НП-структурами в красной области (*b*).

ности образца была неоднородной по толщине, при ее травлении происходило формирование наномаски в виде островков SiO₂. Образование наноконусов обусловлено анизотропным травлением α -Si через такую островковую SiO₂-наномаску.

Подобная разноцветная поверхность образца возникает также, если с образцов № 2 предварительно удалить естественную окисную пленку в хлорсодержащей плазме при высокой энергии ионов. В этом случае на поверхности образовывался тонкий слой SiOCl_x, и травление слоя α -Si толщиной ~ 230 nm происходило уже при более низкой энергии ионов ($U_{sb} = -44$ V, $W_{sb} = 10$ W). Амплитуда сигнала интерферограммы при этом была спадающей во времени. Это свидетельствовало о том, что травление α -Si происходило с образованием более плотноупакованных наноструктур (рис. 2, *b*). Образование более плотного массива высокоаспектных НП-структур можно объяснить тем, что в последнем случае травление α -Si происходит через маску SiOCl_x, которая содержит меньшие по размеру неоднородности, чем маска из естественного SiO₂-слоя. В этом случае на поверхности образца формируются уже не наноконусные, а скорее нанопроволочные структуры с размером на вершине меньше 20 nm, причем нанопроволоки высотой ~ 250 nm часто притягивались друг к другу. Плотность нанопроволок равнялась $\sim 5 \cdot 10^{10} \, \mathrm{cm}^{-2}$. Как и в первом случае, цвет поверхности определялся наличием подслоя α -Si, толщина которого вдоль поверхности изменялась в диапазоне от 10 до 40 nm. Поскольку цветные НП-структуры образовывались на поверхности металла, можно полагать, что в первом случае сильного влияния SiO₂ на формирование цвета не было. На рис. 3 приведены локальные спектры отражения образца № 1 в оранжевой области (а) и образца № 2 в красной области (b). Подобные спектры отражения наблюдались от поверхности Si, структурированной нанодисками с интерференционным подслоем SiO₂ [14]. Возникновение небольших локальных пиков в спектре может быть обусловлено присутствием НП-структур разной толщины в общем их массиве.

Представленный способ получения цветной поверхности *α*-Si может быть использован при изготовлении различных устройств фотоники и сенсорики.

Благодарности

СЭМ-измерения выполнены с использованием оборудования Центра коллективного пользования "Диагностика микро- и наноструктур".

Финансирование работы

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ для ФТИАН им. К.А. Валиева РАН по теме № FFNN-2022-0017.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Chang, G.J. Lee, Y.M. Song, Micromachines, 11 (8), 726 (2020). DOI: 10.3390/mi11080726
- X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, D.J. Fray, Energy Environ. Sci., 7 (10), 3223 (2014).
 DOI: 10.1039/C4EE01152J
- [3] M.A. Saatlu, M. Procek, C. Mattsson, G. Thungström, H.-E. Nilsson, W. Xiong, B. Xu, Y. Li, H.H. Radamson, Nanomaterials, 10 (11), 2215 (2020). DOI: 10.3390/nano10112215
- [4] H. Park, Y. Dan, K. Seo, Y.J. Yu, P.K. Duane, M. Wober,
 K.B. Crozier, Nano Lett., 14 (4), 1804 (2014).
 DOI: 10.1021/nl404379w
- [5] J.J. Cadusch, J. Meng, B.J. Craig, V.R. Shrestha, K.B. Crozier, Nanophotonics, 9 (10), 3197 (2020).
 DOI: 10.1515/nanoph-2020-0114

- J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Nano Lett., 9 (1), 279 (2009). DOI: 10.1021/nl802886y
- [7] K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, K.B. Crozier, Nano Lett., **11** (4), 1851 (2011). DOI: 10.1021/nl200201b
- [8] Z. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Sci. Rep., 5, 7810 (2015). DOI: 10.1038/srep07810
- [9] Л.С. Басалаева, А.В. Царев, К.В. Аникин, С.Л. Вебер, Н.В. Крыжановская, Ю.В. Настаушев, ФТП, 56 (3), 340 (2022). DOI: 10.21883/FTP.2022.03.52121.9761
 [L.S. Basalaeva, A.V. Tsarev, K.V. Anikin, S.L. Veber, N.V. Kryzhanovskaya, Yu.V. Nastaushev, Semiconductors, 56 (3), 227 (2022). DOI: 10.21883/SC.2022.03.53067.9761].
- [10] I.I. Amirov, N.V. Alov, High Energy Chem., 42 (2), 132 (2008). DOI: 10.1134/S0018143908020136
- [11] Y. Chen, Z. Xu, M.R. Gartia, D. Whitlock, Y. Lian, G.L. Liu, ACS Nano, 5 (10), 8002 (2011). DOI: 10.1021/nn2024754
- Z. Huang, H. Fang, J. Zhu, Adv. Mater., 19 (5), 744 (2007).
 DOI: 10.1002/adma.200600892
- [13] I.I. Amirov, M.O. Izyumov, V.V. Naumov, E.S. Gorlachev, J. Phys. D: Appl. Phys., 54 (6), 065204 (2021).
 DOI: 10.1088/1361-6463/abc3ed
- [14] L. Li, J. Niu, X. Shang, S. Chen, C. Lu, Y. Zhang, L. Shi, ACS Appl. Mater. Interfaces, 13 (3), 4364 (2021).
 DOI: 10.1021/acsami.0c19126